Abstract

We demonstrate substantial performance improvements in 256 QAM transmission in terms of both data rate and distance that we realized by using a digital back-propagation (DBP) method. 160 Gbit/s-160 km and 64 Gbit/s-560 km transmissions were successfully achieved with a polarization-multiplexed 256 QAM signal, in which the symbol rate and transmission distance were greatly increased by compensating for the interplay between dispersion and nonlinearity, which is responsible for the transmission impairment especially for a higher symbol rate and longer distance.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Qian, M. Huang, E. Ip, Y. Huang, Y. Shao, J. Hu, and T. Wang, “101.7-Tb/s (370×294-Gb/s) PDM-128QAM-OFDM transmission over 3×55-km SSMF using pilot-based phase noise mitigation,” in National Fiber Optic Engineers Conference (Los Angeles, Calif., 2011), PDPB5.
  2. A. Sano, T. Kobayashi, S. Yamanaka, A. Matsuura, H. Kawakami, Y. Miyamoto, K. Ishihara, and H. Masuda, “102.3-Tb/s (224 x 548-Gb/s) C- and extended L-band all-Raman transmission over 240 km using PDM-64QAM single carrier FDM with digital pilot tone,” in Optical Fiber Communication Conference, (Los Angeles, Calif., 2012), PDP5C.3.
  3. M. Nakazawa, S. Okamoto, T. Omiya, K. Kasai, and M. Yoshida, “256-QAM (64 Gb/s) coherent optical transmission over 160 km with an optical bandwidth of 5.4 GHz,” IEEE Photon. Technol. Lett. 22(3), 185–187 (2010).
    [CrossRef]
  4. S. Okamoto, K. Toyoda, T. Omiya, K. Kasai, M. Yoshida, and M. Nakazawa, “512 QAM (54 Gbit/s) coherent optical transmission over 150 km with an optical bandwidth of 4.1 GHz,” in the 36th European Conference and Exhibition onOptical Communication (2010), PD2.3.
  5. Y. Koizumi, K. Toyoda, M. Yoshida, and M. Nakazawa, “1024 QAM (60 Gbit/s) single-carrier coherent optical transmission over 150 km,” Opt. Express 20(11), 12508–12514 (2012).
    [CrossRef] [PubMed]
  6. M.-F. Huang, D. Qian, and E. Ip, “50.53-Gb/s PDM-1024QAM-OFDM transmission using pilot-based phase noise mitigation,” in Optical Fiber Communication Conference (2011), PDP1.
  7. X. Liu, S. Chandrasekhar, T. Lotz, P. J. Winzer, H. Haunstein, S. Randel, S. Corteselli, B. Zhu, and D. W. Peckham, “Generation and FEC-decoding of a 231.5-Gb/s PDM-OFDM signal with 256-iterative-polar-modulation achieving 11.15-b/s/Hz intrachannel spectral efficiency and 800-km reach,” National Fiber Optic Engineers Conference (Los Angeles, Calif., 2012), PDP5B.3.
  8. C. Paré, A. Villeneuve, P.-A. Bélanger, and N. J. Doran, “Compensating for dispersion and the nonlinear Kerr effect without phase conjugation,” Opt. Lett. 21(7), 459–461 (1996).
    [CrossRef] [PubMed]
  9. X. Li, X. Chen, G. Goldfarb, E. F. Mateo, I. Kim, F. Yaman, and G. Li, “Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing,” Opt. Express 16(2), 880–888 (2008).
    [CrossRef] [PubMed]
  10. S. Makovejs, D.S. Millar, V. Mikhailov, G. Gavioli, R.I. Killey, S.J. Savory, and P. Bayvel, “Experimental investigation of PDM-QAM16 transmission at 112 Gbit/s over 2400 km,” in Optical Fiber Communication Conference (Los Angeles, Calif., 2010), OMJ6.
  11. T. Kobayashi, A. Sano, A. Matsuura, E. Yamazaki, E. Yoshida, Y. Miyamoto, T. Nakagawa, Y. Sakamaki, and T. Mizuno, “120-Gb/s PDM 64-QAM transmission over 1,280 km using multi-staged nonlinear compensation in digital coherent receiver,” Optical Fiber Communication Conference, (Los Angeles, Calif., 2011), OThF6.
  12. D. Rafique, J. Zhao, and A. D. Ellis,”Performance improvement by fibre nonlinearity compensation in 112 Gb/s PM M-ary QAM,” Optical Fiber Communication Conference, (Los Angeles, Calif., 2011), OWO6.
  13. P. K. A. Wai, C. R. Menyuk, and H. H. Chen, “Stability of solitons in randomly varying birefringent fibers,” Opt. Lett. 16(16), 1231–1233 (1991).
    [CrossRef] [PubMed]
  14. K. Ishihara, T. Kobayashi, R. Kudo, Y. Takatori, A. Sano, and Y. Miyamoto, “Frequency-domain equalization for coherent optical single-carrier transmission systems,” IEICE Trans. Comm. E 92-B(12), 3736–3743 (2010).

2012

2010

M. Nakazawa, S. Okamoto, T. Omiya, K. Kasai, and M. Yoshida, “256-QAM (64 Gb/s) coherent optical transmission over 160 km with an optical bandwidth of 5.4 GHz,” IEEE Photon. Technol. Lett. 22(3), 185–187 (2010).
[CrossRef]

K. Ishihara, T. Kobayashi, R. Kudo, Y. Takatori, A. Sano, and Y. Miyamoto, “Frequency-domain equalization for coherent optical single-carrier transmission systems,” IEICE Trans. Comm. E 92-B(12), 3736–3743 (2010).

2008

1996

1991

Bélanger, P.-A.

Chen, H. H.

Chen, X.

Doran, N. J.

Goldfarb, G.

Ishihara, K.

K. Ishihara, T. Kobayashi, R. Kudo, Y. Takatori, A. Sano, and Y. Miyamoto, “Frequency-domain equalization for coherent optical single-carrier transmission systems,” IEICE Trans. Comm. E 92-B(12), 3736–3743 (2010).

Kasai, K.

M. Nakazawa, S. Okamoto, T. Omiya, K. Kasai, and M. Yoshida, “256-QAM (64 Gb/s) coherent optical transmission over 160 km with an optical bandwidth of 5.4 GHz,” IEEE Photon. Technol. Lett. 22(3), 185–187 (2010).
[CrossRef]

Kim, I.

Kobayashi, T.

K. Ishihara, T. Kobayashi, R. Kudo, Y. Takatori, A. Sano, and Y. Miyamoto, “Frequency-domain equalization for coherent optical single-carrier transmission systems,” IEICE Trans. Comm. E 92-B(12), 3736–3743 (2010).

Koizumi, Y.

Kudo, R.

K. Ishihara, T. Kobayashi, R. Kudo, Y. Takatori, A. Sano, and Y. Miyamoto, “Frequency-domain equalization for coherent optical single-carrier transmission systems,” IEICE Trans. Comm. E 92-B(12), 3736–3743 (2010).

Li, G.

Li, X.

Mateo, E. F.

Menyuk, C. R.

Miyamoto, Y.

K. Ishihara, T. Kobayashi, R. Kudo, Y. Takatori, A. Sano, and Y. Miyamoto, “Frequency-domain equalization for coherent optical single-carrier transmission systems,” IEICE Trans. Comm. E 92-B(12), 3736–3743 (2010).

Nakazawa, M.

Y. Koizumi, K. Toyoda, M. Yoshida, and M. Nakazawa, “1024 QAM (60 Gbit/s) single-carrier coherent optical transmission over 150 km,” Opt. Express 20(11), 12508–12514 (2012).
[CrossRef] [PubMed]

M. Nakazawa, S. Okamoto, T. Omiya, K. Kasai, and M. Yoshida, “256-QAM (64 Gb/s) coherent optical transmission over 160 km with an optical bandwidth of 5.4 GHz,” IEEE Photon. Technol. Lett. 22(3), 185–187 (2010).
[CrossRef]

Okamoto, S.

M. Nakazawa, S. Okamoto, T. Omiya, K. Kasai, and M. Yoshida, “256-QAM (64 Gb/s) coherent optical transmission over 160 km with an optical bandwidth of 5.4 GHz,” IEEE Photon. Technol. Lett. 22(3), 185–187 (2010).
[CrossRef]

Omiya, T.

M. Nakazawa, S. Okamoto, T. Omiya, K. Kasai, and M. Yoshida, “256-QAM (64 Gb/s) coherent optical transmission over 160 km with an optical bandwidth of 5.4 GHz,” IEEE Photon. Technol. Lett. 22(3), 185–187 (2010).
[CrossRef]

Paré, C.

Sano, A.

K. Ishihara, T. Kobayashi, R. Kudo, Y. Takatori, A. Sano, and Y. Miyamoto, “Frequency-domain equalization for coherent optical single-carrier transmission systems,” IEICE Trans. Comm. E 92-B(12), 3736–3743 (2010).

Takatori, Y.

K. Ishihara, T. Kobayashi, R. Kudo, Y. Takatori, A. Sano, and Y. Miyamoto, “Frequency-domain equalization for coherent optical single-carrier transmission systems,” IEICE Trans. Comm. E 92-B(12), 3736–3743 (2010).

Toyoda, K.

Villeneuve, A.

Wai, P. K. A.

Yaman, F.

Yoshida, M.

Y. Koizumi, K. Toyoda, M. Yoshida, and M. Nakazawa, “1024 QAM (60 Gbit/s) single-carrier coherent optical transmission over 150 km,” Opt. Express 20(11), 12508–12514 (2012).
[CrossRef] [PubMed]

M. Nakazawa, S. Okamoto, T. Omiya, K. Kasai, and M. Yoshida, “256-QAM (64 Gb/s) coherent optical transmission over 160 km with an optical bandwidth of 5.4 GHz,” IEEE Photon. Technol. Lett. 22(3), 185–187 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

M. Nakazawa, S. Okamoto, T. Omiya, K. Kasai, and M. Yoshida, “256-QAM (64 Gb/s) coherent optical transmission over 160 km with an optical bandwidth of 5.4 GHz,” IEEE Photon. Technol. Lett. 22(3), 185–187 (2010).
[CrossRef]

IEICE Trans. Comm. E

K. Ishihara, T. Kobayashi, R. Kudo, Y. Takatori, A. Sano, and Y. Miyamoto, “Frequency-domain equalization for coherent optical single-carrier transmission systems,” IEICE Trans. Comm. E 92-B(12), 3736–3743 (2010).

Opt. Express

Opt. Lett.

Other

D. Qian, M. Huang, E. Ip, Y. Huang, Y. Shao, J. Hu, and T. Wang, “101.7-Tb/s (370×294-Gb/s) PDM-128QAM-OFDM transmission over 3×55-km SSMF using pilot-based phase noise mitigation,” in National Fiber Optic Engineers Conference (Los Angeles, Calif., 2011), PDPB5.

A. Sano, T. Kobayashi, S. Yamanaka, A. Matsuura, H. Kawakami, Y. Miyamoto, K. Ishihara, and H. Masuda, “102.3-Tb/s (224 x 548-Gb/s) C- and extended L-band all-Raman transmission over 240 km using PDM-64QAM single carrier FDM with digital pilot tone,” in Optical Fiber Communication Conference, (Los Angeles, Calif., 2012), PDP5C.3.

S. Okamoto, K. Toyoda, T. Omiya, K. Kasai, M. Yoshida, and M. Nakazawa, “512 QAM (54 Gbit/s) coherent optical transmission over 150 km with an optical bandwidth of 4.1 GHz,” in the 36th European Conference and Exhibition onOptical Communication (2010), PD2.3.

M.-F. Huang, D. Qian, and E. Ip, “50.53-Gb/s PDM-1024QAM-OFDM transmission using pilot-based phase noise mitigation,” in Optical Fiber Communication Conference (2011), PDP1.

X. Liu, S. Chandrasekhar, T. Lotz, P. J. Winzer, H. Haunstein, S. Randel, S. Corteselli, B. Zhu, and D. W. Peckham, “Generation and FEC-decoding of a 231.5-Gb/s PDM-OFDM signal with 256-iterative-polar-modulation achieving 11.15-b/s/Hz intrachannel spectral efficiency and 800-km reach,” National Fiber Optic Engineers Conference (Los Angeles, Calif., 2012), PDP5B.3.

S. Makovejs, D.S. Millar, V. Mikhailov, G. Gavioli, R.I. Killey, S.J. Savory, and P. Bayvel, “Experimental investigation of PDM-QAM16 transmission at 112 Gbit/s over 2400 km,” in Optical Fiber Communication Conference (Los Angeles, Calif., 2010), OMJ6.

T. Kobayashi, A. Sano, A. Matsuura, E. Yamazaki, E. Yoshida, Y. Miyamoto, T. Nakagawa, Y. Sakamaki, and T. Mizuno, “120-Gb/s PDM 64-QAM transmission over 1,280 km using multi-staged nonlinear compensation in digital coherent receiver,” Optical Fiber Communication Conference, (Los Angeles, Calif., 2011), OThF6.

D. Rafique, J. Zhao, and A. D. Ellis,”Performance improvement by fibre nonlinearity compensation in 112 Gb/s PM M-ary QAM,” Optical Fiber Communication Conference, (Los Angeles, Calif., 2011), OWO6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for 256 QAM transmission.

Fig. 2
Fig. 2

Relationship between launched power and BER after 160 km transmission. The squares and diamonds correspond to the two orthogonal polarization channels.

Fig. 3
Fig. 3

BER characteristics in 64 Gbit/s, 256 QAM transmission over 160 km. The squares and diamonds correspond to the two orthogonal polarization channels.

Fig. 4
Fig. 4

Constellation diagrams for 64 Gbit/s, 256 QAM signal after 160 km transmission. (a) without DBP, (b) with DBP.

Fig. 5
Fig. 5

Relationship between transmission distance and BER in 64 Gbit/s, 256 QAM transmission. The squares and diamonds correspond to the two orthogonal polarization channels.

Fig. 6
Fig. 6

Relationship between symbol rate and BER in 256 QAM-160 km transmission. The squares and diamonds correspond to the two orthogonal polarization channels.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

{ i A x z = β 2 2 2 A x t 2 + 8 9 γ | A x | 2 A x + 8 9 γ | A y | 2 A x +i α 2 A x i A y z = β 2 2 2 A y t 2 + 8 9 γ | A y | 2 A y + 8 9 γ | A x | 2 A y +i α 2 A y

Metrics