Abstract

Two-dimensional (2-D) transverse photocurrent generation is studied and applied to control and optimize terahertz energy and polarization in two-color, laser-produced air filaments. A full control of terahertz output is demonstrated and explained in the context of 2-D photocurrent model.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Cook and R. M. Hochstrasser, “Intense terahertz pulses by four-wave rectification in air,” Opt. Lett. 25(16), 1210–1212 (2000).
    [CrossRef] [PubMed]
  2. M. Kress, T. Löffler, S. Eden, M. Thomson, and H. G. Roskos, “Terahertz-pulse generation by photoionization of air with laser pulses composed of both fundamental and second-harmonic waves,” Opt. Lett. 29(10), 1120–1122 (2004).
    [CrossRef] [PubMed]
  3. T. Bartel, P. Gaal, K. Reimann, M. Woerner, and T. Elsaesser, “Generation of single-cycle THz transients with high electric-field amplitudes,” Opt. Lett. 30(20), 2805–2807 (2005).
    [CrossRef] [PubMed]
  4. M. Kreß, T. Löffler, M. D. Thomson, R. Dörner, H. Gimpel, K. Zrost, T. Ergler, R. Moshammer, U. Morgner, J. Ullrich, and H. G. Roskos, “Determination of the carrier-envelope phase of few-cycle laser pulses with terahertzemission spectroscopy,” Nat. Phys. 2(5), 327–331 (2006).
    [CrossRef]
  5. X. Xie, J. Dai, and X.-C. Zhang, “Coherent control of THz wave generation in ambient air,” Phys. Rev. Lett. 96(7), 075005 (2006).
    [CrossRef] [PubMed]
  6. H. G. Roskos, M. D. Thomson, M. Kreß, and T. Löffler, “Broadband THz emission from gas plasmas induced by femtosecond optical pulses: From fundamentals to applications,” Laser Photonics Rev. 1(4), 349–368 (2007).
    [CrossRef]
  7. K. Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, “Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields,” Opt. Express 15(8), 4577–4584 (2007).
    [CrossRef] [PubMed]
  8. K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions,” Nat. Photonics 2(10), 605–609 (2008).
    [CrossRef]
  9. K. Y. Kim, “Generation of coherent terahertz radiation in ultrafast laser-gas interactions,” Phys. Plasmas 16(5), 056706 (2009).
    [CrossRef]
  10. F. Blanchard, G. Sharma, X. Ropagnol, L. Razzari, R. Morandotti, and T. Ozaki, “Improved terahertz two-color plasma sources pumped by high intensity laser beam,” Opt. Express 17(8), 6044–6052 (2009).
    [CrossRef] [PubMed]
  11. W.-M. Wang, Z.-M. Sheng, H.-C. Wu, M. Chen, C. Li, J. Zhang, and K. Mima, “Strong terahertz pulse generation by chirped laser pulses in tenuous gases,” Opt. Express 16(21), 16999–17006 (2008).
    [CrossRef] [PubMed]
  12. A. Houard, Y. Liu, B. Prade, and A. Mysyrowicz, “Polarization analysis of terahertz radiation generated by four-wave mixing in air,” Opt. Lett. 33(11), 1195–1197 (2008).
    [CrossRef] [PubMed]
  13. H. Wen and A. M. Lindenberg, “Coherent Terahertz polarization control through manipulation of Electron trajectories,” Phys. Rev. Lett. 103(2), 023902 (2009).
    [CrossRef] [PubMed]
  14. J. Dai, N. Karpowicz, and X.-C. Zhang, “Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma,” Phys. Rev. Lett. 103(2), 023001 (2009).
    [CrossRef] [PubMed]
  15. T.-J. Wang, Y. Chen, C. Marceau, F. Theberge, M. Chateauneuf, J. Dubois, and S. L. Chin, “High energy terahertz emission from two-color laser-induced filamentation in air with pump pulse duration control,” Appl. Phys. Lett. 95, 1311081/1-3 (2009).
  16. Y.-Z. Zhang, Y. Chen, S.-Q. Xu, H. Lian, M. Wang, W. Liu, S. L. Chin, and G. Mu, “Portraying polarization state of terahertz pulse generated by a two-color laser field in air,” Opt. Lett. 34(18), 2841–2843 (2009).
    [CrossRef] [PubMed]
  17. J. Dai, B. Clough, I.-C. Ho, X. Lu, J. Liu, and X.-C. Zhang, “Recent Progresses in Terahertz Wave Air Photonics,” IEEE Trans. THz Sci. Tech. (Paris) 1(1), 274–281 (2011).
    [CrossRef]
  18. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, (Elsevier Science, 1977).
  19. M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64, 1191–1194 (1986).
  20. G. Rodriguez, A. R. Valenzuela, B. Yellampalle, M. J. Schmitt, and K.-Y. Kim, “In-line holographic imaging and electron density extraction of ultrafast ionized air filaments,” J. Opt. Soc. Am. B 25(12), 1988–1997 (2008).
    [CrossRef]
  21. X. Lu and X.-C. Zhang, “Generation of Elliptically Polarized Terahertz Waves from Laser-Induced Plasma with Double Helix Electrodes,” Phys. Rev. Lett. 108(12), 123903 (2012).
    [CrossRef] [PubMed]
  22. Y. S. Lee, Principles of Terahertz Science and Technology (Springer, New York, 2008).
  23. S. G. Ganichev and W. Prettl, Intense Terahertz Excitation of Semiconductors (Oxford University Press, Oxford, 2006).
  24. K. Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, “High-power broadband terahertz generation via two-color photoionization in gases,” IEEE J. Quantum Electron. 48(6), 797–805 (2012).
    [CrossRef]
  25. V. B. Gildenburg and N. V. Vvedenskii, “Optical-to-THz wave conversion via excitation of plasma oscillations in the tunneling-ionization process,” Phys. Rev. Lett. 98(24), 245002 (2007).
    [CrossRef] [PubMed]
  26. A. A. Silaev and N. V. Vvedenskii, “Residual-current excitation in plasmas produced by few-cycle laser pulses,” Phys. Rev. Lett. 102(11), 115005 (2009).
    [CrossRef] [PubMed]

2012 (2)

X. Lu and X.-C. Zhang, “Generation of Elliptically Polarized Terahertz Waves from Laser-Induced Plasma with Double Helix Electrodes,” Phys. Rev. Lett. 108(12), 123903 (2012).
[CrossRef] [PubMed]

K. Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, “High-power broadband terahertz generation via two-color photoionization in gases,” IEEE J. Quantum Electron. 48(6), 797–805 (2012).
[CrossRef]

2011 (1)

J. Dai, B. Clough, I.-C. Ho, X. Lu, J. Liu, and X.-C. Zhang, “Recent Progresses in Terahertz Wave Air Photonics,” IEEE Trans. THz Sci. Tech. (Paris) 1(1), 274–281 (2011).
[CrossRef]

2009 (7)

A. A. Silaev and N. V. Vvedenskii, “Residual-current excitation in plasmas produced by few-cycle laser pulses,” Phys. Rev. Lett. 102(11), 115005 (2009).
[CrossRef] [PubMed]

K. Y. Kim, “Generation of coherent terahertz radiation in ultrafast laser-gas interactions,” Phys. Plasmas 16(5), 056706 (2009).
[CrossRef]

H. Wen and A. M. Lindenberg, “Coherent Terahertz polarization control through manipulation of Electron trajectories,” Phys. Rev. Lett. 103(2), 023902 (2009).
[CrossRef] [PubMed]

J. Dai, N. Karpowicz, and X.-C. Zhang, “Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma,” Phys. Rev. Lett. 103(2), 023001 (2009).
[CrossRef] [PubMed]

T.-J. Wang, Y. Chen, C. Marceau, F. Theberge, M. Chateauneuf, J. Dubois, and S. L. Chin, “High energy terahertz emission from two-color laser-induced filamentation in air with pump pulse duration control,” Appl. Phys. Lett. 95, 1311081/1-3 (2009).

F. Blanchard, G. Sharma, X. Ropagnol, L. Razzari, R. Morandotti, and T. Ozaki, “Improved terahertz two-color plasma sources pumped by high intensity laser beam,” Opt. Express 17(8), 6044–6052 (2009).
[CrossRef] [PubMed]

Y.-Z. Zhang, Y. Chen, S.-Q. Xu, H. Lian, M. Wang, W. Liu, S. L. Chin, and G. Mu, “Portraying polarization state of terahertz pulse generated by a two-color laser field in air,” Opt. Lett. 34(18), 2841–2843 (2009).
[CrossRef] [PubMed]

2008 (4)

2007 (3)

H. G. Roskos, M. D. Thomson, M. Kreß, and T. Löffler, “Broadband THz emission from gas plasmas induced by femtosecond optical pulses: From fundamentals to applications,” Laser Photonics Rev. 1(4), 349–368 (2007).
[CrossRef]

V. B. Gildenburg and N. V. Vvedenskii, “Optical-to-THz wave conversion via excitation of plasma oscillations in the tunneling-ionization process,” Phys. Rev. Lett. 98(24), 245002 (2007).
[CrossRef] [PubMed]

K. Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, “Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields,” Opt. Express 15(8), 4577–4584 (2007).
[CrossRef] [PubMed]

2006 (2)

M. Kreß, T. Löffler, M. D. Thomson, R. Dörner, H. Gimpel, K. Zrost, T. Ergler, R. Moshammer, U. Morgner, J. Ullrich, and H. G. Roskos, “Determination of the carrier-envelope phase of few-cycle laser pulses with terahertzemission spectroscopy,” Nat. Phys. 2(5), 327–331 (2006).
[CrossRef]

X. Xie, J. Dai, and X.-C. Zhang, “Coherent control of THz wave generation in ambient air,” Phys. Rev. Lett. 96(7), 075005 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (1)

2000 (1)

1986 (1)

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64, 1191–1194 (1986).

Ammosov, M. V.

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64, 1191–1194 (1986).

Bartel, T.

Blanchard, F.

Chateauneuf, M.

T.-J. Wang, Y. Chen, C. Marceau, F. Theberge, M. Chateauneuf, J. Dubois, and S. L. Chin, “High energy terahertz emission from two-color laser-induced filamentation in air with pump pulse duration control,” Appl. Phys. Lett. 95, 1311081/1-3 (2009).

Chen, M.

Chen, Y.

T.-J. Wang, Y. Chen, C. Marceau, F. Theberge, M. Chateauneuf, J. Dubois, and S. L. Chin, “High energy terahertz emission from two-color laser-induced filamentation in air with pump pulse duration control,” Appl. Phys. Lett. 95, 1311081/1-3 (2009).

Y.-Z. Zhang, Y. Chen, S.-Q. Xu, H. Lian, M. Wang, W. Liu, S. L. Chin, and G. Mu, “Portraying polarization state of terahertz pulse generated by a two-color laser field in air,” Opt. Lett. 34(18), 2841–2843 (2009).
[CrossRef] [PubMed]

Chin, S. L.

Y.-Z. Zhang, Y. Chen, S.-Q. Xu, H. Lian, M. Wang, W. Liu, S. L. Chin, and G. Mu, “Portraying polarization state of terahertz pulse generated by a two-color laser field in air,” Opt. Lett. 34(18), 2841–2843 (2009).
[CrossRef] [PubMed]

T.-J. Wang, Y. Chen, C. Marceau, F. Theberge, M. Chateauneuf, J. Dubois, and S. L. Chin, “High energy terahertz emission from two-color laser-induced filamentation in air with pump pulse duration control,” Appl. Phys. Lett. 95, 1311081/1-3 (2009).

Clough, B.

J. Dai, B. Clough, I.-C. Ho, X. Lu, J. Liu, and X.-C. Zhang, “Recent Progresses in Terahertz Wave Air Photonics,” IEEE Trans. THz Sci. Tech. (Paris) 1(1), 274–281 (2011).
[CrossRef]

Cook, D. J.

Dai, J.

J. Dai, B. Clough, I.-C. Ho, X. Lu, J. Liu, and X.-C. Zhang, “Recent Progresses in Terahertz Wave Air Photonics,” IEEE Trans. THz Sci. Tech. (Paris) 1(1), 274–281 (2011).
[CrossRef]

J. Dai, N. Karpowicz, and X.-C. Zhang, “Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma,” Phys. Rev. Lett. 103(2), 023001 (2009).
[CrossRef] [PubMed]

X. Xie, J. Dai, and X.-C. Zhang, “Coherent control of THz wave generation in ambient air,” Phys. Rev. Lett. 96(7), 075005 (2006).
[CrossRef] [PubMed]

Delone, N. B.

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64, 1191–1194 (1986).

Dörner, R.

M. Kreß, T. Löffler, M. D. Thomson, R. Dörner, H. Gimpel, K. Zrost, T. Ergler, R. Moshammer, U. Morgner, J. Ullrich, and H. G. Roskos, “Determination of the carrier-envelope phase of few-cycle laser pulses with terahertzemission spectroscopy,” Nat. Phys. 2(5), 327–331 (2006).
[CrossRef]

Dubois, J.

T.-J. Wang, Y. Chen, C. Marceau, F. Theberge, M. Chateauneuf, J. Dubois, and S. L. Chin, “High energy terahertz emission from two-color laser-induced filamentation in air with pump pulse duration control,” Appl. Phys. Lett. 95, 1311081/1-3 (2009).

Eden, S.

Elsaesser, T.

Ergler, T.

M. Kreß, T. Löffler, M. D. Thomson, R. Dörner, H. Gimpel, K. Zrost, T. Ergler, R. Moshammer, U. Morgner, J. Ullrich, and H. G. Roskos, “Determination of the carrier-envelope phase of few-cycle laser pulses with terahertzemission spectroscopy,” Nat. Phys. 2(5), 327–331 (2006).
[CrossRef]

Gaal, P.

Gildenburg, V. B.

V. B. Gildenburg and N. V. Vvedenskii, “Optical-to-THz wave conversion via excitation of plasma oscillations in the tunneling-ionization process,” Phys. Rev. Lett. 98(24), 245002 (2007).
[CrossRef] [PubMed]

Gimpel, H.

M. Kreß, T. Löffler, M. D. Thomson, R. Dörner, H. Gimpel, K. Zrost, T. Ergler, R. Moshammer, U. Morgner, J. Ullrich, and H. G. Roskos, “Determination of the carrier-envelope phase of few-cycle laser pulses with terahertzemission spectroscopy,” Nat. Phys. 2(5), 327–331 (2006).
[CrossRef]

Glownia, J. H.

K. Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, “High-power broadband terahertz generation via two-color photoionization in gases,” IEEE J. Quantum Electron. 48(6), 797–805 (2012).
[CrossRef]

K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions,” Nat. Photonics 2(10), 605–609 (2008).
[CrossRef]

K. Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, “Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields,” Opt. Express 15(8), 4577–4584 (2007).
[CrossRef] [PubMed]

Ho, I.-C.

J. Dai, B. Clough, I.-C. Ho, X. Lu, J. Liu, and X.-C. Zhang, “Recent Progresses in Terahertz Wave Air Photonics,” IEEE Trans. THz Sci. Tech. (Paris) 1(1), 274–281 (2011).
[CrossRef]

Hochstrasser, R. M.

Houard, A.

Karpowicz, N.

J. Dai, N. Karpowicz, and X.-C. Zhang, “Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma,” Phys. Rev. Lett. 103(2), 023001 (2009).
[CrossRef] [PubMed]

Kim, K. Y.

K. Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, “High-power broadband terahertz generation via two-color photoionization in gases,” IEEE J. Quantum Electron. 48(6), 797–805 (2012).
[CrossRef]

K. Y. Kim, “Generation of coherent terahertz radiation in ultrafast laser-gas interactions,” Phys. Plasmas 16(5), 056706 (2009).
[CrossRef]

K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions,” Nat. Photonics 2(10), 605–609 (2008).
[CrossRef]

K. Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, “Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields,” Opt. Express 15(8), 4577–4584 (2007).
[CrossRef] [PubMed]

Kim, K.-Y.

Krainov, V. P.

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64, 1191–1194 (1986).

Kreß, M.

H. G. Roskos, M. D. Thomson, M. Kreß, and T. Löffler, “Broadband THz emission from gas plasmas induced by femtosecond optical pulses: From fundamentals to applications,” Laser Photonics Rev. 1(4), 349–368 (2007).
[CrossRef]

M. Kreß, T. Löffler, M. D. Thomson, R. Dörner, H. Gimpel, K. Zrost, T. Ergler, R. Moshammer, U. Morgner, J. Ullrich, and H. G. Roskos, “Determination of the carrier-envelope phase of few-cycle laser pulses with terahertzemission spectroscopy,” Nat. Phys. 2(5), 327–331 (2006).
[CrossRef]

Kress, M.

Li, C.

Lian, H.

Lindenberg, A. M.

H. Wen and A. M. Lindenberg, “Coherent Terahertz polarization control through manipulation of Electron trajectories,” Phys. Rev. Lett. 103(2), 023902 (2009).
[CrossRef] [PubMed]

Liu, J.

J. Dai, B. Clough, I.-C. Ho, X. Lu, J. Liu, and X.-C. Zhang, “Recent Progresses in Terahertz Wave Air Photonics,” IEEE Trans. THz Sci. Tech. (Paris) 1(1), 274–281 (2011).
[CrossRef]

Liu, W.

Liu, Y.

Löffler, T.

H. G. Roskos, M. D. Thomson, M. Kreß, and T. Löffler, “Broadband THz emission from gas plasmas induced by femtosecond optical pulses: From fundamentals to applications,” Laser Photonics Rev. 1(4), 349–368 (2007).
[CrossRef]

M. Kreß, T. Löffler, M. D. Thomson, R. Dörner, H. Gimpel, K. Zrost, T. Ergler, R. Moshammer, U. Morgner, J. Ullrich, and H. G. Roskos, “Determination of the carrier-envelope phase of few-cycle laser pulses with terahertzemission spectroscopy,” Nat. Phys. 2(5), 327–331 (2006).
[CrossRef]

M. Kress, T. Löffler, S. Eden, M. Thomson, and H. G. Roskos, “Terahertz-pulse generation by photoionization of air with laser pulses composed of both fundamental and second-harmonic waves,” Opt. Lett. 29(10), 1120–1122 (2004).
[CrossRef] [PubMed]

Lu, X.

X. Lu and X.-C. Zhang, “Generation of Elliptically Polarized Terahertz Waves from Laser-Induced Plasma with Double Helix Electrodes,” Phys. Rev. Lett. 108(12), 123903 (2012).
[CrossRef] [PubMed]

J. Dai, B. Clough, I.-C. Ho, X. Lu, J. Liu, and X.-C. Zhang, “Recent Progresses in Terahertz Wave Air Photonics,” IEEE Trans. THz Sci. Tech. (Paris) 1(1), 274–281 (2011).
[CrossRef]

Marceau, C.

T.-J. Wang, Y. Chen, C. Marceau, F. Theberge, M. Chateauneuf, J. Dubois, and S. L. Chin, “High energy terahertz emission from two-color laser-induced filamentation in air with pump pulse duration control,” Appl. Phys. Lett. 95, 1311081/1-3 (2009).

Mima, K.

Morandotti, R.

Morgner, U.

M. Kreß, T. Löffler, M. D. Thomson, R. Dörner, H. Gimpel, K. Zrost, T. Ergler, R. Moshammer, U. Morgner, J. Ullrich, and H. G. Roskos, “Determination of the carrier-envelope phase of few-cycle laser pulses with terahertzemission spectroscopy,” Nat. Phys. 2(5), 327–331 (2006).
[CrossRef]

Moshammer, R.

M. Kreß, T. Löffler, M. D. Thomson, R. Dörner, H. Gimpel, K. Zrost, T. Ergler, R. Moshammer, U. Morgner, J. Ullrich, and H. G. Roskos, “Determination of the carrier-envelope phase of few-cycle laser pulses with terahertzemission spectroscopy,” Nat. Phys. 2(5), 327–331 (2006).
[CrossRef]

Mu, G.

Mysyrowicz, A.

Ozaki, T.

Prade, B.

Razzari, L.

Reimann, K.

Rodriguez, G.

K. Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, “High-power broadband terahertz generation via two-color photoionization in gases,” IEEE J. Quantum Electron. 48(6), 797–805 (2012).
[CrossRef]

G. Rodriguez, A. R. Valenzuela, B. Yellampalle, M. J. Schmitt, and K.-Y. Kim, “In-line holographic imaging and electron density extraction of ultrafast ionized air filaments,” J. Opt. Soc. Am. B 25(12), 1988–1997 (2008).
[CrossRef]

K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions,” Nat. Photonics 2(10), 605–609 (2008).
[CrossRef]

K. Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, “Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields,” Opt. Express 15(8), 4577–4584 (2007).
[CrossRef] [PubMed]

Ropagnol, X.

Roskos, H. G.

H. G. Roskos, M. D. Thomson, M. Kreß, and T. Löffler, “Broadband THz emission from gas plasmas induced by femtosecond optical pulses: From fundamentals to applications,” Laser Photonics Rev. 1(4), 349–368 (2007).
[CrossRef]

M. Kreß, T. Löffler, M. D. Thomson, R. Dörner, H. Gimpel, K. Zrost, T. Ergler, R. Moshammer, U. Morgner, J. Ullrich, and H. G. Roskos, “Determination of the carrier-envelope phase of few-cycle laser pulses with terahertzemission spectroscopy,” Nat. Phys. 2(5), 327–331 (2006).
[CrossRef]

M. Kress, T. Löffler, S. Eden, M. Thomson, and H. G. Roskos, “Terahertz-pulse generation by photoionization of air with laser pulses composed of both fundamental and second-harmonic waves,” Opt. Lett. 29(10), 1120–1122 (2004).
[CrossRef] [PubMed]

Schmitt, M. J.

Sharma, G.

Sheng, Z.-M.

Silaev, A. A.

A. A. Silaev and N. V. Vvedenskii, “Residual-current excitation in plasmas produced by few-cycle laser pulses,” Phys. Rev. Lett. 102(11), 115005 (2009).
[CrossRef] [PubMed]

Taylor, A. J.

K. Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, “High-power broadband terahertz generation via two-color photoionization in gases,” IEEE J. Quantum Electron. 48(6), 797–805 (2012).
[CrossRef]

K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions,” Nat. Photonics 2(10), 605–609 (2008).
[CrossRef]

K. Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, “Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields,” Opt. Express 15(8), 4577–4584 (2007).
[CrossRef] [PubMed]

Theberge, F.

T.-J. Wang, Y. Chen, C. Marceau, F. Theberge, M. Chateauneuf, J. Dubois, and S. L. Chin, “High energy terahertz emission from two-color laser-induced filamentation in air with pump pulse duration control,” Appl. Phys. Lett. 95, 1311081/1-3 (2009).

Thomson, M.

Thomson, M. D.

H. G. Roskos, M. D. Thomson, M. Kreß, and T. Löffler, “Broadband THz emission from gas plasmas induced by femtosecond optical pulses: From fundamentals to applications,” Laser Photonics Rev. 1(4), 349–368 (2007).
[CrossRef]

M. Kreß, T. Löffler, M. D. Thomson, R. Dörner, H. Gimpel, K. Zrost, T. Ergler, R. Moshammer, U. Morgner, J. Ullrich, and H. G. Roskos, “Determination of the carrier-envelope phase of few-cycle laser pulses with terahertzemission spectroscopy,” Nat. Phys. 2(5), 327–331 (2006).
[CrossRef]

Ullrich, J.

M. Kreß, T. Löffler, M. D. Thomson, R. Dörner, H. Gimpel, K. Zrost, T. Ergler, R. Moshammer, U. Morgner, J. Ullrich, and H. G. Roskos, “Determination of the carrier-envelope phase of few-cycle laser pulses with terahertzemission spectroscopy,” Nat. Phys. 2(5), 327–331 (2006).
[CrossRef]

Valenzuela, A. R.

Vvedenskii, N. V.

A. A. Silaev and N. V. Vvedenskii, “Residual-current excitation in plasmas produced by few-cycle laser pulses,” Phys. Rev. Lett. 102(11), 115005 (2009).
[CrossRef] [PubMed]

V. B. Gildenburg and N. V. Vvedenskii, “Optical-to-THz wave conversion via excitation of plasma oscillations in the tunneling-ionization process,” Phys. Rev. Lett. 98(24), 245002 (2007).
[CrossRef] [PubMed]

Wang, M.

Wang, T.-J.

T.-J. Wang, Y. Chen, C. Marceau, F. Theberge, M. Chateauneuf, J. Dubois, and S. L. Chin, “High energy terahertz emission from two-color laser-induced filamentation in air with pump pulse duration control,” Appl. Phys. Lett. 95, 1311081/1-3 (2009).

Wang, W.-M.

Wen, H.

H. Wen and A. M. Lindenberg, “Coherent Terahertz polarization control through manipulation of Electron trajectories,” Phys. Rev. Lett. 103(2), 023902 (2009).
[CrossRef] [PubMed]

Woerner, M.

Wu, H.-C.

Xie, X.

X. Xie, J. Dai, and X.-C. Zhang, “Coherent control of THz wave generation in ambient air,” Phys. Rev. Lett. 96(7), 075005 (2006).
[CrossRef] [PubMed]

Xu, S.-Q.

Yellampalle, B.

Zhang, J.

Zhang, X.-C.

X. Lu and X.-C. Zhang, “Generation of Elliptically Polarized Terahertz Waves from Laser-Induced Plasma with Double Helix Electrodes,” Phys. Rev. Lett. 108(12), 123903 (2012).
[CrossRef] [PubMed]

J. Dai, B. Clough, I.-C. Ho, X. Lu, J. Liu, and X.-C. Zhang, “Recent Progresses in Terahertz Wave Air Photonics,” IEEE Trans. THz Sci. Tech. (Paris) 1(1), 274–281 (2011).
[CrossRef]

J. Dai, N. Karpowicz, and X.-C. Zhang, “Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma,” Phys. Rev. Lett. 103(2), 023001 (2009).
[CrossRef] [PubMed]

X. Xie, J. Dai, and X.-C. Zhang, “Coherent control of THz wave generation in ambient air,” Phys. Rev. Lett. 96(7), 075005 (2006).
[CrossRef] [PubMed]

Zhang, Y.-Z.

Zrost, K.

M. Kreß, T. Löffler, M. D. Thomson, R. Dörner, H. Gimpel, K. Zrost, T. Ergler, R. Moshammer, U. Morgner, J. Ullrich, and H. G. Roskos, “Determination of the carrier-envelope phase of few-cycle laser pulses with terahertzemission spectroscopy,” Nat. Phys. 2(5), 327–331 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

T.-J. Wang, Y. Chen, C. Marceau, F. Theberge, M. Chateauneuf, J. Dubois, and S. L. Chin, “High energy terahertz emission from two-color laser-induced filamentation in air with pump pulse duration control,” Appl. Phys. Lett. 95, 1311081/1-3 (2009).

IEEE J. Quantum Electron. (1)

K. Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, “High-power broadband terahertz generation via two-color photoionization in gases,” IEEE J. Quantum Electron. 48(6), 797–805 (2012).
[CrossRef]

IEEE Trans. THz Sci. Tech. (Paris) (1)

J. Dai, B. Clough, I.-C. Ho, X. Lu, J. Liu, and X.-C. Zhang, “Recent Progresses in Terahertz Wave Air Photonics,” IEEE Trans. THz Sci. Tech. (Paris) 1(1), 274–281 (2011).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

H. G. Roskos, M. D. Thomson, M. Kreß, and T. Löffler, “Broadband THz emission from gas plasmas induced by femtosecond optical pulses: From fundamentals to applications,” Laser Photonics Rev. 1(4), 349–368 (2007).
[CrossRef]

Nat. Photonics (1)

K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions,” Nat. Photonics 2(10), 605–609 (2008).
[CrossRef]

Nat. Phys. (1)

M. Kreß, T. Löffler, M. D. Thomson, R. Dörner, H. Gimpel, K. Zrost, T. Ergler, R. Moshammer, U. Morgner, J. Ullrich, and H. G. Roskos, “Determination of the carrier-envelope phase of few-cycle laser pulses with terahertzemission spectroscopy,” Nat. Phys. 2(5), 327–331 (2006).
[CrossRef]

Opt. Express (3)

Opt. Lett. (5)

Phys. Plasmas (1)

K. Y. Kim, “Generation of coherent terahertz radiation in ultrafast laser-gas interactions,” Phys. Plasmas 16(5), 056706 (2009).
[CrossRef]

Phys. Rev. Lett. (6)

H. Wen and A. M. Lindenberg, “Coherent Terahertz polarization control through manipulation of Electron trajectories,” Phys. Rev. Lett. 103(2), 023902 (2009).
[CrossRef] [PubMed]

J. Dai, N. Karpowicz, and X.-C. Zhang, “Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma,” Phys. Rev. Lett. 103(2), 023001 (2009).
[CrossRef] [PubMed]

X. Xie, J. Dai, and X.-C. Zhang, “Coherent control of THz wave generation in ambient air,” Phys. Rev. Lett. 96(7), 075005 (2006).
[CrossRef] [PubMed]

V. B. Gildenburg and N. V. Vvedenskii, “Optical-to-THz wave conversion via excitation of plasma oscillations in the tunneling-ionization process,” Phys. Rev. Lett. 98(24), 245002 (2007).
[CrossRef] [PubMed]

A. A. Silaev and N. V. Vvedenskii, “Residual-current excitation in plasmas produced by few-cycle laser pulses,” Phys. Rev. Lett. 102(11), 115005 (2009).
[CrossRef] [PubMed]

X. Lu and X.-C. Zhang, “Generation of Elliptically Polarized Terahertz Waves from Laser-Induced Plasma with Double Helix Electrodes,” Phys. Rev. Lett. 108(12), 123903 (2012).
[CrossRef] [PubMed]

Sov. Phys. JETP (1)

M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64, 1191–1194 (1986).

Other (3)

Y. S. Lee, Principles of Terahertz Science and Technology (Springer, New York, 2008).

S. G. Ganichev and W. Prettl, Intense Terahertz Excitation of Semiconductors (Oxford University Press, Oxford, 2006).

L. D. Landau and E. M. Lifshitz, Quantum Mechanics, (Elsevier Science, 1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Schematic of all-in-line second harmonic and THz generation. (b) Vector diagram for fundamental (Eω) and its second harmonic (E2ω) generation before the BBO crystal and at the front end of plasma filament. ô and ê represent the ordinary and extraordinary axes of the BBO crystal respectively. Eωo and Eωe, polarized along the ordinary (ô) and extraordinary (ê) axes of the crystal.

Fig. 2
Fig. 2

2-D photoionization current producing linear fundamental field case; (a) φ = 0˚ α = 45˚, and θ = 90˚ (left) and elliptical fundamental field case; (b) φ = 210˚, α = 55˚, and θ = 20˚ at peak laser intensities of Iω = 1014 W/cm2 at λω = 800 nm and I2ω = 0.8 × 1013 W/cm2 at λ2ω = 400 nm. Over one cycle of the fundamental field (-π < ωt < π) are shown the laser fields Eωe (red solid line), Eωo (red dashed line), E (blue dotted line); ionization rate calculated by the total field (black dotted line) and electron drift velocities along the ô (red dashed line) and ê (red solid line) axes; plasma currents Jo (red dashed line) and Je (red solid line) along the ô and ê axis, respectively. The insets show the polarization diagrams of Eω (red line), E (blue line), and ETHz (black line) for the two cases.

Fig. 3
Fig. 3

(Top) Resulting |J|2 (or THz yields) as a function of θ and α (degrees) for four different φ = 0°, 45°, 90°, and 210°. (Bottom) In each 2-D simulation, the line which yields the local |J|2 maximum at a fixed θ is selected and plotted as a function of α for |Jo|2 (line with circles), |Je|2 (line with asterisks), and |J|2 (solid line).

Fig. 4
Fig. 4

Optimal α and θ values maximizing THz output for a given φ value. It considers three maximum types: |Jo|2 (red dashed line), |Je|2 (red solid line), and |J|2 (blue solid line). This shows the total THz radiation (or |J|2) peaks at φ = 30°, 150°, 210°, and 330° and at α ~55°.

Fig. 5
Fig. 5

Schematic setup for THz generation and detection. The far-field THz yield and polarization is measured with a pyroelectric detector combined with a wire-grid polarizer and filters (Teflon, HDPE, Sapphire, or Ge). THz output is controlled by varying the distant from BBO to filament (d), azimuthal angle of BBO (α), tilt angle of BBO (β), and tit angle of lens (γ).

Fig. 6
Fig. 6

(a) Measured THz yield dependence on the relative phase (φ) obtained with various THz filters: Si (black solid line), Ge (blue dotted line), Sapphire (magenta line with circles), HDPE (green line with x), and Teflon (red dashed line), in addition to the Si filter. Here, the Sapphire, HDPE, and Teflon signal is rescaled by a multiplication factor of 2, 4 and 8, respectively. (Inset) THz polarization map obtained at d = 10, 11 and 12 cm with using a grid polarizer combined with the Si and Teflon. (b) Simulated THz yields with varying θ for the total (blue line), ô-polarized (red dashed line), ê-polarized (green dotted line) THz yields. In the simulation, φ = 210° (or β = 1°) and α = 55° are assumed.

Fig. 7
Fig. 7

(a) THz yields as a function of α angle at β = 0° (black line with + ) and β = 1° (dashed red line). Co-plotted is the second harmonic intensity (blue line). (b-c) Fundamental (ω, red line), second harmonic (2ω, blue line with + ), and THz (black line with circles) polarization maps obtained with rotating the polarization analyzer at β = 0° and 1°. Unlike 2ω, ω polarization is dependent on the tilt angle β.

Fig. 8
Fig. 8

Simulated φ value (blue line) as a function of (a) the BBO effective thickness in μm and (b) β in degrees. Co-plotted in (b) is the second harmonic intensity (green dashed line) produced by type-I phase-matching as a function of β. At β = 1°, φ ~220°.

Fig. 9
Fig. 9

THz emission as a function of the BBO-to-plasma distance d with three different plasma lengths, 12 mm (line with + ), 14 mm (line with circles), and 16 mm (line with squares) with (a) the Ge filter for high frequency (<10 THz) detection and (b) the Teflon filter for low frequency (0.1 ~3 THz) detection.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E ωo = E ω sin(α), E ωe = E ω cos(α), E 2ω = d eff ( E ω ) 2 sin 2 (α),
E L = E ωe cos(ωt) e ^ + E ωo cos(ωt+φ) o ^ + E 2ω cos(2ωt+θ) e ^ ,
ϕ=ω( n ωe n ωo )l/c, θ=ω( n ω n 2ω )d/c+ θ 0 ,
w(t)=4 ω a ( E a E L (t) )exp( 2 3 E a E L (t) ),
J(t)= ev(t, t )d N e ( t ) and v(t)=(e/ m e ) t t E L (t) dt

Metrics