Abstract

We propose an image-reconstruction algorithm of parallel phase-shifting digital holography (PPSDH) which is a technique of single-shot phase-shifting interferometry. In the conventional algorithms in PPSDH, the residual 0th-order diffraction wave and the conjugate images cannot be removed completely and a part of space-bandwidth information is discarded. The proposed algorithm can remove these residual images by modifying the calculation of phase-shifting interferometry and by using Fourier transform technique, respectively. Then, several types of complex amplitudes are derived from a recorded hologram according to the directions in which the neighboring pixels used for carrying out the spatial phase-shifting interferometry are aligned. Several distributions are Fourier-transformed and wide space-bandwidth information of the object wave is obtained by selecting the spectrum among the Fourier-transformed images in each region of the spatial frequency domain and synthesizing a Fourier-transformed image from the spectrum.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett.11(3), 77–79 (1967).
    [CrossRef]
  2. Y. Ichioka and M. Inuiya, “Direct phase detecting system,” Appl. Opt.11(7), 1507–1514 (1972).
    [CrossRef] [PubMed]
  3. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am.72(1), 156–160 (1982).
    [CrossRef]
  4. U. Schnars and W. Jueptner, Digital Holography (Springer, 2005).
  5. T. Zhang and I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett.23(15), 1221–1223 (1998).
    [CrossRef] [PubMed]
  6. Y. Takaki, H. Kawai, and H. Ohzu, “Hybrid holographic microscopy free of conjugate and zero-order images,” Appl. Opt.38(23), 4990–4996 (1999).
    [CrossRef] [PubMed]
  7. T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, “Real-time digital holographic microscopy using the graphic processing unit,” Opt. Express16(16), 11776–11781 (2008).
    [CrossRef] [PubMed]
  8. S. Murata, D. Harada, and Y. Tanaka, “Spatial phase-shifting digital holography for three-dimensional particle tracking velocimetry,” Jpn. J. Appl. Phys.48(9), 09LB01 (2009).
    [CrossRef]
  9. E. Darakis, T. Khanam, A. Rajendran, V. Kariwala, T. J. Naughton, and A. K. Asundi, “Microparticle characterization using digital holography,” Chem. Eng. Sci.65(2), 1037–1044 (2010).
    [CrossRef]
  10. T. Higuchi, Q. D. Pham, S. Hasegawa, and Y. Hayasaki, “Three-dimensional positioning of optically trapped nanoparticles,” Appl. Opt.50(34), H183–H188 (2011).
    [CrossRef] [PubMed]
  11. E. Tajahuerce, O. Matoba, and B. Javidi, “Shift-invariant three-dimensional object recognition by means of digital holography,” Appl. Opt.40(23), 3877–3886 (2001).
    [CrossRef] [PubMed]
  12. Y. Frauel, T. J. Naughton, O. Matoba, E. Tajahuerce, and B. Javidi, “Three-dimensional imaging and processing using computational holographic imaging,” Proc. IEEE94(3), 636–653 (2006).
    [CrossRef]
  13. A. Stern and B. Javidi, “Theoretical analysis of three-dimensional imaging and recognition of micro-organisms with a single-exposure on-line holographic microscope,” J. Opt. Soc. Am. A24(1), 163–168 (2007).
    [CrossRef] [PubMed]
  14. C. Mann, L. Yu, C.-M. Lo, and M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express13(22), 8693–8698 (2005).
    [CrossRef] [PubMed]
  15. J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express15(12), 7231–7242 (2007).
    [CrossRef] [PubMed]
  16. M. Yokota and T. Adachi, “Digital holographic profilometry of the inner surface of a pipe using a current-induced wavelength change of a laser diode,” Appl. Opt.50(21), 3937–3946 (2011).
    [CrossRef] [PubMed]
  17. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett.22(16), 1268–1270 (1997).
    [CrossRef] [PubMed]
  18. M. Sasada, Y. Awatsuji, and T. Kubota, “Parallel quasi-phase-shifting digital holography that can achieve instantaneous measurement,” in Technical Digest of the 2004 ICO International Conference: Optics and Photonics in Technology Frontier (International Commission for Optics,2004), (Chiba, 2004), pp. 187–188.
  19. M. Sasada, A. Fujii, Y. Awatsuji, and T. Kubota, “Parallel quasi-phase-shifting digital holography implemented by simple optical set up and effective use of image-sensor pixels,” in Technical Digest of the 2004 ICO International Conference: Optics and Photonics in Technology Frontier (International Commission for Optics,2004), (Chiba, 2004), pp. 357–358.
  20. Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett.85(6), 1069–1071 (2004).
    [CrossRef]
  21. J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE5531, 304–314 (2004).
    [CrossRef]
  22. Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase-shifting digital holography,” Appl. Opt.47(19), D183–D189 (2008).
    [CrossRef] [PubMed]
  23. Ll. Martínez-León, M. Araiza-E, B. Javidi, P. Andrés, V. Climent, J. Lancis, and E. Tajahuerce, “Single-shot digital holography by use of the fractional Talbot effect,” Opt. Express17(15), 12900–12909 (2009).
    [CrossRef] [PubMed]
  24. H. Suzuki, T. Nomura, E. Nitanai, and T. Numata, “Dynamic recording of a digital hologram with single exposure by a wave-splitting phase-shifting method,” Opt. Rev.17(3), 176–180 (2010).
    [CrossRef]
  25. M. Lin, K. Nitta, O. Matoba, and Y. Awatsuji, “Parallel phase-shifting digital holography with adaptive function using phase-mode spatial light modulator,” Appl. Opt.51(14), 2633–2637 (2012).
    [CrossRef] [PubMed]
  26. T. Tahara, K. Ito, T. Kakue, M. Fujii, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel phase-shifting digital holographic microscopy,” Biomed. Opt. Express1(2), 610–616 (2010).
    [CrossRef] [PubMed]
  27. T. Kiire, S. Nakadate, M. Shibuya, and T. Yatagai, “Three-dimensional displacement measurement for diffuse object using phase-shifting digital holography with polarization imaging camera,” Appl. Opt.50(34), H189–H194 (2011).
    [CrossRef] [PubMed]
  28. T. Kakue, R. Yonesaka, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed phase imaging by parallel phase-shifting digital holography,” Opt. Lett.36(21), 4131–4133 (2011).
    [CrossRef] [PubMed]
  29. T. Tahara, Y. Awatsuji, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Comparative analysis and quantitative evaluation of the field of view and viewing zone of single-shot phase-shifting digital holography using space-division multiplexing,” Opt. Rev.17(6), 514–519 (2010).
    [CrossRef]
  30. T. Tahara, Y. Shimozato, T. Kakue, M. Fujii, P. Xia, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Comparative evaluation of the image-reconstruction algorithms of single-shot phase-shifting digital holography,” J. Electron. Imaging21(1), 013021 (2012).
    [CrossRef]
  31. T. Tahara, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, O. Matoba, and T. Kubota, “Spatial-carrier phase-shifting digital holography utilizing spatial frequency analysis for the correction of the phase-shift error,” Opt. Lett.37(2), 148–150 (2012).
    [CrossRef] [PubMed]
  32. Y. Awatsuji, M. Sasada, A. Fujii, and T. Kubota, “Scheme to improve the reconstructed image in parallel quasi-phase-shifting digital holography,” Appl. Opt.45(5), 968–974 (2006).
    [CrossRef] [PubMed]
  33. X. F. Meng, L. Z. Cai, X. F. Xu, X. L. Yang, X. X. Shen, G. Y. Dong, and Y. R. Wang, “Two-step phase-shifting interferometry and its application in image encryption,” Opt. Lett.31(10), 1414–1416 (2006).
    [CrossRef] [PubMed]
  34. A. Stern and B. Javidi, “Space-bandwidth conditions for efficient phase-shifting digital holographic microscopy,” J. Opt. Soc. Am. A25(3), 736–741 (2008).
    [CrossRef] [PubMed]
  35. B. T. Kimbrough, “Pixelated mask spatial carrier phase shifting interferometry algorithms and associated errors,” Appl. Opt.45(19), 4554–4562 (2006).
    [CrossRef] [PubMed]

2012 (3)

2011 (4)

2010 (4)

T. Tahara, K. Ito, T. Kakue, M. Fujii, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel phase-shifting digital holographic microscopy,” Biomed. Opt. Express1(2), 610–616 (2010).
[CrossRef] [PubMed]

E. Darakis, T. Khanam, A. Rajendran, V. Kariwala, T. J. Naughton, and A. K. Asundi, “Microparticle characterization using digital holography,” Chem. Eng. Sci.65(2), 1037–1044 (2010).
[CrossRef]

H. Suzuki, T. Nomura, E. Nitanai, and T. Numata, “Dynamic recording of a digital hologram with single exposure by a wave-splitting phase-shifting method,” Opt. Rev.17(3), 176–180 (2010).
[CrossRef]

T. Tahara, Y. Awatsuji, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Comparative analysis and quantitative evaluation of the field of view and viewing zone of single-shot phase-shifting digital holography using space-division multiplexing,” Opt. Rev.17(6), 514–519 (2010).
[CrossRef]

2009 (2)

S. Murata, D. Harada, and Y. Tanaka, “Spatial phase-shifting digital holography for three-dimensional particle tracking velocimetry,” Jpn. J. Appl. Phys.48(9), 09LB01 (2009).
[CrossRef]

Ll. Martínez-León, M. Araiza-E, B. Javidi, P. Andrés, V. Climent, J. Lancis, and E. Tajahuerce, “Single-shot digital holography by use of the fractional Talbot effect,” Opt. Express17(15), 12900–12909 (2009).
[CrossRef] [PubMed]

2008 (3)

2007 (2)

2006 (4)

2005 (1)

2004 (2)

Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett.85(6), 1069–1071 (2004).
[CrossRef]

J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE5531, 304–314 (2004).
[CrossRef]

2001 (1)

1999 (1)

1998 (1)

1997 (1)

1982 (1)

1972 (1)

1967 (1)

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett.11(3), 77–79 (1967).
[CrossRef]

Adachi, T.

Andrés, P.

Araiza-E, M.

Asundi, A. K.

E. Darakis, T. Khanam, A. Rajendran, V. Kariwala, T. J. Naughton, and A. K. Asundi, “Microparticle characterization using digital holography,” Chem. Eng. Sci.65(2), 1037–1044 (2010).
[CrossRef]

Awatsuji, Y.

T. Tahara, Y. Shimozato, T. Kakue, M. Fujii, P. Xia, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Comparative evaluation of the image-reconstruction algorithms of single-shot phase-shifting digital holography,” J. Electron. Imaging21(1), 013021 (2012).
[CrossRef]

M. Lin, K. Nitta, O. Matoba, and Y. Awatsuji, “Parallel phase-shifting digital holography with adaptive function using phase-mode spatial light modulator,” Appl. Opt.51(14), 2633–2637 (2012).
[CrossRef] [PubMed]

T. Tahara, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, O. Matoba, and T. Kubota, “Spatial-carrier phase-shifting digital holography utilizing spatial frequency analysis for the correction of the phase-shift error,” Opt. Lett.37(2), 148–150 (2012).
[CrossRef] [PubMed]

T. Kakue, R. Yonesaka, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed phase imaging by parallel phase-shifting digital holography,” Opt. Lett.36(21), 4131–4133 (2011).
[CrossRef] [PubMed]

T. Tahara, Y. Awatsuji, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Comparative analysis and quantitative evaluation of the field of view and viewing zone of single-shot phase-shifting digital holography using space-division multiplexing,” Opt. Rev.17(6), 514–519 (2010).
[CrossRef]

T. Tahara, K. Ito, T. Kakue, M. Fujii, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel phase-shifting digital holographic microscopy,” Biomed. Opt. Express1(2), 610–616 (2010).
[CrossRef] [PubMed]

Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase-shifting digital holography,” Appl. Opt.47(19), D183–D189 (2008).
[CrossRef] [PubMed]

Y. Awatsuji, M. Sasada, A. Fujii, and T. Kubota, “Scheme to improve the reconstructed image in parallel quasi-phase-shifting digital holography,” Appl. Opt.45(5), 968–974 (2006).
[CrossRef] [PubMed]

Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett.85(6), 1069–1071 (2004).
[CrossRef]

Brock, N.

J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE5531, 304–314 (2004).
[CrossRef]

Cai, L. Z.

Charrière, F.

Climent, V.

Colomb, T.

Cuche, E.

Darakis, E.

E. Darakis, T. Khanam, A. Rajendran, V. Kariwala, T. J. Naughton, and A. K. Asundi, “Microparticle characterization using digital holography,” Chem. Eng. Sci.65(2), 1037–1044 (2010).
[CrossRef]

Depeursinge, C.

Dong, G. Y.

Emery, Y.

Frauel, Y.

Y. Frauel, T. J. Naughton, O. Matoba, E. Tajahuerce, and B. Javidi, “Three-dimensional imaging and processing using computational holographic imaging,” Proc. IEEE94(3), 636–653 (2006).
[CrossRef]

Fujii, A.

Fujii, M.

T. Tahara, Y. Shimozato, T. Kakue, M. Fujii, P. Xia, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Comparative evaluation of the image-reconstruction algorithms of single-shot phase-shifting digital holography,” J. Electron. Imaging21(1), 013021 (2012).
[CrossRef]

T. Tahara, K. Ito, T. Kakue, M. Fujii, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel phase-shifting digital holographic microscopy,” Biomed. Opt. Express1(2), 610–616 (2010).
[CrossRef] [PubMed]

Goodman, J. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett.11(3), 77–79 (1967).
[CrossRef]

Harada, D.

S. Murata, D. Harada, and Y. Tanaka, “Spatial phase-shifting digital holography for three-dimensional particle tracking velocimetry,” Jpn. J. Appl. Phys.48(9), 09LB01 (2009).
[CrossRef]

Hasegawa, S.

Hayasaki, Y.

Hayes, J.

J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE5531, 304–314 (2004).
[CrossRef]

Higuchi, T.

Ichioka, Y.

Ina, H.

Inuiya, M.

Ito, K.

Ito, T.

Javidi, B.

Kakue, T.

Kaneko, A.

T. Tahara, Y. Awatsuji, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Comparative analysis and quantitative evaluation of the field of view and viewing zone of single-shot phase-shifting digital holography using space-division multiplexing,” Opt. Rev.17(6), 514–519 (2010).
[CrossRef]

Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase-shifting digital holography,” Appl. Opt.47(19), D183–D189 (2008).
[CrossRef] [PubMed]

Kariwala, V.

E. Darakis, T. Khanam, A. Rajendran, V. Kariwala, T. J. Naughton, and A. K. Asundi, “Microparticle characterization using digital holography,” Chem. Eng. Sci.65(2), 1037–1044 (2010).
[CrossRef]

Kawai, H.

Khanam, T.

E. Darakis, T. Khanam, A. Rajendran, V. Kariwala, T. J. Naughton, and A. K. Asundi, “Microparticle characterization using digital holography,” Chem. Eng. Sci.65(2), 1037–1044 (2010).
[CrossRef]

Kiire, T.

Kim, M.

Kimbrough, B. T.

Kobayashi, S.

Koyama, T.

T. Tahara, Y. Awatsuji, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Comparative analysis and quantitative evaluation of the field of view and viewing zone of single-shot phase-shifting digital holography using space-division multiplexing,” Opt. Rev.17(6), 514–519 (2010).
[CrossRef]

Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase-shifting digital holography,” Appl. Opt.47(19), D183–D189 (2008).
[CrossRef] [PubMed]

Kubota, T.

T. Tahara, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, O. Matoba, and T. Kubota, “Spatial-carrier phase-shifting digital holography utilizing spatial frequency analysis for the correction of the phase-shift error,” Opt. Lett.37(2), 148–150 (2012).
[CrossRef] [PubMed]

T. Tahara, Y. Shimozato, T. Kakue, M. Fujii, P. Xia, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Comparative evaluation of the image-reconstruction algorithms of single-shot phase-shifting digital holography,” J. Electron. Imaging21(1), 013021 (2012).
[CrossRef]

T. Kakue, R. Yonesaka, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed phase imaging by parallel phase-shifting digital holography,” Opt. Lett.36(21), 4131–4133 (2011).
[CrossRef] [PubMed]

T. Tahara, Y. Awatsuji, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Comparative analysis and quantitative evaluation of the field of view and viewing zone of single-shot phase-shifting digital holography using space-division multiplexing,” Opt. Rev.17(6), 514–519 (2010).
[CrossRef]

T. Tahara, K. Ito, T. Kakue, M. Fujii, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel phase-shifting digital holographic microscopy,” Biomed. Opt. Express1(2), 610–616 (2010).
[CrossRef] [PubMed]

Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase-shifting digital holography,” Appl. Opt.47(19), D183–D189 (2008).
[CrossRef] [PubMed]

Y. Awatsuji, M. Sasada, A. Fujii, and T. Kubota, “Scheme to improve the reconstructed image in parallel quasi-phase-shifting digital holography,” Appl. Opt.45(5), 968–974 (2006).
[CrossRef] [PubMed]

Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett.85(6), 1069–1071 (2004).
[CrossRef]

Kühn, J.

Lancis, J.

Lawrence, R. W.

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett.11(3), 77–79 (1967).
[CrossRef]

Lin, M.

Lo, C.-M.

Mann, C.

Marquet, P.

Martínez-León, Ll.

Matoba, O.

T. Tahara, Y. Shimozato, T. Kakue, M. Fujii, P. Xia, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Comparative evaluation of the image-reconstruction algorithms of single-shot phase-shifting digital holography,” J. Electron. Imaging21(1), 013021 (2012).
[CrossRef]

M. Lin, K. Nitta, O. Matoba, and Y. Awatsuji, “Parallel phase-shifting digital holography with adaptive function using phase-mode spatial light modulator,” Appl. Opt.51(14), 2633–2637 (2012).
[CrossRef] [PubMed]

T. Tahara, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, O. Matoba, and T. Kubota, “Spatial-carrier phase-shifting digital holography utilizing spatial frequency analysis for the correction of the phase-shift error,” Opt. Lett.37(2), 148–150 (2012).
[CrossRef] [PubMed]

T. Kakue, R. Yonesaka, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed phase imaging by parallel phase-shifting digital holography,” Opt. Lett.36(21), 4131–4133 (2011).
[CrossRef] [PubMed]

T. Tahara, Y. Awatsuji, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Comparative analysis and quantitative evaluation of the field of view and viewing zone of single-shot phase-shifting digital holography using space-division multiplexing,” Opt. Rev.17(6), 514–519 (2010).
[CrossRef]

T. Tahara, K. Ito, T. Kakue, M. Fujii, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel phase-shifting digital holographic microscopy,” Biomed. Opt. Express1(2), 610–616 (2010).
[CrossRef] [PubMed]

Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase-shifting digital holography,” Appl. Opt.47(19), D183–D189 (2008).
[CrossRef] [PubMed]

Y. Frauel, T. J. Naughton, O. Matoba, E. Tajahuerce, and B. Javidi, “Three-dimensional imaging and processing using computational holographic imaging,” Proc. IEEE94(3), 636–653 (2006).
[CrossRef]

E. Tajahuerce, O. Matoba, and B. Javidi, “Shift-invariant three-dimensional object recognition by means of digital holography,” Appl. Opt.40(23), 3877–3886 (2001).
[CrossRef] [PubMed]

Meng, X. F.

Millerd, J.

J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE5531, 304–314 (2004).
[CrossRef]

Miura, J.

Montfort, F.

Murata, S.

S. Murata, D. Harada, and Y. Tanaka, “Spatial phase-shifting digital holography for three-dimensional particle tracking velocimetry,” Jpn. J. Appl. Phys.48(9), 09LB01 (2009).
[CrossRef]

Nakadate, S.

Naughton, T. J.

E. Darakis, T. Khanam, A. Rajendran, V. Kariwala, T. J. Naughton, and A. K. Asundi, “Microparticle characterization using digital holography,” Chem. Eng. Sci.65(2), 1037–1044 (2010).
[CrossRef]

Y. Frauel, T. J. Naughton, O. Matoba, E. Tajahuerce, and B. Javidi, “Three-dimensional imaging and processing using computational holographic imaging,” Proc. IEEE94(3), 636–653 (2006).
[CrossRef]

Nishio, K.

T. Tahara, Y. Shimozato, T. Kakue, M. Fujii, P. Xia, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Comparative evaluation of the image-reconstruction algorithms of single-shot phase-shifting digital holography,” J. Electron. Imaging21(1), 013021 (2012).
[CrossRef]

T. Tahara, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, O. Matoba, and T. Kubota, “Spatial-carrier phase-shifting digital holography utilizing spatial frequency analysis for the correction of the phase-shift error,” Opt. Lett.37(2), 148–150 (2012).
[CrossRef] [PubMed]

T. Kakue, R. Yonesaka, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed phase imaging by parallel phase-shifting digital holography,” Opt. Lett.36(21), 4131–4133 (2011).
[CrossRef] [PubMed]

T. Tahara, Y. Awatsuji, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Comparative analysis and quantitative evaluation of the field of view and viewing zone of single-shot phase-shifting digital holography using space-division multiplexing,” Opt. Rev.17(6), 514–519 (2010).
[CrossRef]

T. Tahara, K. Ito, T. Kakue, M. Fujii, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel phase-shifting digital holographic microscopy,” Biomed. Opt. Express1(2), 610–616 (2010).
[CrossRef] [PubMed]

Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase-shifting digital holography,” Appl. Opt.47(19), D183–D189 (2008).
[CrossRef] [PubMed]

Nitanai, E.

H. Suzuki, T. Nomura, E. Nitanai, and T. Numata, “Dynamic recording of a digital hologram with single exposure by a wave-splitting phase-shifting method,” Opt. Rev.17(3), 176–180 (2010).
[CrossRef]

Nitta, K.

Nomura, T.

H. Suzuki, T. Nomura, E. Nitanai, and T. Numata, “Dynamic recording of a digital hologram with single exposure by a wave-splitting phase-shifting method,” Opt. Rev.17(3), 176–180 (2010).
[CrossRef]

North-Morris, M.

J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE5531, 304–314 (2004).
[CrossRef]

Novak, M.

J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE5531, 304–314 (2004).
[CrossRef]

Numata, T.

H. Suzuki, T. Nomura, E. Nitanai, and T. Numata, “Dynamic recording of a digital hologram with single exposure by a wave-splitting phase-shifting method,” Opt. Rev.17(3), 176–180 (2010).
[CrossRef]

Ohzu, H.

Pham, Q. D.

Rajendran, A.

E. Darakis, T. Khanam, A. Rajendran, V. Kariwala, T. J. Naughton, and A. K. Asundi, “Microparticle characterization using digital holography,” Chem. Eng. Sci.65(2), 1037–1044 (2010).
[CrossRef]

Sasada, M.

Sato, Y.

Shen, X. X.

Shibuya, M.

Shimobaba, T.

Shimozato, Y.

Stern, A.

Suzuki, H.

H. Suzuki, T. Nomura, E. Nitanai, and T. Numata, “Dynamic recording of a digital hologram with single exposure by a wave-splitting phase-shifting method,” Opt. Rev.17(3), 176–180 (2010).
[CrossRef]

Tahara, T.

T. Tahara, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, O. Matoba, and T. Kubota, “Spatial-carrier phase-shifting digital holography utilizing spatial frequency analysis for the correction of the phase-shift error,” Opt. Lett.37(2), 148–150 (2012).
[CrossRef] [PubMed]

T. Tahara, Y. Shimozato, T. Kakue, M. Fujii, P. Xia, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Comparative evaluation of the image-reconstruction algorithms of single-shot phase-shifting digital holography,” J. Electron. Imaging21(1), 013021 (2012).
[CrossRef]

T. Kakue, R. Yonesaka, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed phase imaging by parallel phase-shifting digital holography,” Opt. Lett.36(21), 4131–4133 (2011).
[CrossRef] [PubMed]

T. Tahara, Y. Awatsuji, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Comparative analysis and quantitative evaluation of the field of view and viewing zone of single-shot phase-shifting digital holography using space-division multiplexing,” Opt. Rev.17(6), 514–519 (2010).
[CrossRef]

T. Tahara, K. Ito, T. Kakue, M. Fujii, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel phase-shifting digital holographic microscopy,” Biomed. Opt. Express1(2), 610–616 (2010).
[CrossRef] [PubMed]

Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase-shifting digital holography,” Appl. Opt.47(19), D183–D189 (2008).
[CrossRef] [PubMed]

Tajahuerce, E.

Takaki, Y.

Takeda, M.

Takenouchi, M.

Tanaka, Y.

S. Murata, D. Harada, and Y. Tanaka, “Spatial phase-shifting digital holography for three-dimensional particle tracking velocimetry,” Jpn. J. Appl. Phys.48(9), 09LB01 (2009).
[CrossRef]

Ura, S.

T. Tahara, Y. Shimozato, T. Kakue, M. Fujii, P. Xia, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Comparative evaluation of the image-reconstruction algorithms of single-shot phase-shifting digital holography,” J. Electron. Imaging21(1), 013021 (2012).
[CrossRef]

T. Tahara, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, O. Matoba, and T. Kubota, “Spatial-carrier phase-shifting digital holography utilizing spatial frequency analysis for the correction of the phase-shift error,” Opt. Lett.37(2), 148–150 (2012).
[CrossRef] [PubMed]

T. Kakue, R. Yonesaka, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed phase imaging by parallel phase-shifting digital holography,” Opt. Lett.36(21), 4131–4133 (2011).
[CrossRef] [PubMed]

T. Tahara, Y. Awatsuji, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Comparative analysis and quantitative evaluation of the field of view and viewing zone of single-shot phase-shifting digital holography using space-division multiplexing,” Opt. Rev.17(6), 514–519 (2010).
[CrossRef]

T. Tahara, K. Ito, T. Kakue, M. Fujii, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel phase-shifting digital holographic microscopy,” Biomed. Opt. Express1(2), 610–616 (2010).
[CrossRef] [PubMed]

Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase-shifting digital holography,” Appl. Opt.47(19), D183–D189 (2008).
[CrossRef] [PubMed]

Wang, Y. R.

Wyant, J.

J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE5531, 304–314 (2004).
[CrossRef]

Xia, P.

T. Tahara, Y. Shimozato, T. Kakue, M. Fujii, P. Xia, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Comparative evaluation of the image-reconstruction algorithms of single-shot phase-shifting digital holography,” J. Electron. Imaging21(1), 013021 (2012).
[CrossRef]

Xu, X. F.

Yamaguchi, I.

Yang, X. L.

Yatagai, T.

Yokota, M.

Yonesaka, R.

Yu, L.

Zhang, T.

Appl. Opt. (10)

Y. Ichioka and M. Inuiya, “Direct phase detecting system,” Appl. Opt.11(7), 1507–1514 (1972).
[CrossRef] [PubMed]

Y. Takaki, H. Kawai, and H. Ohzu, “Hybrid holographic microscopy free of conjugate and zero-order images,” Appl. Opt.38(23), 4990–4996 (1999).
[CrossRef] [PubMed]

E. Tajahuerce, O. Matoba, and B. Javidi, “Shift-invariant three-dimensional object recognition by means of digital holography,” Appl. Opt.40(23), 3877–3886 (2001).
[CrossRef] [PubMed]

Y. Awatsuji, M. Sasada, A. Fujii, and T. Kubota, “Scheme to improve the reconstructed image in parallel quasi-phase-shifting digital holography,” Appl. Opt.45(5), 968–974 (2006).
[CrossRef] [PubMed]

B. T. Kimbrough, “Pixelated mask spatial carrier phase shifting interferometry algorithms and associated errors,” Appl. Opt.45(19), 4554–4562 (2006).
[CrossRef] [PubMed]

Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase-shifting digital holography,” Appl. Opt.47(19), D183–D189 (2008).
[CrossRef] [PubMed]

M. Yokota and T. Adachi, “Digital holographic profilometry of the inner surface of a pipe using a current-induced wavelength change of a laser diode,” Appl. Opt.50(21), 3937–3946 (2011).
[CrossRef] [PubMed]

T. Higuchi, Q. D. Pham, S. Hasegawa, and Y. Hayasaki, “Three-dimensional positioning of optically trapped nanoparticles,” Appl. Opt.50(34), H183–H188 (2011).
[CrossRef] [PubMed]

T. Kiire, S. Nakadate, M. Shibuya, and T. Yatagai, “Three-dimensional displacement measurement for diffuse object using phase-shifting digital holography with polarization imaging camera,” Appl. Opt.50(34), H189–H194 (2011).
[CrossRef] [PubMed]

M. Lin, K. Nitta, O. Matoba, and Y. Awatsuji, “Parallel phase-shifting digital holography with adaptive function using phase-mode spatial light modulator,” Appl. Opt.51(14), 2633–2637 (2012).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett.11(3), 77–79 (1967).
[CrossRef]

Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett.85(6), 1069–1071 (2004).
[CrossRef]

Biomed. Opt. Express (1)

Chem. Eng. Sci. (1)

E. Darakis, T. Khanam, A. Rajendran, V. Kariwala, T. J. Naughton, and A. K. Asundi, “Microparticle characterization using digital holography,” Chem. Eng. Sci.65(2), 1037–1044 (2010).
[CrossRef]

J. Electron. Imaging (1)

T. Tahara, Y. Shimozato, T. Kakue, M. Fujii, P. Xia, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Comparative evaluation of the image-reconstruction algorithms of single-shot phase-shifting digital holography,” J. Electron. Imaging21(1), 013021 (2012).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

Jpn. J. Appl. Phys. (1)

S. Murata, D. Harada, and Y. Tanaka, “Spatial phase-shifting digital holography for three-dimensional particle tracking velocimetry,” Jpn. J. Appl. Phys.48(9), 09LB01 (2009).
[CrossRef]

Opt. Express (4)

Opt. Lett. (5)

Opt. Rev. (2)

H. Suzuki, T. Nomura, E. Nitanai, and T. Numata, “Dynamic recording of a digital hologram with single exposure by a wave-splitting phase-shifting method,” Opt. Rev.17(3), 176–180 (2010).
[CrossRef]

T. Tahara, Y. Awatsuji, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Comparative analysis and quantitative evaluation of the field of view and viewing zone of single-shot phase-shifting digital holography using space-division multiplexing,” Opt. Rev.17(6), 514–519 (2010).
[CrossRef]

Proc. IEEE (1)

Y. Frauel, T. J. Naughton, O. Matoba, E. Tajahuerce, and B. Javidi, “Three-dimensional imaging and processing using computational holographic imaging,” Proc. IEEE94(3), 636–653 (2006).
[CrossRef]

Proc. SPIE (1)

J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE5531, 304–314 (2004).
[CrossRef]

Other (3)

M. Sasada, Y. Awatsuji, and T. Kubota, “Parallel quasi-phase-shifting digital holography that can achieve instantaneous measurement,” in Technical Digest of the 2004 ICO International Conference: Optics and Photonics in Technology Frontier (International Commission for Optics,2004), (Chiba, 2004), pp. 187–188.

M. Sasada, A. Fujii, Y. Awatsuji, and T. Kubota, “Parallel quasi-phase-shifting digital holography implemented by simple optical set up and effective use of image-sensor pixels,” in Technical Digest of the 2004 ICO International Conference: Optics and Photonics in Technology Frontier (International Commission for Optics,2004), (Chiba, 2004), pp. 357–358.

U. Schnars and W. Jueptner, Digital Holography (Springer, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Basic concept of PPSDH.

Fig. 2
Fig. 2

Schematics of (a) neighboring-pixel-use method and (b) interpolation method. (c) Direction dependencies of the errors in these image-reconstruction algorithms.

Fig. 3
Fig. 3

Flow of the proposed image-reconstruction algorithm.

Fig. 4
Fig. 4

Setup for a preliminary experiment.

Fig. 5
Fig. 5

Preliminary experimental results. Images reconstructed by (a) sequential phase-shifting technique, (b) spatial-carrier phase-shifting technique, PPSDH applying the conventional algorithm utilizing neighboring pixels in the (c) horizontal and (d) vertical direction, (e) algorithm utilizing interpolation, and (f) the proposed algorithm, respectively. (g), (h) the differences between (d) and (f). (g) indicates that (d) is brighter than (f), and (h) indicates that (f) is brighter than (d). (i), (j) the differences between (e) and (f). (i) indicates that (e) is brighter than (f), and (j) indicates that (f) is brighter than (e). Spectrum obtained by the conventional algorithm using (k) horizontal and (l) vertical pixels, and (m) the proposed algorithms, respectively. Ellipsoid areas surrounded by green, red and blue lines in (g)-(m) indicate the information of the residual 0th-order diffraction wave, that of residual conjugate image, and that of object wave, respectively.

Tables (1)

Tables Icon

Table 1 NRMSEs and CCs between the amplitude image reconstructed by sequential phase-shifting technique and those reconstructed by each spatial phase-shifting ones.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I'(x,y) = I(x,y)Ir(x,y) = { |Ao(x,y) | 2 +2Ao(x,y) Ir(x,y) cosϕ(x,y) when xy=even, |Ao(x,y) | 2 +2Ao(x,y) Ir(x,y) cos{ ϕ(x,y)-α } when xy=odd,
|Ao(x,y) | 2 = v' v ' 2 4uw' 2u ,
u = 2(1-cosα),
v' = 2[ (1-cosα){ I'(x,y)+I'(x+a,y+b) }+2Ir(x,y) sin 2 α ], ( a=1 if b=0 a=0 if b=1 )
w' = I' (x,y) 2 +I' (x+a,y+b) 2 2I'(x,y) I'(x+a,y+b)cosα.
U(x,y) = 1 2 Ir(x,y) [ { I'(x,y)|Ao(x,y) | 2 }+j{ I'(x+a,y+b)I'(x,y)cosα( 1cosα )|Ao(x,y) | 2 } ].
F[ Uo(x,y) ] = { F[ U 1 (x,y) ] when kxky, F[ U 2 (x,y) ] when kx>ky,

Metrics