Abstract

A quantitative phase shifting differential interference contrast (PS-DIC) shearing interferometer is adopted to measure the profile of transparent specimen with inclined surface. The effects of the incline angle on DIC measurement accuracy were studied. The optical model of the test system was constructed and the measurement of surface with various incline angles ranging from 5° to 60° was simulated. The experiments validate the simulation model and show the feasibility of profile reconstruction of inclined structure. It is interested to find that even with an inclined angle of 15°, unwrapping technique is required to make the measurement more accurate. In addition, the measurement can be further improved by taking into account the effects of the change in shear distance on the optical path difference. This study provides useful information that should be considered for complex geometry measurement with quantitative DIC technique.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Han, S. Choi, J. Lim, B. S. Lee, and S. Kang, “Fabrication of transparent conductive tracks and patterns on flexible substrate using a continuous UV roll imprint lithography,” J. Phys. D Appl. Phys.42(11), 115503 (2009).
    [CrossRef]
  2. M. Henry, P. M. Harrison, and J. Wendland, “Laser Direct Write of Active Thin-Films on Glass for Industrial Flat Panel Display Manufacture,” in Proceedings of the 4th International Congress on Laser Advanced Materials Processing, I. Miyamoto, ed. (Kyoto Research Park, Kyoto, Japan, 2006).
  3. C. Y. Poon and B. Bhushan, “Comparison of surface roughness measurements by stylus profiler, AFM, and non-contact optical profiler,” Wear190(1), 76–88 (1995).
    [CrossRef]
  4. X. Jing, X. Ning, Z. Chi, and S. Quan, “Real-time 3D Shape Measurement System based on Single Structure Light Pattern,” in 2010 IEEE International Conference on Robotics and Automation (Anchorage, Alaska, 2010), 121–126.
  5. L. Carli, G. Genta, A. Cantatore, G. Barbato, L. D. Chiffre, and R. Levi, “Uncertainty evaluation for three-dimensional scanning electron microscope reconstructions based on the stereo-pair technique,” Meas. Sci. Technol.22(3), 035103 (2011).
    [CrossRef]
  6. B. S. Chun, K. Kim, and D. Gweon, “Three-dimensional surface profile measurement using a beam scanning chromatic confocal microscope,” Rev. Sci. Instrum.80(7), 073706 (2009).
    [CrossRef] [PubMed]
  7. B. Bhushan, J. C. Wyant, and J. Meiling, “A New Three-Dimensional Non-Contact Digital Optical Profiler,” Wear122(3), 301–312 (1988).
    [CrossRef]
  8. D. L. Lessor, J. S. Hartman, and R. L. Gordon, “Quantitative surface topography determination by Nomarski reflection microscopy. 1. Theory,” J. Opt. Soc. Am.69(2), 357–366 (1979).
    [CrossRef]
  9. J. S. Hartman, R. L. Gordon, and D. L. Lessor, “Quantitative surface topography determination by Nomarski reflection microscopy. 2: Microscope modification, calibration, and planar sample experiments,” Appl. Opt.19(17), 2998–3009 (1980).
    [CrossRef] [PubMed]
  10. W. Shimada, T. Sato, and T. Yatagai, “Optical surface micro topography using phase-shifting Nomarski microscope,” Proc. SPIE1332, 525–529 (1991).
    [CrossRef]
  11. C. J. Cogswell, N. I. Smith, K. G. Larkin, and P. Hariharan, “Quantitative DIC microscopy using a geometric phase shifter,” Proc. SPIE2984, 72–81 (1997).
    [CrossRef]
  12. S. V. King, A. R. Libertun, C. Preza, and C. J. Cogswell, “Calibration of a phase-shifting DIC microscope for quantitative phase imaging,” Proc. SPIE6443, 64430M, 64430M-12 (2007).
    [CrossRef]
  13. H. Ishiwata, M. Itoh, and T. Yatagai, “A New Method of Three-dimensional Measurement by Differential Interference Contrast Microscope,” Opt. Commun.260(1), 117–126 (2006).
    [CrossRef]
  14. S. K. Yu, T. K. Liu, and S. C. Lin, “Height Measurement of Transparent Object by Adopting Differential Interference Contrast Technology,” Appl. Opt.49(14), 2588–2596 (2010).
    [CrossRef]
  15. M. Shribak, J. LaFountain, D. Biggs, and S. Inouè, “Orientation-independent differential interference contrast (DIC) microscopy and its combination with an orientation-independent polarization system,” J. Biomed. Opt.13(1), 014011 (2008).
    [CrossRef] [PubMed]
  16. C. Dennis, Ghiglia and Mark D. Pritt, Two-Dimensional Phase Unwrapping - Theory, Algorithms, and Software (John Wiley & Sons, 1998), Chap. 2 and 3.

2011

L. Carli, G. Genta, A. Cantatore, G. Barbato, L. D. Chiffre, and R. Levi, “Uncertainty evaluation for three-dimensional scanning electron microscope reconstructions based on the stereo-pair technique,” Meas. Sci. Technol.22(3), 035103 (2011).
[CrossRef]

2010

2009

B. S. Chun, K. Kim, and D. Gweon, “Three-dimensional surface profile measurement using a beam scanning chromatic confocal microscope,” Rev. Sci. Instrum.80(7), 073706 (2009).
[CrossRef] [PubMed]

J. Han, S. Choi, J. Lim, B. S. Lee, and S. Kang, “Fabrication of transparent conductive tracks and patterns on flexible substrate using a continuous UV roll imprint lithography,” J. Phys. D Appl. Phys.42(11), 115503 (2009).
[CrossRef]

2008

M. Shribak, J. LaFountain, D. Biggs, and S. Inouè, “Orientation-independent differential interference contrast (DIC) microscopy and its combination with an orientation-independent polarization system,” J. Biomed. Opt.13(1), 014011 (2008).
[CrossRef] [PubMed]

2007

S. V. King, A. R. Libertun, C. Preza, and C. J. Cogswell, “Calibration of a phase-shifting DIC microscope for quantitative phase imaging,” Proc. SPIE6443, 64430M, 64430M-12 (2007).
[CrossRef]

2006

H. Ishiwata, M. Itoh, and T. Yatagai, “A New Method of Three-dimensional Measurement by Differential Interference Contrast Microscope,” Opt. Commun.260(1), 117–126 (2006).
[CrossRef]

1997

C. J. Cogswell, N. I. Smith, K. G. Larkin, and P. Hariharan, “Quantitative DIC microscopy using a geometric phase shifter,” Proc. SPIE2984, 72–81 (1997).
[CrossRef]

1995

C. Y. Poon and B. Bhushan, “Comparison of surface roughness measurements by stylus profiler, AFM, and non-contact optical profiler,” Wear190(1), 76–88 (1995).
[CrossRef]

1991

W. Shimada, T. Sato, and T. Yatagai, “Optical surface micro topography using phase-shifting Nomarski microscope,” Proc. SPIE1332, 525–529 (1991).
[CrossRef]

1988

B. Bhushan, J. C. Wyant, and J. Meiling, “A New Three-Dimensional Non-Contact Digital Optical Profiler,” Wear122(3), 301–312 (1988).
[CrossRef]

1980

1979

Barbato, G.

L. Carli, G. Genta, A. Cantatore, G. Barbato, L. D. Chiffre, and R. Levi, “Uncertainty evaluation for three-dimensional scanning electron microscope reconstructions based on the stereo-pair technique,” Meas. Sci. Technol.22(3), 035103 (2011).
[CrossRef]

Bhushan, B.

C. Y. Poon and B. Bhushan, “Comparison of surface roughness measurements by stylus profiler, AFM, and non-contact optical profiler,” Wear190(1), 76–88 (1995).
[CrossRef]

B. Bhushan, J. C. Wyant, and J. Meiling, “A New Three-Dimensional Non-Contact Digital Optical Profiler,” Wear122(3), 301–312 (1988).
[CrossRef]

Biggs, D.

M. Shribak, J. LaFountain, D. Biggs, and S. Inouè, “Orientation-independent differential interference contrast (DIC) microscopy and its combination with an orientation-independent polarization system,” J. Biomed. Opt.13(1), 014011 (2008).
[CrossRef] [PubMed]

Cantatore, A.

L. Carli, G. Genta, A. Cantatore, G. Barbato, L. D. Chiffre, and R. Levi, “Uncertainty evaluation for three-dimensional scanning electron microscope reconstructions based on the stereo-pair technique,” Meas. Sci. Technol.22(3), 035103 (2011).
[CrossRef]

Carli, L.

L. Carli, G. Genta, A. Cantatore, G. Barbato, L. D. Chiffre, and R. Levi, “Uncertainty evaluation for three-dimensional scanning electron microscope reconstructions based on the stereo-pair technique,” Meas. Sci. Technol.22(3), 035103 (2011).
[CrossRef]

Chiffre, L. D.

L. Carli, G. Genta, A. Cantatore, G. Barbato, L. D. Chiffre, and R. Levi, “Uncertainty evaluation for three-dimensional scanning electron microscope reconstructions based on the stereo-pair technique,” Meas. Sci. Technol.22(3), 035103 (2011).
[CrossRef]

Choi, S.

J. Han, S. Choi, J. Lim, B. S. Lee, and S. Kang, “Fabrication of transparent conductive tracks and patterns on flexible substrate using a continuous UV roll imprint lithography,” J. Phys. D Appl. Phys.42(11), 115503 (2009).
[CrossRef]

Chun, B. S.

B. S. Chun, K. Kim, and D. Gweon, “Three-dimensional surface profile measurement using a beam scanning chromatic confocal microscope,” Rev. Sci. Instrum.80(7), 073706 (2009).
[CrossRef] [PubMed]

Cogswell, C. J.

S. V. King, A. R. Libertun, C. Preza, and C. J. Cogswell, “Calibration of a phase-shifting DIC microscope for quantitative phase imaging,” Proc. SPIE6443, 64430M, 64430M-12 (2007).
[CrossRef]

C. J. Cogswell, N. I. Smith, K. G. Larkin, and P. Hariharan, “Quantitative DIC microscopy using a geometric phase shifter,” Proc. SPIE2984, 72–81 (1997).
[CrossRef]

Genta, G.

L. Carli, G. Genta, A. Cantatore, G. Barbato, L. D. Chiffre, and R. Levi, “Uncertainty evaluation for three-dimensional scanning electron microscope reconstructions based on the stereo-pair technique,” Meas. Sci. Technol.22(3), 035103 (2011).
[CrossRef]

Gordon, R. L.

Gweon, D.

B. S. Chun, K. Kim, and D. Gweon, “Three-dimensional surface profile measurement using a beam scanning chromatic confocal microscope,” Rev. Sci. Instrum.80(7), 073706 (2009).
[CrossRef] [PubMed]

Han, J.

J. Han, S. Choi, J. Lim, B. S. Lee, and S. Kang, “Fabrication of transparent conductive tracks and patterns on flexible substrate using a continuous UV roll imprint lithography,” J. Phys. D Appl. Phys.42(11), 115503 (2009).
[CrossRef]

Hariharan, P.

C. J. Cogswell, N. I. Smith, K. G. Larkin, and P. Hariharan, “Quantitative DIC microscopy using a geometric phase shifter,” Proc. SPIE2984, 72–81 (1997).
[CrossRef]

Hartman, J. S.

Inouè, S.

M. Shribak, J. LaFountain, D. Biggs, and S. Inouè, “Orientation-independent differential interference contrast (DIC) microscopy and its combination with an orientation-independent polarization system,” J. Biomed. Opt.13(1), 014011 (2008).
[CrossRef] [PubMed]

Ishiwata, H.

H. Ishiwata, M. Itoh, and T. Yatagai, “A New Method of Three-dimensional Measurement by Differential Interference Contrast Microscope,” Opt. Commun.260(1), 117–126 (2006).
[CrossRef]

Itoh, M.

H. Ishiwata, M. Itoh, and T. Yatagai, “A New Method of Three-dimensional Measurement by Differential Interference Contrast Microscope,” Opt. Commun.260(1), 117–126 (2006).
[CrossRef]

Kang, S.

J. Han, S. Choi, J. Lim, B. S. Lee, and S. Kang, “Fabrication of transparent conductive tracks and patterns on flexible substrate using a continuous UV roll imprint lithography,” J. Phys. D Appl. Phys.42(11), 115503 (2009).
[CrossRef]

Kim, K.

B. S. Chun, K. Kim, and D. Gweon, “Three-dimensional surface profile measurement using a beam scanning chromatic confocal microscope,” Rev. Sci. Instrum.80(7), 073706 (2009).
[CrossRef] [PubMed]

King, S. V.

S. V. King, A. R. Libertun, C. Preza, and C. J. Cogswell, “Calibration of a phase-shifting DIC microscope for quantitative phase imaging,” Proc. SPIE6443, 64430M, 64430M-12 (2007).
[CrossRef]

LaFountain, J.

M. Shribak, J. LaFountain, D. Biggs, and S. Inouè, “Orientation-independent differential interference contrast (DIC) microscopy and its combination with an orientation-independent polarization system,” J. Biomed. Opt.13(1), 014011 (2008).
[CrossRef] [PubMed]

Larkin, K. G.

C. J. Cogswell, N. I. Smith, K. G. Larkin, and P. Hariharan, “Quantitative DIC microscopy using a geometric phase shifter,” Proc. SPIE2984, 72–81 (1997).
[CrossRef]

Lee, B. S.

J. Han, S. Choi, J. Lim, B. S. Lee, and S. Kang, “Fabrication of transparent conductive tracks and patterns on flexible substrate using a continuous UV roll imprint lithography,” J. Phys. D Appl. Phys.42(11), 115503 (2009).
[CrossRef]

Lessor, D. L.

Levi, R.

L. Carli, G. Genta, A. Cantatore, G. Barbato, L. D. Chiffre, and R. Levi, “Uncertainty evaluation for three-dimensional scanning electron microscope reconstructions based on the stereo-pair technique,” Meas. Sci. Technol.22(3), 035103 (2011).
[CrossRef]

Libertun, A. R.

S. V. King, A. R. Libertun, C. Preza, and C. J. Cogswell, “Calibration of a phase-shifting DIC microscope for quantitative phase imaging,” Proc. SPIE6443, 64430M, 64430M-12 (2007).
[CrossRef]

Lim, J.

J. Han, S. Choi, J. Lim, B. S. Lee, and S. Kang, “Fabrication of transparent conductive tracks and patterns on flexible substrate using a continuous UV roll imprint lithography,” J. Phys. D Appl. Phys.42(11), 115503 (2009).
[CrossRef]

Lin, S. C.

Liu, T. K.

Meiling, J.

B. Bhushan, J. C. Wyant, and J. Meiling, “A New Three-Dimensional Non-Contact Digital Optical Profiler,” Wear122(3), 301–312 (1988).
[CrossRef]

Poon, C. Y.

C. Y. Poon and B. Bhushan, “Comparison of surface roughness measurements by stylus profiler, AFM, and non-contact optical profiler,” Wear190(1), 76–88 (1995).
[CrossRef]

Preza, C.

S. V. King, A. R. Libertun, C. Preza, and C. J. Cogswell, “Calibration of a phase-shifting DIC microscope for quantitative phase imaging,” Proc. SPIE6443, 64430M, 64430M-12 (2007).
[CrossRef]

Sato, T.

W. Shimada, T. Sato, and T. Yatagai, “Optical surface micro topography using phase-shifting Nomarski microscope,” Proc. SPIE1332, 525–529 (1991).
[CrossRef]

Shimada, W.

W. Shimada, T. Sato, and T. Yatagai, “Optical surface micro topography using phase-shifting Nomarski microscope,” Proc. SPIE1332, 525–529 (1991).
[CrossRef]

Shribak, M.

M. Shribak, J. LaFountain, D. Biggs, and S. Inouè, “Orientation-independent differential interference contrast (DIC) microscopy and its combination with an orientation-independent polarization system,” J. Biomed. Opt.13(1), 014011 (2008).
[CrossRef] [PubMed]

Smith, N. I.

C. J. Cogswell, N. I. Smith, K. G. Larkin, and P. Hariharan, “Quantitative DIC microscopy using a geometric phase shifter,” Proc. SPIE2984, 72–81 (1997).
[CrossRef]

Wyant, J. C.

B. Bhushan, J. C. Wyant, and J. Meiling, “A New Three-Dimensional Non-Contact Digital Optical Profiler,” Wear122(3), 301–312 (1988).
[CrossRef]

Yatagai, T.

H. Ishiwata, M. Itoh, and T. Yatagai, “A New Method of Three-dimensional Measurement by Differential Interference Contrast Microscope,” Opt. Commun.260(1), 117–126 (2006).
[CrossRef]

W. Shimada, T. Sato, and T. Yatagai, “Optical surface micro topography using phase-shifting Nomarski microscope,” Proc. SPIE1332, 525–529 (1991).
[CrossRef]

Yu, S. K.

Appl. Opt.

J. Biomed. Opt.

M. Shribak, J. LaFountain, D. Biggs, and S. Inouè, “Orientation-independent differential interference contrast (DIC) microscopy and its combination with an orientation-independent polarization system,” J. Biomed. Opt.13(1), 014011 (2008).
[CrossRef] [PubMed]

J. Opt. Soc. Am.

J. Phys. D Appl. Phys.

J. Han, S. Choi, J. Lim, B. S. Lee, and S. Kang, “Fabrication of transparent conductive tracks and patterns on flexible substrate using a continuous UV roll imprint lithography,” J. Phys. D Appl. Phys.42(11), 115503 (2009).
[CrossRef]

Meas. Sci. Technol.

L. Carli, G. Genta, A. Cantatore, G. Barbato, L. D. Chiffre, and R. Levi, “Uncertainty evaluation for three-dimensional scanning electron microscope reconstructions based on the stereo-pair technique,” Meas. Sci. Technol.22(3), 035103 (2011).
[CrossRef]

Opt. Commun.

H. Ishiwata, M. Itoh, and T. Yatagai, “A New Method of Three-dimensional Measurement by Differential Interference Contrast Microscope,” Opt. Commun.260(1), 117–126 (2006).
[CrossRef]

Proc. SPIE

W. Shimada, T. Sato, and T. Yatagai, “Optical surface micro topography using phase-shifting Nomarski microscope,” Proc. SPIE1332, 525–529 (1991).
[CrossRef]

C. J. Cogswell, N. I. Smith, K. G. Larkin, and P. Hariharan, “Quantitative DIC microscopy using a geometric phase shifter,” Proc. SPIE2984, 72–81 (1997).
[CrossRef]

S. V. King, A. R. Libertun, C. Preza, and C. J. Cogswell, “Calibration of a phase-shifting DIC microscope for quantitative phase imaging,” Proc. SPIE6443, 64430M, 64430M-12 (2007).
[CrossRef]

Rev. Sci. Instrum.

B. S. Chun, K. Kim, and D. Gweon, “Three-dimensional surface profile measurement using a beam scanning chromatic confocal microscope,” Rev. Sci. Instrum.80(7), 073706 (2009).
[CrossRef] [PubMed]

Wear

B. Bhushan, J. C. Wyant, and J. Meiling, “A New Three-Dimensional Non-Contact Digital Optical Profiler,” Wear122(3), 301–312 (1988).
[CrossRef]

C. Y. Poon and B. Bhushan, “Comparison of surface roughness measurements by stylus profiler, AFM, and non-contact optical profiler,” Wear190(1), 76–88 (1995).
[CrossRef]

Other

X. Jing, X. Ning, Z. Chi, and S. Quan, “Real-time 3D Shape Measurement System based on Single Structure Light Pattern,” in 2010 IEEE International Conference on Robotics and Automation (Anchorage, Alaska, 2010), 121–126.

M. Henry, P. M. Harrison, and J. Wendland, “Laser Direct Write of Active Thin-Films on Glass for Industrial Flat Panel Display Manufacture,” in Proceedings of the 4th International Congress on Laser Advanced Materials Processing, I. Miyamoto, ed. (Kyoto Research Park, Kyoto, Japan, 2006).

C. Dennis, Ghiglia and Mark D. Pritt, Two-Dimensional Phase Unwrapping - Theory, Algorithms, and Software (John Wiley & Sons, 1998), Chap. 2 and 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Schematic diagram of PS-DIC setup for profile measurement.

Fig. 2
Fig. 2

Effects of specimen shape on the direction of light and DIC image.

Fig. 3
Fig. 3

The optical path difference between two sheared beams.

Fig. 4
Fig. 4

Effects of incident angle of light on the optical path difference. (Wedge angle of prism: 10°~60°, λ = 550nm, ∆s = 3μm, n = 1.519)

Fig. 5
Fig. 5

The formation of PS-DIC image.

Fig. 6
Fig. 6

The PS-DIC simulation model.

Fig. 7
Fig. 7

Simulated PS-DIC images in horizontal shear direction of 45° prism.

Fig. 8
Fig. 8

Simulated optical path difference with/without unwrapping of 45° prism.

Fig. 9
Fig. 9

Simulated profile reconstruction results of 45° prism.

Fig. 10
Fig. 10

Wedge angles estimated from the reconstructed profiles vs. wedge angles of prisms.

Fig. 11
Fig. 11

The blur area in DIC image corresponding to the edge of prism (Phase shifting of π).

Fig. 12
Fig. 12

The experimental setup of PS-DIC system.

Fig. 13
Fig. 13

Simulated vs. experimental estimated corresponding phase difference and unwrapped phase difference of 45° prism.

Fig. 14
Fig. 14

Experimental PS-DIC images in horizontal shear direction of 45° prism.

Fig. 15
Fig. 15

Experimental profile reconstruction results of 45° prism.

Tables (4)

Tables Icon

Table 1 System Parameters for Simulation

Tables Icon

Table 2 System Specification for the PS-DIC Experiments

Tables Icon

Table 3 Specification of Specimens for Experiments

Tables Icon

Table 4 Comparison of Simulation and Experimental Results

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

{ sin( θ+i )=nsin( τ ) nsin( τθ )=sin( t ) ... interface a ... interface b
{ τ=θ sin 1 [ sin( θ+i ) n ] t= sin 1 [ nsin( τθ ) ]
OPD=nL2L1
{ L1 sinθ = Δs sin( 90 θi ) = c sin( 90 +i ) L2 sinθ = Δs' sin( 90 τ ) = c sin( 90 +τθ )
OPD=Δs'[ sinθ cos( sin 1 [ sin( θ+i ) n ] ) ][ n cos( θ sin 1 [ sin( θ+i ) n ] ) cosi ]
R= Δs' Δs = cosicos( sin 1 [ sin( θ+i ) n ] ) cos( θ+i )cos( θ sin 1 [ sin( θ+i ) n ] )
OPD=RΔs[ sinθ cos( sin 1 [ sin( θ+i ) n ] ) ][ n cos( θ sin 1 [ sin( θ+i ) n ] ) cosi ]
I= I A cos( φ x Δs+β )+ I avg

Metrics