Abstract

We report here the first demonstration of a harmonic mode-locked Raman fiber laser using the intermodal beating of a continuous-wave (CW) multiple-longitudinal-mode pump laser. By matching the Raman-cavity round-trip frequency with the intermodal-beating one of a 1064 nm CW pump source, harmonic mode-locking in phosphosilicate Raman fiber laser is stably initiated at the first-order Stokes of 1239.5 nm, and generates rectangular-shape nanosecond pulses with the pulse energy up to 4.25 nJ. Using the new type of mode-locking, the harmonic order can be discretely tuned from 78th- to 693rd-order, and the cavity supermode is suppressed up to 51.1 dB with the signal-to-noise ratio of more than 65 dB.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett.18, 1080–1082 (1993).
    [CrossRef] [PubMed]
  2. F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev.2, 58–73 (2008).
    [CrossRef]
  3. A. Ruehl, O. Prochnow, D. Wandt, D. Kracht, B. Burgoyne, N. Godbout, and S. Lacroix, “Dynamics of parabolic pulses in an ultrafast fiber laser,” Opt. Lett.31, 2734–2736 (2006).
    [CrossRef] [PubMed]
  4. H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett.95, 141103 (2009).
    [CrossRef]
  5. B. N. Nyushkov, V. I. Denisov, S. M. Kobtsev, V. S. Pivtsov, N. A. Kolyada, A. V. Ivanenko, and S. K. Turitsyn, “Generation of 1.7-μJ pulses at 1.55 μm by a self-mode-locked all-fiber laser with a kilometers-long linear-ringcavity,” Laser Phys. Lett.7, 661–665 (2010).
    [CrossRef]
  6. H. Zhang, D. Y. Tang, L. M. Zhao, and X. Wu, “Dark pulse emission of a fiber laser,” Phys. Rev. A80, 045803 (2009).
    [CrossRef]
  7. D. A. Chestnut and J. R. Taylor, “Wavelength-versatile subpicosecond pulsed lasers using Raman gain in figure-of-eight fiber geometries,” Opt. Lett.30, 2982–2984 (2005).
    [CrossRef] [PubMed]
  8. A. Chamorovskiy, A. Rantamäki, A. Sirbu, A. Mereuta, E. Kapon, and O. G. Okhotnikov,“1.38-μm mode-locked Raman fiber laser pumped by semiconductor disk laser,” Opt. Express18, 23872–23877 (2010).
    [CrossRef] [PubMed]
  9. J. Schröder, S. Coen, F. Vanholsbeeck, and T. Sylvestre, “Passively mode-locked Raman fiber laser with 100 GHz repetition rate,” Opt. Lett.31, 3489–3451 (2006).
    [CrossRef] [PubMed]
  10. A. Chamorovskiy, J. Rautiainen, J. Lyytikäinen, S. Ranta, M. Tavast, A. Sirbu, E. Kapon, and O. Okhotnikov, “Raman fiber laser pumped by a semiconductor disk laser and mode locked by a semiconductor saturable absorber mirror,” Opt. Lett.35, 3529–3531 (2010).
    [CrossRef] [PubMed]
  11. S. Randoux and P. Suret, “Toward passive mode locking by nonlinear polarization evolution in a cascaded Raman fiber ring laser,” Opt. Commun.267, 145–148 (2006).
    [CrossRef]
  12. C. E. S. Castellani, E. J. R. Kelleher, J. C. Travers, D. Popa, T. Hasan, Z. Sun, E. Flahaut, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Ultrafast Raman laser mode-locked by nanotubes,” Opt. Lett.36, 3996–3998 (2011).
    [CrossRef] [PubMed]
  13. C. E. S. Castellani, E. J. R. Kelleher, Z. Luo, K. Wu, C. Ouyang, P. P. Shum, Z. Shen, S. V. Popov, and J. R. Taylor, “Harmonic and single pulse operation of a Raman laser using graphene,” Laser Phys. Lett.9, 223 (2012).
    [CrossRef]
  14. D. J. Spence, Y. Zhao, S. D. Jackson, and R. P. Mildren, “An investigation into Raman mode locking of fiber lasers,” Opt. Express16, 5277–5289 (2008).
    [CrossRef] [PubMed]
  15. C. Aguergaray, D. Méchin, V. Kruglov, and J. D. Harvey, “Experimental realization of a mode-locked parabolic Raman fiber oscillator,” Opt. Express18, 8680–8687 (2010).
    [CrossRef] [PubMed]
  16. T. Kuznetsova, “Phasing of the spectrum and short light pulses in stimulated Raman scattering,” ZhETF Pis. Red.10, 153–155 (1969). [JETP Lett. 10, 98–100 (1969)].
  17. E. M. Dianov, M. V. Grekov, I. A. Bufetov, S. A. Vasiliev, O. I. Medvedkov, V. G. Plotnichenko, V. V. Koltashev, A. V. Belov, M. M. Bubnov, S. L. Semjonov, and A. M. Prokhorov“CW high power 1.24 μm and 1.48 μm Raman lasers based on low loss phosphosilicate fibre,” Electron. Lett.33, 1542–1543 (1997).
    [CrossRef]
  18. C. S. Jun, J. M. Im, S. H. Yoo, S. Y. Choi, F. Rotermund, D. I. Yeom, and B. Y. Kim, “Low noise GHz passive harmonic mode-locking of soliton fiber laser using evanescent wave interaction with carbon nanotubes,” Opt. Express, 19, 19775–19780 (2011).
    [CrossRef] [PubMed]
  19. H. Nakatsuka, D. Grischkowsky, and A. C. Balant, “Nonlinear picosecond-pulse propagation through optical fibers with positive group velocity dispersion,” Phys. Rev. Lett.47, 910–913 (1981).
    [CrossRef]
  20. X. M. Zhang, C. Gu, G. L. Chen, B. Sun, L. X. Xu, A. T. Wang, and H. Ming, “Square-wave pulse with ultra-wide tuning range in a passively mode-locked fiber laser,” Opt. Lett.37, 1334–1336 (2012).
    [CrossRef] [PubMed]

2012 (2)

C. E. S. Castellani, E. J. R. Kelleher, Z. Luo, K. Wu, C. Ouyang, P. P. Shum, Z. Shen, S. V. Popov, and J. R. Taylor, “Harmonic and single pulse operation of a Raman laser using graphene,” Laser Phys. Lett.9, 223 (2012).
[CrossRef]

X. M. Zhang, C. Gu, G. L. Chen, B. Sun, L. X. Xu, A. T. Wang, and H. Ming, “Square-wave pulse with ultra-wide tuning range in a passively mode-locked fiber laser,” Opt. Lett.37, 1334–1336 (2012).
[CrossRef] [PubMed]

2011 (2)

2010 (4)

2009 (2)

H. Zhang, D. Y. Tang, L. M. Zhao, and X. Wu, “Dark pulse emission of a fiber laser,” Phys. Rev. A80, 045803 (2009).
[CrossRef]

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett.95, 141103 (2009).
[CrossRef]

2008 (2)

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev.2, 58–73 (2008).
[CrossRef]

D. J. Spence, Y. Zhao, S. D. Jackson, and R. P. Mildren, “An investigation into Raman mode locking of fiber lasers,” Opt. Express16, 5277–5289 (2008).
[CrossRef] [PubMed]

2006 (3)

2005 (1)

1997 (1)

E. M. Dianov, M. V. Grekov, I. A. Bufetov, S. A. Vasiliev, O. I. Medvedkov, V. G. Plotnichenko, V. V. Koltashev, A. V. Belov, M. M. Bubnov, S. L. Semjonov, and A. M. Prokhorov“CW high power 1.24 μm and 1.48 μm Raman lasers based on low loss phosphosilicate fibre,” Electron. Lett.33, 1542–1543 (1997).
[CrossRef]

1993 (1)

1981 (1)

H. Nakatsuka, D. Grischkowsky, and A. C. Balant, “Nonlinear picosecond-pulse propagation through optical fibers with positive group velocity dispersion,” Phys. Rev. Lett.47, 910–913 (1981).
[CrossRef]

1969 (1)

T. Kuznetsova, “Phasing of the spectrum and short light pulses in stimulated Raman scattering,” ZhETF Pis. Red.10, 153–155 (1969). [JETP Lett. 10, 98–100 (1969)].

Aguergaray, C.

Balant, A. C.

H. Nakatsuka, D. Grischkowsky, and A. C. Balant, “Nonlinear picosecond-pulse propagation through optical fibers with positive group velocity dispersion,” Phys. Rev. Lett.47, 910–913 (1981).
[CrossRef]

Bao, Q. L.

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett.95, 141103 (2009).
[CrossRef]

Belov, A. V.

E. M. Dianov, M. V. Grekov, I. A. Bufetov, S. A. Vasiliev, O. I. Medvedkov, V. G. Plotnichenko, V. V. Koltashev, A. V. Belov, M. M. Bubnov, S. L. Semjonov, and A. M. Prokhorov“CW high power 1.24 μm and 1.48 μm Raman lasers based on low loss phosphosilicate fibre,” Electron. Lett.33, 1542–1543 (1997).
[CrossRef]

Bubnov, M. M.

E. M. Dianov, M. V. Grekov, I. A. Bufetov, S. A. Vasiliev, O. I. Medvedkov, V. G. Plotnichenko, V. V. Koltashev, A. V. Belov, M. M. Bubnov, S. L. Semjonov, and A. M. Prokhorov“CW high power 1.24 μm and 1.48 μm Raman lasers based on low loss phosphosilicate fibre,” Electron. Lett.33, 1542–1543 (1997).
[CrossRef]

Bufetov, I. A.

E. M. Dianov, M. V. Grekov, I. A. Bufetov, S. A. Vasiliev, O. I. Medvedkov, V. G. Plotnichenko, V. V. Koltashev, A. V. Belov, M. M. Bubnov, S. L. Semjonov, and A. M. Prokhorov“CW high power 1.24 μm and 1.48 μm Raman lasers based on low loss phosphosilicate fibre,” Electron. Lett.33, 1542–1543 (1997).
[CrossRef]

Burgoyne, B.

Castellani, C. E. S.

C. E. S. Castellani, E. J. R. Kelleher, Z. Luo, K. Wu, C. Ouyang, P. P. Shum, Z. Shen, S. V. Popov, and J. R. Taylor, “Harmonic and single pulse operation of a Raman laser using graphene,” Laser Phys. Lett.9, 223 (2012).
[CrossRef]

C. E. S. Castellani, E. J. R. Kelleher, J. C. Travers, D. Popa, T. Hasan, Z. Sun, E. Flahaut, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Ultrafast Raman laser mode-locked by nanotubes,” Opt. Lett.36, 3996–3998 (2011).
[CrossRef] [PubMed]

Chamorovskiy, A.

Chen, G. L.

Chestnut, D. A.

Choi, S. Y.

Chong, A.

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev.2, 58–73 (2008).
[CrossRef]

Coen, S.

Denisov, V. I.

B. N. Nyushkov, V. I. Denisov, S. M. Kobtsev, V. S. Pivtsov, N. A. Kolyada, A. V. Ivanenko, and S. K. Turitsyn, “Generation of 1.7-μJ pulses at 1.55 μm by a self-mode-locked all-fiber laser with a kilometers-long linear-ringcavity,” Laser Phys. Lett.7, 661–665 (2010).
[CrossRef]

Dianov, E. M.

E. M. Dianov, M. V. Grekov, I. A. Bufetov, S. A. Vasiliev, O. I. Medvedkov, V. G. Plotnichenko, V. V. Koltashev, A. V. Belov, M. M. Bubnov, S. L. Semjonov, and A. M. Prokhorov“CW high power 1.24 μm and 1.48 μm Raman lasers based on low loss phosphosilicate fibre,” Electron. Lett.33, 1542–1543 (1997).
[CrossRef]

Ferrari, A. C.

Flahaut, E.

Godbout, N.

Grekov, M. V.

E. M. Dianov, M. V. Grekov, I. A. Bufetov, S. A. Vasiliev, O. I. Medvedkov, V. G. Plotnichenko, V. V. Koltashev, A. V. Belov, M. M. Bubnov, S. L. Semjonov, and A. M. Prokhorov“CW high power 1.24 μm and 1.48 μm Raman lasers based on low loss phosphosilicate fibre,” Electron. Lett.33, 1542–1543 (1997).
[CrossRef]

Grischkowsky, D.

H. Nakatsuka, D. Grischkowsky, and A. C. Balant, “Nonlinear picosecond-pulse propagation through optical fibers with positive group velocity dispersion,” Phys. Rev. Lett.47, 910–913 (1981).
[CrossRef]

Gu, C.

Harvey, J. D.

Hasan, T.

Haus, H. A.

Im, J. M.

Ippen, E. P.

Ivanenko, A. V.

B. N. Nyushkov, V. I. Denisov, S. M. Kobtsev, V. S. Pivtsov, N. A. Kolyada, A. V. Ivanenko, and S. K. Turitsyn, “Generation of 1.7-μJ pulses at 1.55 μm by a self-mode-locked all-fiber laser with a kilometers-long linear-ringcavity,” Laser Phys. Lett.7, 661–665 (2010).
[CrossRef]

Jackson, S. D.

Jun, C. S.

Kapon, E.

Kelleher, E. J. R.

C. E. S. Castellani, E. J. R. Kelleher, Z. Luo, K. Wu, C. Ouyang, P. P. Shum, Z. Shen, S. V. Popov, and J. R. Taylor, “Harmonic and single pulse operation of a Raman laser using graphene,” Laser Phys. Lett.9, 223 (2012).
[CrossRef]

C. E. S. Castellani, E. J. R. Kelleher, J. C. Travers, D. Popa, T. Hasan, Z. Sun, E. Flahaut, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Ultrafast Raman laser mode-locked by nanotubes,” Opt. Lett.36, 3996–3998 (2011).
[CrossRef] [PubMed]

Kim, B. Y.

Kobtsev, S. M.

B. N. Nyushkov, V. I. Denisov, S. M. Kobtsev, V. S. Pivtsov, N. A. Kolyada, A. V. Ivanenko, and S. K. Turitsyn, “Generation of 1.7-μJ pulses at 1.55 μm by a self-mode-locked all-fiber laser with a kilometers-long linear-ringcavity,” Laser Phys. Lett.7, 661–665 (2010).
[CrossRef]

Koltashev, V. V.

E. M. Dianov, M. V. Grekov, I. A. Bufetov, S. A. Vasiliev, O. I. Medvedkov, V. G. Plotnichenko, V. V. Koltashev, A. V. Belov, M. M. Bubnov, S. L. Semjonov, and A. M. Prokhorov“CW high power 1.24 μm and 1.48 μm Raman lasers based on low loss phosphosilicate fibre,” Electron. Lett.33, 1542–1543 (1997).
[CrossRef]

Kolyada, N. A.

B. N. Nyushkov, V. I. Denisov, S. M. Kobtsev, V. S. Pivtsov, N. A. Kolyada, A. V. Ivanenko, and S. K. Turitsyn, “Generation of 1.7-μJ pulses at 1.55 μm by a self-mode-locked all-fiber laser with a kilometers-long linear-ringcavity,” Laser Phys. Lett.7, 661–665 (2010).
[CrossRef]

Kracht, D.

Kruglov, V.

Kuznetsova, T.

T. Kuznetsova, “Phasing of the spectrum and short light pulses in stimulated Raman scattering,” ZhETF Pis. Red.10, 153–155 (1969). [JETP Lett. 10, 98–100 (1969)].

Lacroix, S.

Loh, K. P.

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett.95, 141103 (2009).
[CrossRef]

Luo, Z.

C. E. S. Castellani, E. J. R. Kelleher, Z. Luo, K. Wu, C. Ouyang, P. P. Shum, Z. Shen, S. V. Popov, and J. R. Taylor, “Harmonic and single pulse operation of a Raman laser using graphene,” Laser Phys. Lett.9, 223 (2012).
[CrossRef]

Lyytikäinen, J.

Méchin, D.

Medvedkov, O. I.

E. M. Dianov, M. V. Grekov, I. A. Bufetov, S. A. Vasiliev, O. I. Medvedkov, V. G. Plotnichenko, V. V. Koltashev, A. V. Belov, M. M. Bubnov, S. L. Semjonov, and A. M. Prokhorov“CW high power 1.24 μm and 1.48 μm Raman lasers based on low loss phosphosilicate fibre,” Electron. Lett.33, 1542–1543 (1997).
[CrossRef]

Mereuta, A.

Mildren, R. P.

Ming, H.

Nakatsuka, H.

H. Nakatsuka, D. Grischkowsky, and A. C. Balant, “Nonlinear picosecond-pulse propagation through optical fibers with positive group velocity dispersion,” Phys. Rev. Lett.47, 910–913 (1981).
[CrossRef]

Nelson, L. E.

Nyushkov, B. N.

B. N. Nyushkov, V. I. Denisov, S. M. Kobtsev, V. S. Pivtsov, N. A. Kolyada, A. V. Ivanenko, and S. K. Turitsyn, “Generation of 1.7-μJ pulses at 1.55 μm by a self-mode-locked all-fiber laser with a kilometers-long linear-ringcavity,” Laser Phys. Lett.7, 661–665 (2010).
[CrossRef]

Okhotnikov, O.

Okhotnikov, O. G.

Ouyang, C.

C. E. S. Castellani, E. J. R. Kelleher, Z. Luo, K. Wu, C. Ouyang, P. P. Shum, Z. Shen, S. V. Popov, and J. R. Taylor, “Harmonic and single pulse operation of a Raman laser using graphene,” Laser Phys. Lett.9, 223 (2012).
[CrossRef]

Pivtsov, V. S.

B. N. Nyushkov, V. I. Denisov, S. M. Kobtsev, V. S. Pivtsov, N. A. Kolyada, A. V. Ivanenko, and S. K. Turitsyn, “Generation of 1.7-μJ pulses at 1.55 μm by a self-mode-locked all-fiber laser with a kilometers-long linear-ringcavity,” Laser Phys. Lett.7, 661–665 (2010).
[CrossRef]

Plotnichenko, V. G.

E. M. Dianov, M. V. Grekov, I. A. Bufetov, S. A. Vasiliev, O. I. Medvedkov, V. G. Plotnichenko, V. V. Koltashev, A. V. Belov, M. M. Bubnov, S. L. Semjonov, and A. M. Prokhorov“CW high power 1.24 μm and 1.48 μm Raman lasers based on low loss phosphosilicate fibre,” Electron. Lett.33, 1542–1543 (1997).
[CrossRef]

Popa, D.

Popov, S. V.

C. E. S. Castellani, E. J. R. Kelleher, Z. Luo, K. Wu, C. Ouyang, P. P. Shum, Z. Shen, S. V. Popov, and J. R. Taylor, “Harmonic and single pulse operation of a Raman laser using graphene,” Laser Phys. Lett.9, 223 (2012).
[CrossRef]

C. E. S. Castellani, E. J. R. Kelleher, J. C. Travers, D. Popa, T. Hasan, Z. Sun, E. Flahaut, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Ultrafast Raman laser mode-locked by nanotubes,” Opt. Lett.36, 3996–3998 (2011).
[CrossRef] [PubMed]

Prochnow, O.

Prokhorov, A. M.

E. M. Dianov, M. V. Grekov, I. A. Bufetov, S. A. Vasiliev, O. I. Medvedkov, V. G. Plotnichenko, V. V. Koltashev, A. V. Belov, M. M. Bubnov, S. L. Semjonov, and A. M. Prokhorov“CW high power 1.24 μm and 1.48 μm Raman lasers based on low loss phosphosilicate fibre,” Electron. Lett.33, 1542–1543 (1997).
[CrossRef]

Randoux, S.

S. Randoux and P. Suret, “Toward passive mode locking by nonlinear polarization evolution in a cascaded Raman fiber ring laser,” Opt. Commun.267, 145–148 (2006).
[CrossRef]

Ranta, S.

Rantamäki, A.

Rautiainen, J.

Renninger, W. H.

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev.2, 58–73 (2008).
[CrossRef]

Rotermund, F.

Ruehl, A.

Schröder, J.

Semjonov, S. L.

E. M. Dianov, M. V. Grekov, I. A. Bufetov, S. A. Vasiliev, O. I. Medvedkov, V. G. Plotnichenko, V. V. Koltashev, A. V. Belov, M. M. Bubnov, S. L. Semjonov, and A. M. Prokhorov“CW high power 1.24 μm and 1.48 μm Raman lasers based on low loss phosphosilicate fibre,” Electron. Lett.33, 1542–1543 (1997).
[CrossRef]

Shen, Z.

C. E. S. Castellani, E. J. R. Kelleher, Z. Luo, K. Wu, C. Ouyang, P. P. Shum, Z. Shen, S. V. Popov, and J. R. Taylor, “Harmonic and single pulse operation of a Raman laser using graphene,” Laser Phys. Lett.9, 223 (2012).
[CrossRef]

Shum, P. P.

C. E. S. Castellani, E. J. R. Kelleher, Z. Luo, K. Wu, C. Ouyang, P. P. Shum, Z. Shen, S. V. Popov, and J. R. Taylor, “Harmonic and single pulse operation of a Raman laser using graphene,” Laser Phys. Lett.9, 223 (2012).
[CrossRef]

Sirbu, A.

Spence, D. J.

Sun, B.

Sun, Z.

Suret, P.

S. Randoux and P. Suret, “Toward passive mode locking by nonlinear polarization evolution in a cascaded Raman fiber ring laser,” Opt. Commun.267, 145–148 (2006).
[CrossRef]

Sylvestre, T.

Tamura, K.

Tang, D. Y.

H. Zhang, D. Y. Tang, L. M. Zhao, and X. Wu, “Dark pulse emission of a fiber laser,” Phys. Rev. A80, 045803 (2009).
[CrossRef]

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett.95, 141103 (2009).
[CrossRef]

Tavast, M.

Taylor, J. R.

Travers, J. C.

Turitsyn, S. K.

B. N. Nyushkov, V. I. Denisov, S. M. Kobtsev, V. S. Pivtsov, N. A. Kolyada, A. V. Ivanenko, and S. K. Turitsyn, “Generation of 1.7-μJ pulses at 1.55 μm by a self-mode-locked all-fiber laser with a kilometers-long linear-ringcavity,” Laser Phys. Lett.7, 661–665 (2010).
[CrossRef]

Vanholsbeeck, F.

Vasiliev, S. A.

E. M. Dianov, M. V. Grekov, I. A. Bufetov, S. A. Vasiliev, O. I. Medvedkov, V. G. Plotnichenko, V. V. Koltashev, A. V. Belov, M. M. Bubnov, S. L. Semjonov, and A. M. Prokhorov“CW high power 1.24 μm and 1.48 μm Raman lasers based on low loss phosphosilicate fibre,” Electron. Lett.33, 1542–1543 (1997).
[CrossRef]

Wandt, D.

Wang, A. T.

Wise, F. W.

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev.2, 58–73 (2008).
[CrossRef]

Wu, K.

C. E. S. Castellani, E. J. R. Kelleher, Z. Luo, K. Wu, C. Ouyang, P. P. Shum, Z. Shen, S. V. Popov, and J. R. Taylor, “Harmonic and single pulse operation of a Raman laser using graphene,” Laser Phys. Lett.9, 223 (2012).
[CrossRef]

Wu, X.

H. Zhang, D. Y. Tang, L. M. Zhao, and X. Wu, “Dark pulse emission of a fiber laser,” Phys. Rev. A80, 045803 (2009).
[CrossRef]

Xu, L. X.

Yeom, D. I.

Yoo, S. H.

Zhang, H.

H. Zhang, D. Y. Tang, L. M. Zhao, and X. Wu, “Dark pulse emission of a fiber laser,” Phys. Rev. A80, 045803 (2009).
[CrossRef]

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett.95, 141103 (2009).
[CrossRef]

Zhang, X. M.

Zhao, L. M.

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett.95, 141103 (2009).
[CrossRef]

H. Zhang, D. Y. Tang, L. M. Zhao, and X. Wu, “Dark pulse emission of a fiber laser,” Phys. Rev. A80, 045803 (2009).
[CrossRef]

Zhao, Y.

Appl. Phys. Lett. (1)

H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett.95, 141103 (2009).
[CrossRef]

Electron. Lett. (1)

E. M. Dianov, M. V. Grekov, I. A. Bufetov, S. A. Vasiliev, O. I. Medvedkov, V. G. Plotnichenko, V. V. Koltashev, A. V. Belov, M. M. Bubnov, S. L. Semjonov, and A. M. Prokhorov“CW high power 1.24 μm and 1.48 μm Raman lasers based on low loss phosphosilicate fibre,” Electron. Lett.33, 1542–1543 (1997).
[CrossRef]

Laser Photon. Rev. (1)

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev.2, 58–73 (2008).
[CrossRef]

Laser Phys. Lett. (2)

B. N. Nyushkov, V. I. Denisov, S. M. Kobtsev, V. S. Pivtsov, N. A. Kolyada, A. V. Ivanenko, and S. K. Turitsyn, “Generation of 1.7-μJ pulses at 1.55 μm by a self-mode-locked all-fiber laser with a kilometers-long linear-ringcavity,” Laser Phys. Lett.7, 661–665 (2010).
[CrossRef]

C. E. S. Castellani, E. J. R. Kelleher, Z. Luo, K. Wu, C. Ouyang, P. P. Shum, Z. Shen, S. V. Popov, and J. R. Taylor, “Harmonic and single pulse operation of a Raman laser using graphene,” Laser Phys. Lett.9, 223 (2012).
[CrossRef]

Opt. Commun. (1)

S. Randoux and P. Suret, “Toward passive mode locking by nonlinear polarization evolution in a cascaded Raman fiber ring laser,” Opt. Commun.267, 145–148 (2006).
[CrossRef]

Opt. Express (4)

Opt. Lett. (7)

J. Schröder, S. Coen, F. Vanholsbeeck, and T. Sylvestre, “Passively mode-locked Raman fiber laser with 100 GHz repetition rate,” Opt. Lett.31, 3489–3451 (2006).
[CrossRef] [PubMed]

A. Chamorovskiy, J. Rautiainen, J. Lyytikäinen, S. Ranta, M. Tavast, A. Sirbu, E. Kapon, and O. Okhotnikov, “Raman fiber laser pumped by a semiconductor disk laser and mode locked by a semiconductor saturable absorber mirror,” Opt. Lett.35, 3529–3531 (2010).
[CrossRef] [PubMed]

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett.18, 1080–1082 (1993).
[CrossRef] [PubMed]

D. A. Chestnut and J. R. Taylor, “Wavelength-versatile subpicosecond pulsed lasers using Raman gain in figure-of-eight fiber geometries,” Opt. Lett.30, 2982–2984 (2005).
[CrossRef] [PubMed]

A. Ruehl, O. Prochnow, D. Wandt, D. Kracht, B. Burgoyne, N. Godbout, and S. Lacroix, “Dynamics of parabolic pulses in an ultrafast fiber laser,” Opt. Lett.31, 2734–2736 (2006).
[CrossRef] [PubMed]

C. E. S. Castellani, E. J. R. Kelleher, J. C. Travers, D. Popa, T. Hasan, Z. Sun, E. Flahaut, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Ultrafast Raman laser mode-locked by nanotubes,” Opt. Lett.36, 3996–3998 (2011).
[CrossRef] [PubMed]

X. M. Zhang, C. Gu, G. L. Chen, B. Sun, L. X. Xu, A. T. Wang, and H. Ming, “Square-wave pulse with ultra-wide tuning range in a passively mode-locked fiber laser,” Opt. Lett.37, 1334–1336 (2012).
[CrossRef] [PubMed]

Phys. Rev. A (1)

H. Zhang, D. Y. Tang, L. M. Zhao, and X. Wu, “Dark pulse emission of a fiber laser,” Phys. Rev. A80, 045803 (2009).
[CrossRef]

Phys. Rev. Lett. (1)

H. Nakatsuka, D. Grischkowsky, and A. C. Balant, “Nonlinear picosecond-pulse propagation through optical fibers with positive group velocity dispersion,” Phys. Rev. Lett.47, 910–913 (1981).
[CrossRef]

ZhETF Pis. Red. (1)

T. Kuznetsova, “Phasing of the spectrum and short light pulses in stimulated Raman scattering,” ZhETF Pis. Red.10, 153–155 (1969). [JETP Lett. 10, 98–100 (1969)].

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic principle of the IBML mechanism. n: effective refraction index, L: cavity length and c: light velocity, M1, M2: reflective cavity mirrors.

Fig. 2
Fig. 2

Experimental setup of the harmonic MRFL based on the IBML technique. The OC2 and OC3 are 10:90 and 50:50 optical couplers at 1240 nm, respectively.

Fig. 3
Fig. 3

(a) Optical spectrum measured at the YDFL power of 0.95 W. (b) and (c) are the 3-D and 2-D images for optical field distribution of the YDFL. (d) The oscilloscope trace of the YDFL output. (e) The measured intermodal-beating characteristics of the CW YDFL. Insets: the close look of the stronger beat peaks at 12.16 MHz (top) and 24.32 MHz (bottom).

Fig. 4
Fig. 4

Characteristics of the 78th-order harmonic IBML-based Raman fiber laser. (a) The output optical spectrum at the first-order Stokes of 1239.5 nm. (b) Typical RF spectrum, and (c) The close look at the mode-locked frequency of 12.137 MHz. (d) Typical rectangular-shape pulse trains. (e) The single pulse envelope. (f) Pulse energy and pulse duration as a function of the input pump power.

Fig. 5
Fig. 5

(a) The RF spectrum of the 155th-order harmonic mode-locking, (b) the close look at the mode-locked frequency of 24.302 MHz. (c) The typical oscilloscope pulse train of the 155th-order harmonic mode-locking.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I s ( f i , t ) exp [ g I p ( f i , t ) l ] .
f i = N Δ f .

Metrics