Abstract

In this paper we demonstrate a sensor based on a two-dimensional photonic crystal cavity structure. Design, theoretical simulations, fabrication and experiments are shown to illustrate the working principle of this device. Sensitivity of our sensor is determined by observing the shift of resonant wavelength of the photonic crystal cavity as a function of the refractive index variation of the analyte. By experimentally infiltrating solutions of water and ethanol through an elastomeric micro-fluidic channel, we have confirmed that our all-optical sensor achieves a sensitivity of 460 nm/RIU.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Levi, M. Lee, J. Zhang, V. Lousse, S. Brueck, S. Fan, and J. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE6447, 64470P (2007).
    [CrossRef]
  2. M. Adams, G. DeRose, M. Loncar, and A. Scherer, “Lithographically fabricated optical cavities for refractive index sensing,” J. Vac. Sci. Technol. B23(6), 3168–3173 (2005).
    [CrossRef]
  3. J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem.54(1-2), 3–15 (1999).
    [CrossRef]
  4. A. Ymeti, J. S. Kanger, J. Greve, G. A. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron.20(7), 1417–1421 (2005).
    [CrossRef] [PubMed]
  5. R. Kunz, “Miniature integrated optical modules for chemical and biochemical sensing,” Sens. Actuators B Chem.38(1-3), 13–28 (1997).
    [CrossRef]
  6. E. Udd and W. Spillman, Fiber Optic Sensors—an Introduction for Engineers and Scientists (Wiley, 2011).
  7. J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express13(15), 5883–5889 (2005).
    [CrossRef] [PubMed]
  8. L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express14(18), 8224–8231 (2006).
    [CrossRef] [PubMed]
  9. R. W. Boyd and J. E. Heebner, “Sensitive disk resonator photonic biosensor,” Appl. Opt.40(31), 5742–5747 (2001).
    [CrossRef] [PubMed]
  10. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
    [CrossRef] [PubMed]
  11. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express13(4), 1202–1214 (2005).
    [CrossRef] [PubMed]
  12. B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater.4(3), 207–210 (2005).
    [CrossRef]
  13. T. Asano, B. S. Song, and S. Noda, “Analysis of the experimental Q factors (~ 1 million) of photonic crystal nanocavities,” Opt. Express14(5), 1996–2002 (2006).
    [CrossRef] [PubMed]
  14. S. Johnson, S. Fan, P. Villeneuve, J. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B60(8), 5751–5758 (1999).
    [CrossRef]
  15. T. Krauss and R. De La Rue, “Photonic crystal in the optical regime-past, present and future,” Prog. Quantum Electron.23(2), 51–96 (1999).
    [CrossRef]
  16. N. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid.4(1–2), 117–127 (2008).
    [CrossRef]
  17. F. Hsiao and C. Lee, “Nanophotonic biosensors using hexagonal nanoring resonators: computational study,” J. Micro/Nanolithogr. MEMS MOEMS10(1), 013001 (2011).
  18. C. Kang, C. T. Phare, Y. A. Vlasov, S. Assefa, and S. M. Weiss, “Photonic crystal slab sensor with enhanced surface area,” Opt. Express18(26), 27930–27937 (2010).
    [CrossRef] [PubMed]
  19. X. Serey, S. Mandal, and D. Erickson, “Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials,” Nanotechnology21(30), 305202 (2010).
    [CrossRef] [PubMed]
  20. D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron.24(12), 3688–3692 (2009).
    [CrossRef] [PubMed]
  21. E. Guillermain and P. Fauchet, “Multi-channel biodetection via resonant microcavities coupled to a photonic crystal waveguide,” Proc. SPIE7167, 71670D (2009).
    [CrossRef]
  22. S. C. Buswell, V. A. Wright, J. M. Buriak, V. Van, and S. Evoy, “Specific detection of proteins using photonic crystal waveguides,” Opt. Express16(20), 15949–15957 (2008).
    [CrossRef] [PubMed]
  23. S. Mandal, R. Akhmechet, L. Chen, S. Nugen, A. Baeumner, and D. Erickson, “Nanoscale optofluidic sensor arrays for dengue virus detection,” Proc. SPIE6645, 66451J (2007).
    [CrossRef]
  24. S. Mandal and D. Erickson, “Nanoscale optofluidic sensor arrays,” Opt. Express16(3), 1623–1631 (2008).
    [CrossRef] [PubMed]
  25. M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett.82(26), 4648–4650 (2003).
    [CrossRef]
  26. M. L. Adams, M. Loncar, A. Scherer, and Y. Qiu, “Microfluidic integration of porous photonic crystal nanolasers for chemical sensing,” IEEE J. Sel. Areas Comm.23(7), 1348–1354 (2005).
    [CrossRef]
  27. T. Tanabe, M. Notomi, and E. Kuramochi, “Measurement of ultra-high-Q photonic crystal nanocavity using single-sideband frequency modulator,” Electron. Lett.43(3), 187–188 (2007).
    [CrossRef]
  28. A. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
    [CrossRef]
  29. J. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys.114(2), 185–200 (1994).
    [CrossRef]
  30. V. Mandelshtam and H. Taylor, “Harmonic inversion of time signals and its applications,” J. Chem. Phys.107(17), 6756–6770 (1997).
    [CrossRef]
  31. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
    [CrossRef] [PubMed]

2011 (1)

F. Hsiao and C. Lee, “Nanophotonic biosensors using hexagonal nanoring resonators: computational study,” J. Micro/Nanolithogr. MEMS MOEMS10(1), 013001 (2011).

2010 (3)

C. Kang, C. T. Phare, Y. A. Vlasov, S. Assefa, and S. M. Weiss, “Photonic crystal slab sensor with enhanced surface area,” Opt. Express18(26), 27930–27937 (2010).
[CrossRef] [PubMed]

X. Serey, S. Mandal, and D. Erickson, “Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials,” Nanotechnology21(30), 305202 (2010).
[CrossRef] [PubMed]

A. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

2009 (2)

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron.24(12), 3688–3692 (2009).
[CrossRef] [PubMed]

E. Guillermain and P. Fauchet, “Multi-channel biodetection via resonant microcavities coupled to a photonic crystal waveguide,” Proc. SPIE7167, 71670D (2009).
[CrossRef]

2008 (3)

2007 (3)

T. Tanabe, M. Notomi, and E. Kuramochi, “Measurement of ultra-high-Q photonic crystal nanocavity using single-sideband frequency modulator,” Electron. Lett.43(3), 187–188 (2007).
[CrossRef]

S. Mandal, R. Akhmechet, L. Chen, S. Nugen, A. Baeumner, and D. Erickson, “Nanoscale optofluidic sensor arrays for dengue virus detection,” Proc. SPIE6645, 66451J (2007).
[CrossRef]

O. Levi, M. Lee, J. Zhang, V. Lousse, S. Brueck, S. Fan, and J. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE6447, 64470P (2007).
[CrossRef]

2006 (2)

2005 (6)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express13(4), 1202–1214 (2005).
[CrossRef] [PubMed]

B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater.4(3), 207–210 (2005).
[CrossRef]

J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express13(15), 5883–5889 (2005).
[CrossRef] [PubMed]

M. Adams, G. DeRose, M. Loncar, and A. Scherer, “Lithographically fabricated optical cavities for refractive index sensing,” J. Vac. Sci. Technol. B23(6), 3168–3173 (2005).
[CrossRef]

A. Ymeti, J. S. Kanger, J. Greve, G. A. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron.20(7), 1417–1421 (2005).
[CrossRef] [PubMed]

M. L. Adams, M. Loncar, A. Scherer, and Y. Qiu, “Microfluidic integration of porous photonic crystal nanolasers for chemical sensing,” IEEE J. Sel. Areas Comm.23(7), 1348–1354 (2005).
[CrossRef]

2003 (3)

M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett.82(26), 4648–4650 (2003).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

2001 (1)

1999 (3)

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem.54(1-2), 3–15 (1999).
[CrossRef]

S. Johnson, S. Fan, P. Villeneuve, J. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B60(8), 5751–5758 (1999).
[CrossRef]

T. Krauss and R. De La Rue, “Photonic crystal in the optical regime-past, present and future,” Prog. Quantum Electron.23(2), 51–96 (1999).
[CrossRef]

1997 (2)

R. Kunz, “Miniature integrated optical modules for chemical and biochemical sensing,” Sens. Actuators B Chem.38(1-3), 13–28 (1997).
[CrossRef]

V. Mandelshtam and H. Taylor, “Harmonic inversion of time signals and its applications,” J. Chem. Phys.107(17), 6756–6770 (1997).
[CrossRef]

1994 (1)

J. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys.114(2), 185–200 (1994).
[CrossRef]

Abstreiter, G.

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron.24(12), 3688–3692 (2009).
[CrossRef] [PubMed]

Adams, M.

M. Adams, G. DeRose, M. Loncar, and A. Scherer, “Lithographically fabricated optical cavities for refractive index sensing,” J. Vac. Sci. Technol. B23(6), 3168–3173 (2005).
[CrossRef]

Adams, M. L.

M. L. Adams, M. Loncar, A. Scherer, and Y. Qiu, “Microfluidic integration of porous photonic crystal nanolasers for chemical sensing,” IEEE J. Sel. Areas Comm.23(7), 1348–1354 (2005).
[CrossRef]

Akahane, Y.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express13(4), 1202–1214 (2005).
[CrossRef] [PubMed]

B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater.4(3), 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Akhmechet, R.

S. Mandal, R. Akhmechet, L. Chen, S. Nugen, A. Baeumner, and D. Erickson, “Nanoscale optofluidic sensor arrays for dengue virus detection,” Proc. SPIE6645, 66451J (2007).
[CrossRef]

Asano, T.

T. Asano, B. S. Song, and S. Noda, “Analysis of the experimental Q factors (~ 1 million) of photonic crystal nanocavities,” Opt. Express14(5), 1996–2002 (2006).
[CrossRef] [PubMed]

B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater.4(3), 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express13(4), 1202–1214 (2005).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Assefa, S.

Baeumner, A.

S. Mandal, R. Akhmechet, L. Chen, S. Nugen, A. Baeumner, and D. Erickson, “Nanoscale optofluidic sensor arrays for dengue virus detection,” Proc. SPIE6645, 66451J (2007).
[CrossRef]

Bang, O.

Berenger, J.

J. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys.114(2), 185–200 (1994).
[CrossRef]

Bermel, P.

A. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Besselink, G. A.

A. Ymeti, J. S. Kanger, J. Greve, G. A. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron.20(7), 1417–1421 (2005).
[CrossRef] [PubMed]

Bjarklev, A.

Boyd, R. W.

Brueck, S.

O. Levi, M. Lee, J. Zhang, V. Lousse, S. Brueck, S. Fan, and J. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE6447, 64470P (2007).
[CrossRef]

Buriak, J. M.

Buswell, S. C.

Chen, L.

S. Mandal, R. Akhmechet, L. Chen, S. Nugen, A. Baeumner, and D. Erickson, “Nanoscale optofluidic sensor arrays for dengue virus detection,” Proc. SPIE6645, 66451J (2007).
[CrossRef]

De La Rue, R.

T. Krauss and R. De La Rue, “Photonic crystal in the optical regime-past, present and future,” Prog. Quantum Electron.23(2), 51–96 (1999).
[CrossRef]

DeRose, G.

M. Adams, G. DeRose, M. Loncar, and A. Scherer, “Lithographically fabricated optical cavities for refractive index sensing,” J. Vac. Sci. Technol. B23(6), 3168–3173 (2005).
[CrossRef]

Dorfner, D.

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron.24(12), 3688–3692 (2009).
[CrossRef] [PubMed]

Dufva, M.

Emiliyanov, G.

Erickson, D.

X. Serey, S. Mandal, and D. Erickson, “Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials,” Nanotechnology21(30), 305202 (2010).
[CrossRef] [PubMed]

S. Mandal and D. Erickson, “Nanoscale optofluidic sensor arrays,” Opt. Express16(3), 1623–1631 (2008).
[CrossRef] [PubMed]

S. Mandal, R. Akhmechet, L. Chen, S. Nugen, A. Baeumner, and D. Erickson, “Nanoscale optofluidic sensor arrays for dengue virus detection,” Proc. SPIE6645, 66451J (2007).
[CrossRef]

Evoy, S.

Fan, S.

O. Levi, M. Lee, J. Zhang, V. Lousse, S. Brueck, S. Fan, and J. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE6447, 64470P (2007).
[CrossRef]

S. Johnson, S. Fan, P. Villeneuve, J. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B60(8), 5751–5758 (1999).
[CrossRef]

Fauchet, P.

E. Guillermain and P. Fauchet, “Multi-channel biodetection via resonant microcavities coupled to a photonic crystal waveguide,” Proc. SPIE7167, 71670D (2009).
[CrossRef]

Finley, J.

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron.24(12), 3688–3692 (2009).
[CrossRef] [PubMed]

Frandsen, L.

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron.24(12), 3688–3692 (2009).
[CrossRef] [PubMed]

Gauglitz, G.

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem.54(1-2), 3–15 (1999).
[CrossRef]

Greve, J.

A. Ymeti, J. S. Kanger, J. Greve, G. A. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron.20(7), 1417–1421 (2005).
[CrossRef] [PubMed]

Guillermain, E.

E. Guillermain and P. Fauchet, “Multi-channel biodetection via resonant microcavities coupled to a photonic crystal waveguide,” Proc. SPIE7167, 71670D (2009).
[CrossRef]

Harris, J.

O. Levi, M. Lee, J. Zhang, V. Lousse, S. Brueck, S. Fan, and J. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE6447, 64470P (2007).
[CrossRef]

Hauke, N.

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron.24(12), 3688–3692 (2009).
[CrossRef] [PubMed]

Heebner, J. E.

Heideman, R. G.

A. Ymeti, J. S. Kanger, J. Greve, G. A. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron.20(7), 1417–1421 (2005).
[CrossRef] [PubMed]

Hoiby, P.

Høiby, P. E.

Homola, J.

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem.54(1-2), 3–15 (1999).
[CrossRef]

Hsiao, F.

F. Hsiao and C. Lee, “Nanophotonic biosensors using hexagonal nanoring resonators: computational study,” J. Micro/Nanolithogr. MEMS MOEMS10(1), 013001 (2011).

Hürlimann, T.

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron.24(12), 3688–3692 (2009).
[CrossRef] [PubMed]

Ibanescu, M.

A. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Jensen, J.

Jensen, J. B.

Joannopoulos, J.

A. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

S. Johnson, S. Fan, P. Villeneuve, J. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B60(8), 5751–5758 (1999).
[CrossRef]

Johnson, S.

A. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

S. Johnson, S. Fan, P. Villeneuve, J. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B60(8), 5751–5758 (1999).
[CrossRef]

Kang, C.

Kanger, J. S.

A. Ymeti, J. S. Kanger, J. Greve, G. A. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron.20(7), 1417–1421 (2005).
[CrossRef] [PubMed]

Kolodziejski, L.

S. Johnson, S. Fan, P. Villeneuve, J. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B60(8), 5751–5758 (1999).
[CrossRef]

Krauss, T.

T. Krauss and R. De La Rue, “Photonic crystal in the optical regime-past, present and future,” Prog. Quantum Electron.23(2), 51–96 (1999).
[CrossRef]

Kunz, R.

R. Kunz, “Miniature integrated optical modules for chemical and biochemical sensing,” Sens. Actuators B Chem.38(1-3), 13–28 (1997).
[CrossRef]

Kuramochi, E.

T. Tanabe, M. Notomi, and E. Kuramochi, “Measurement of ultra-high-Q photonic crystal nanocavity using single-sideband frequency modulator,” Electron. Lett.43(3), 187–188 (2007).
[CrossRef]

Lambeck, P. V.

A. Ymeti, J. S. Kanger, J. Greve, G. A. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron.20(7), 1417–1421 (2005).
[CrossRef] [PubMed]

Lee, C.

F. Hsiao and C. Lee, “Nanophotonic biosensors using hexagonal nanoring resonators: computational study,” J. Micro/Nanolithogr. MEMS MOEMS10(1), 013001 (2011).

Lee, M.

O. Levi, M. Lee, J. Zhang, V. Lousse, S. Brueck, S. Fan, and J. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE6447, 64470P (2007).
[CrossRef]

Levi, O.

O. Levi, M. Lee, J. Zhang, V. Lousse, S. Brueck, S. Fan, and J. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE6447, 64470P (2007).
[CrossRef]

Loncar, M.

M. Adams, G. DeRose, M. Loncar, and A. Scherer, “Lithographically fabricated optical cavities for refractive index sensing,” J. Vac. Sci. Technol. B23(6), 3168–3173 (2005).
[CrossRef]

M. L. Adams, M. Loncar, A. Scherer, and Y. Qiu, “Microfluidic integration of porous photonic crystal nanolasers for chemical sensing,” IEEE J. Sel. Areas Comm.23(7), 1348–1354 (2005).
[CrossRef]

M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett.82(26), 4648–4650 (2003).
[CrossRef]

Lousse, V.

O. Levi, M. Lee, J. Zhang, V. Lousse, S. Brueck, S. Fan, and J. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE6447, 64470P (2007).
[CrossRef]

Mandal, S.

X. Serey, S. Mandal, and D. Erickson, “Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials,” Nanotechnology21(30), 305202 (2010).
[CrossRef] [PubMed]

S. Mandal and D. Erickson, “Nanoscale optofluidic sensor arrays,” Opt. Express16(3), 1623–1631 (2008).
[CrossRef] [PubMed]

S. Mandal, R. Akhmechet, L. Chen, S. Nugen, A. Baeumner, and D. Erickson, “Nanoscale optofluidic sensor arrays for dengue virus detection,” Proc. SPIE6645, 66451J (2007).
[CrossRef]

Mandelshtam, V.

V. Mandelshtam and H. Taylor, “Harmonic inversion of time signals and its applications,” J. Chem. Phys.107(17), 6756–6770 (1997).
[CrossRef]

Mortensen, N.

N. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid.4(1–2), 117–127 (2008).
[CrossRef]

Noda, S.

T. Asano, B. S. Song, and S. Noda, “Analysis of the experimental Q factors (~ 1 million) of photonic crystal nanocavities,” Opt. Express14(5), 1996–2002 (2006).
[CrossRef] [PubMed]

B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater.4(3), 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express13(4), 1202–1214 (2005).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Notomi, M.

T. Tanabe, M. Notomi, and E. Kuramochi, “Measurement of ultra-high-Q photonic crystal nanocavity using single-sideband frequency modulator,” Electron. Lett.43(3), 187–188 (2007).
[CrossRef]

Nugen, S.

S. Mandal, R. Akhmechet, L. Chen, S. Nugen, A. Baeumner, and D. Erickson, “Nanoscale optofluidic sensor arrays for dengue virus detection,” Proc. SPIE6645, 66451J (2007).
[CrossRef]

Oskooi, A.

A. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Pedersen, J.

N. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid.4(1–2), 117–127 (2008).
[CrossRef]

Pedersen, L.

Pedersen, L. H.

Phare, C. T.

Qiu, Y.

M. L. Adams, M. Loncar, A. Scherer, and Y. Qiu, “Microfluidic integration of porous photonic crystal nanolasers for chemical sensing,” IEEE J. Sel. Areas Comm.23(7), 1348–1354 (2005).
[CrossRef]

M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett.82(26), 4648–4650 (2003).
[CrossRef]

Rant, U.

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron.24(12), 3688–3692 (2009).
[CrossRef] [PubMed]

Rindorf, L.

Roundy, D.

A. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Scherer, A.

M. L. Adams, M. Loncar, A. Scherer, and Y. Qiu, “Microfluidic integration of porous photonic crystal nanolasers for chemical sensing,” IEEE J. Sel. Areas Comm.23(7), 1348–1354 (2005).
[CrossRef]

M. Adams, G. DeRose, M. Loncar, and A. Scherer, “Lithographically fabricated optical cavities for refractive index sensing,” J. Vac. Sci. Technol. B23(6), 3168–3173 (2005).
[CrossRef]

M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett.82(26), 4648–4650 (2003).
[CrossRef]

Serey, X.

X. Serey, S. Mandal, and D. Erickson, “Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials,” Nanotechnology21(30), 305202 (2010).
[CrossRef] [PubMed]

Song, B.

B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater.4(3), 207–210 (2005).
[CrossRef]

Song, B. S.

T. Asano, B. S. Song, and S. Noda, “Analysis of the experimental Q factors (~ 1 million) of photonic crystal nanocavities,” Opt. Express14(5), 1996–2002 (2006).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express13(4), 1202–1214 (2005).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Tanabe, T.

T. Tanabe, M. Notomi, and E. Kuramochi, “Measurement of ultra-high-Q photonic crystal nanocavity using single-sideband frequency modulator,” Electron. Lett.43(3), 187–188 (2007).
[CrossRef]

Taylor, H.

V. Mandelshtam and H. Taylor, “Harmonic inversion of time signals and its applications,” J. Chem. Phys.107(17), 6756–6770 (1997).
[CrossRef]

Van, V.

Villeneuve, P.

S. Johnson, S. Fan, P. Villeneuve, J. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B60(8), 5751–5758 (1999).
[CrossRef]

Vlasov, Y. A.

Weiss, S. M.

Wijn, R.

A. Ymeti, J. S. Kanger, J. Greve, G. A. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron.20(7), 1417–1421 (2005).
[CrossRef] [PubMed]

Wright, V. A.

Xiao, S.

N. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid.4(1–2), 117–127 (2008).
[CrossRef]

Yee, S.

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem.54(1-2), 3–15 (1999).
[CrossRef]

Ymeti, A.

A. Ymeti, J. S. Kanger, J. Greve, G. A. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron.20(7), 1417–1421 (2005).
[CrossRef] [PubMed]

Zabel, T.

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron.24(12), 3688–3692 (2009).
[CrossRef] [PubMed]

Zhang, J.

O. Levi, M. Lee, J. Zhang, V. Lousse, S. Brueck, S. Fan, and J. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE6447, 64470P (2007).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett.82(26), 4648–4650 (2003).
[CrossRef]

Biosens. Bioelectron. (2)

D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron.24(12), 3688–3692 (2009).
[CrossRef] [PubMed]

A. Ymeti, J. S. Kanger, J. Greve, G. A. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron.20(7), 1417–1421 (2005).
[CrossRef] [PubMed]

Comput. Phys. Commun. (1)

A. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Electron. Lett. (1)

T. Tanabe, M. Notomi, and E. Kuramochi, “Measurement of ultra-high-Q photonic crystal nanocavity using single-sideband frequency modulator,” Electron. Lett.43(3), 187–188 (2007).
[CrossRef]

IEEE J. Sel. Areas Comm. (1)

M. L. Adams, M. Loncar, A. Scherer, and Y. Qiu, “Microfluidic integration of porous photonic crystal nanolasers for chemical sensing,” IEEE J. Sel. Areas Comm.23(7), 1348–1354 (2005).
[CrossRef]

J. Chem. Phys. (1)

V. Mandelshtam and H. Taylor, “Harmonic inversion of time signals and its applications,” J. Chem. Phys.107(17), 6756–6770 (1997).
[CrossRef]

J. Comput. Phys. (1)

J. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys.114(2), 185–200 (1994).
[CrossRef]

J. Micro/Nanolithogr. MEMS MOEMS (1)

F. Hsiao and C. Lee, “Nanophotonic biosensors using hexagonal nanoring resonators: computational study,” J. Micro/Nanolithogr. MEMS MOEMS10(1), 013001 (2011).

J. Vac. Sci. Technol. B (1)

M. Adams, G. DeRose, M. Loncar, and A. Scherer, “Lithographically fabricated optical cavities for refractive index sensing,” J. Vac. Sci. Technol. B23(6), 3168–3173 (2005).
[CrossRef]

Microfluid. Nanofluid. (1)

N. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid.4(1–2), 117–127 (2008).
[CrossRef]

Nanotechnology (1)

X. Serey, S. Mandal, and D. Erickson, “Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials,” Nanotechnology21(30), 305202 (2010).
[CrossRef] [PubMed]

Nat. Mater. (1)

B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater.4(3), 207–210 (2005).
[CrossRef]

Nature (2)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Opt. Express (7)

Phys. Rev. B (1)

S. Johnson, S. Fan, P. Villeneuve, J. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B60(8), 5751–5758 (1999).
[CrossRef]

Proc. SPIE (3)

O. Levi, M. Lee, J. Zhang, V. Lousse, S. Brueck, S. Fan, and J. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE6447, 64470P (2007).
[CrossRef]

S. Mandal, R. Akhmechet, L. Chen, S. Nugen, A. Baeumner, and D. Erickson, “Nanoscale optofluidic sensor arrays for dengue virus detection,” Proc. SPIE6645, 66451J (2007).
[CrossRef]

E. Guillermain and P. Fauchet, “Multi-channel biodetection via resonant microcavities coupled to a photonic crystal waveguide,” Proc. SPIE7167, 71670D (2009).
[CrossRef]

Prog. Quantum Electron. (1)

T. Krauss and R. De La Rue, “Photonic crystal in the optical regime-past, present and future,” Prog. Quantum Electron.23(2), 51–96 (1999).
[CrossRef]

Sens. Actuators B Chem. (2)

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem.54(1-2), 3–15 (1999).
[CrossRef]

R. Kunz, “Miniature integrated optical modules for chemical and biochemical sensing,” Sens. Actuators B Chem.38(1-3), 13–28 (1997).
[CrossRef]

Other (1)

E. Udd and W. Spillman, Fiber Optic Sensors—an Introduction for Engineers and Scientists (Wiley, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The L7 cavity in photonic crystal with width modification. Three neighboring rows of air holes (filled with pink, green and blue colors) are shifted outwardly by 0.02a, 0.014a and 0.007a.

Fig. 2
Fig. 2

(a) Scanning electron microscope image of the sensor device. rc = 132.6nm, dc = 103nm; rb = 34nm, db = 0; ra = 47.6nm, da = 103nm. (b) Electromagnetic-field distribution of the resonant optical mode in PhC cavity.

Fig. 3
Fig. 3

Calculated Q factors (a) and intensities (b) of a modified L7 cavity with mini air holes.

Fig. 4
Fig. 4

Calculated transmission spectra of the sensor with air/water/ethanol infiltration. A change in refractive index of Δn = 3E-2 between water and ethanol results in a spectral blue-shift of 12.05 nm.

Fig. 5
Fig. 5

Flowchart of sensor fabrication.

Fig. 6
Fig. 6

(a) Scanning Electron Microscope image of sensor device after ICP etching. (b) Scanning Electron Microscope image of fluidic accesses on SiC layer. (c) An example of suspended photonic crystal under silicon carbide.

Fig. 7
Fig. 7

Sealed elastomer-made fluidic channel on the sensor.

Fig. 8
Fig. 8

Experimental transmission spectra of the sensor with air/water/ethanol infiltration. The red and green spectra were obtained after infilling channels with water and ethanol. A change in refractive index of Δn = 2.7E-2 between water and ethanol results in a spectral blue-shift of 12.65 nm.

Metrics