Abstract

In auto-stereoscopic multi-views 3D display systems, the crosstalk and low resolution become problems for taking a clear depth image with the sufficient motion parallax. To solve these problems, we propose the projection-type auto-stereoscopic multi-view 3D display system, in which the hybrid optical system with the lenticular-parallax barrier and multi projectors. Condensing width of the projected unit-pixel image within the lenslet by hybrid optics is the core concept in this proposal. As the result, the point crosstalk is improved 53% and resolution is increased up to 5 times.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Okoshi, “Three-dimensional displays,” Proc. IEEE68(5), 548–564 (1980).
    [CrossRef]
  2. N. A. Dodgson, “Autostereoscopic 3D displays,” Computer38(8), 31–36 (2005).
    [CrossRef]
  3. J.-Y. Son, V. V. Saveljev, J.-S. Kim, K.-D. Kwack, and S.-K. Kim, “Multiview image acquisition and display,” J. Display Tech. 2(4), 359–363 (2006).
  4. J.-Y. Son, “Autostereoscopic imaging system based on special optical plates,” in Three-Dimensional Television, Video, and Display Technology B. Javidi and F. Okano, ed.(Springer, New York, 2002).
  5. T. Peterka, R. L. Kooima, D. J. Sandin, A. Johnson, J. Leigh, and T. A. DeFanti, “Advances in the Dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system,” IEEE Trans. Vis. Comput. Graph.14(3), 487–499 (2008).
    [CrossRef] [PubMed]
  6. J.-Y. Son, V. V. Saveljev, Y.-J. Choi, J.-E. Bahn, and H.-H. Choi, “Parameters for designing autostereoscopic imaging systems based on lenticular, parallax barrier and IP plates,” Opt. Eng.42, 3326–3333 (2003).
  7. Y. Takaki, O. Yokoyama, and G. Hamagishi, “Flat-panel display with slanted pixel arrangement for 16-view display,” Proc. SPIE7237, 08–1–8 (2009).
  8. T. Okoshi, “Optimum Design and Depth Resolution of Lens-Sheet and Projection- type Three dimensional Displays,” Appl. Opt.10(10), 2284–2291 (1971).
  9. H. Liao, M. Iwahara, N. Hata, and T. Dohi, “High quality integral videography by using a multi-projector,” Opt. Express 12(6), 1067–1076 (2004).
    [CrossRef]
  10. T. Okoshi, 3 Dimensional Imaging Techniques (New York: Academic, 1976), ch. 2, 8–42.
  11. T. Nagoya, T. Kozakai, T. Suzuki, M. Furuya, and K. Iwase, “The D-ILA device for the world’s highest definition (8K4K) projection systems,” Proc. IDW’08, 203–206 (2008).
  12. Y. Kusakabe, M. Kanazawa, Y. Nojiri, M. Furuya, and M. Yoshimura, “A high dynamic range and high resolution projector with dual modulation,” Proc. SPIE7241, 72410Q, 72410Q-11 (2009).
    [CrossRef]
  13. Y.-H. Tao, Q.-H. Wang, J. Gu, W.-X. Zhao, and D.-H. Li, “Autostereoscopic three-dimensional projector based on two parallax barriers,” Opt. Lett.34(20), 3220–3222 (2009).
    [CrossRef] [PubMed]
  14. C.-H. Lee, G.-W. Seo, J.-H. Lee, T.-H. Han, and J.-G. Park, “Auto-stereoscopic 3D displays with reduced crosstalk,” Opt. Express19(24), 24762–24774 (2011).
    [CrossRef] [PubMed]
  15. W.-X. Zhao, Q.-H. Wang, A.-H. Wang, and D.-H. Li, “Autostereoscopic display based on two-layer lenticular lenses,” Opt. Lett.35(24), 4127–4129 (2010).
    [CrossRef] [PubMed]

2011

2010

2009

Y. Kusakabe, M. Kanazawa, Y. Nojiri, M. Furuya, and M. Yoshimura, “A high dynamic range and high resolution projector with dual modulation,” Proc. SPIE7241, 72410Q, 72410Q-11 (2009).
[CrossRef]

Y.-H. Tao, Q.-H. Wang, J. Gu, W.-X. Zhao, and D.-H. Li, “Autostereoscopic three-dimensional projector based on two parallax barriers,” Opt. Lett.34(20), 3220–3222 (2009).
[CrossRef] [PubMed]

Y. Takaki, O. Yokoyama, and G. Hamagishi, “Flat-panel display with slanted pixel arrangement for 16-view display,” Proc. SPIE7237, 08–1–8 (2009).

2008

T. Peterka, R. L. Kooima, D. J. Sandin, A. Johnson, J. Leigh, and T. A. DeFanti, “Advances in the Dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system,” IEEE Trans. Vis. Comput. Graph.14(3), 487–499 (2008).
[CrossRef] [PubMed]

2006

J.-Y. Son, V. V. Saveljev, J.-S. Kim, K.-D. Kwack, and S.-K. Kim, “Multiview image acquisition and display,” J. Display Tech. 2(4), 359–363 (2006).

2005

N. A. Dodgson, “Autostereoscopic 3D displays,” Computer38(8), 31–36 (2005).
[CrossRef]

2004

2003

J.-Y. Son, V. V. Saveljev, Y.-J. Choi, J.-E. Bahn, and H.-H. Choi, “Parameters for designing autostereoscopic imaging systems based on lenticular, parallax barrier and IP plates,” Opt. Eng.42, 3326–3333 (2003).

1980

T. Okoshi, “Three-dimensional displays,” Proc. IEEE68(5), 548–564 (1980).
[CrossRef]

1971

Bahn, J.-E.

J.-Y. Son, V. V. Saveljev, Y.-J. Choi, J.-E. Bahn, and H.-H. Choi, “Parameters for designing autostereoscopic imaging systems based on lenticular, parallax barrier and IP plates,” Opt. Eng.42, 3326–3333 (2003).

Choi, H.-H.

J.-Y. Son, V. V. Saveljev, Y.-J. Choi, J.-E. Bahn, and H.-H. Choi, “Parameters for designing autostereoscopic imaging systems based on lenticular, parallax barrier and IP plates,” Opt. Eng.42, 3326–3333 (2003).

Choi, Y.-J.

J.-Y. Son, V. V. Saveljev, Y.-J. Choi, J.-E. Bahn, and H.-H. Choi, “Parameters for designing autostereoscopic imaging systems based on lenticular, parallax barrier and IP plates,” Opt. Eng.42, 3326–3333 (2003).

DeFanti, T. A.

T. Peterka, R. L. Kooima, D. J. Sandin, A. Johnson, J. Leigh, and T. A. DeFanti, “Advances in the Dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system,” IEEE Trans. Vis. Comput. Graph.14(3), 487–499 (2008).
[CrossRef] [PubMed]

Dodgson, N. A.

N. A. Dodgson, “Autostereoscopic 3D displays,” Computer38(8), 31–36 (2005).
[CrossRef]

Dohi, T.

Furuya, M.

Y. Kusakabe, M. Kanazawa, Y. Nojiri, M. Furuya, and M. Yoshimura, “A high dynamic range and high resolution projector with dual modulation,” Proc. SPIE7241, 72410Q, 72410Q-11 (2009).
[CrossRef]

Gu, J.

Hamagishi, G.

Y. Takaki, O. Yokoyama, and G. Hamagishi, “Flat-panel display with slanted pixel arrangement for 16-view display,” Proc. SPIE7237, 08–1–8 (2009).

Han, T.-H.

Hata, N.

Iwahara, M.

Johnson, A.

T. Peterka, R. L. Kooima, D. J. Sandin, A. Johnson, J. Leigh, and T. A. DeFanti, “Advances in the Dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system,” IEEE Trans. Vis. Comput. Graph.14(3), 487–499 (2008).
[CrossRef] [PubMed]

Kanazawa, M.

Y. Kusakabe, M. Kanazawa, Y. Nojiri, M. Furuya, and M. Yoshimura, “A high dynamic range and high resolution projector with dual modulation,” Proc. SPIE7241, 72410Q, 72410Q-11 (2009).
[CrossRef]

Kim, J.-S.

J.-Y. Son, V. V. Saveljev, J.-S. Kim, K.-D. Kwack, and S.-K. Kim, “Multiview image acquisition and display,” J. Display Tech. 2(4), 359–363 (2006).

Kim, S.-K.

J.-Y. Son, V. V. Saveljev, J.-S. Kim, K.-D. Kwack, and S.-K. Kim, “Multiview image acquisition and display,” J. Display Tech. 2(4), 359–363 (2006).

Kooima, R. L.

T. Peterka, R. L. Kooima, D. J. Sandin, A. Johnson, J. Leigh, and T. A. DeFanti, “Advances in the Dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system,” IEEE Trans. Vis. Comput. Graph.14(3), 487–499 (2008).
[CrossRef] [PubMed]

Kusakabe, Y.

Y. Kusakabe, M. Kanazawa, Y. Nojiri, M. Furuya, and M. Yoshimura, “A high dynamic range and high resolution projector with dual modulation,” Proc. SPIE7241, 72410Q, 72410Q-11 (2009).
[CrossRef]

Kwack, K.-D.

J.-Y. Son, V. V. Saveljev, J.-S. Kim, K.-D. Kwack, and S.-K. Kim, “Multiview image acquisition and display,” J. Display Tech. 2(4), 359–363 (2006).

Lee, C.-H.

Lee, J.-H.

Leigh, J.

T. Peterka, R. L. Kooima, D. J. Sandin, A. Johnson, J. Leigh, and T. A. DeFanti, “Advances in the Dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system,” IEEE Trans. Vis. Comput. Graph.14(3), 487–499 (2008).
[CrossRef] [PubMed]

Li, D.-H.

Liao, H.

Nojiri, Y.

Y. Kusakabe, M. Kanazawa, Y. Nojiri, M. Furuya, and M. Yoshimura, “A high dynamic range and high resolution projector with dual modulation,” Proc. SPIE7241, 72410Q, 72410Q-11 (2009).
[CrossRef]

Okoshi, T.

Park, J.-G.

Peterka, T.

T. Peterka, R. L. Kooima, D. J. Sandin, A. Johnson, J. Leigh, and T. A. DeFanti, “Advances in the Dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system,” IEEE Trans. Vis. Comput. Graph.14(3), 487–499 (2008).
[CrossRef] [PubMed]

Sandin, D. J.

T. Peterka, R. L. Kooima, D. J. Sandin, A. Johnson, J. Leigh, and T. A. DeFanti, “Advances in the Dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system,” IEEE Trans. Vis. Comput. Graph.14(3), 487–499 (2008).
[CrossRef] [PubMed]

Saveljev, V. V.

J.-Y. Son, V. V. Saveljev, J.-S. Kim, K.-D. Kwack, and S.-K. Kim, “Multiview image acquisition and display,” J. Display Tech. 2(4), 359–363 (2006).

J.-Y. Son, V. V. Saveljev, Y.-J. Choi, J.-E. Bahn, and H.-H. Choi, “Parameters for designing autostereoscopic imaging systems based on lenticular, parallax barrier and IP plates,” Opt. Eng.42, 3326–3333 (2003).

Seo, G.-W.

Son, J.-Y.

J.-Y. Son, V. V. Saveljev, J.-S. Kim, K.-D. Kwack, and S.-K. Kim, “Multiview image acquisition and display,” J. Display Tech. 2(4), 359–363 (2006).

J.-Y. Son, V. V. Saveljev, Y.-J. Choi, J.-E. Bahn, and H.-H. Choi, “Parameters for designing autostereoscopic imaging systems based on lenticular, parallax barrier and IP plates,” Opt. Eng.42, 3326–3333 (2003).

Takaki, Y.

Y. Takaki, O. Yokoyama, and G. Hamagishi, “Flat-panel display with slanted pixel arrangement for 16-view display,” Proc. SPIE7237, 08–1–8 (2009).

Tao, Y.-H.

Wang, A.-H.

Wang, Q.-H.

Yokoyama, O.

Y. Takaki, O. Yokoyama, and G. Hamagishi, “Flat-panel display with slanted pixel arrangement for 16-view display,” Proc. SPIE7237, 08–1–8 (2009).

Yoshimura, M.

Y. Kusakabe, M. Kanazawa, Y. Nojiri, M. Furuya, and M. Yoshimura, “A high dynamic range and high resolution projector with dual modulation,” Proc. SPIE7241, 72410Q, 72410Q-11 (2009).
[CrossRef]

Zhao, W.-X.

Appl. Opt.

Computer

N. A. Dodgson, “Autostereoscopic 3D displays,” Computer38(8), 31–36 (2005).
[CrossRef]

IEEE Trans. Vis. Comput. Graph.

T. Peterka, R. L. Kooima, D. J. Sandin, A. Johnson, J. Leigh, and T. A. DeFanti, “Advances in the Dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system,” IEEE Trans. Vis. Comput. Graph.14(3), 487–499 (2008).
[CrossRef] [PubMed]

J. Display Tech.

J.-Y. Son, V. V. Saveljev, J.-S. Kim, K.-D. Kwack, and S.-K. Kim, “Multiview image acquisition and display,” J. Display Tech. 2(4), 359–363 (2006).

Opt. Eng.

J.-Y. Son, V. V. Saveljev, Y.-J. Choi, J.-E. Bahn, and H.-H. Choi, “Parameters for designing autostereoscopic imaging systems based on lenticular, parallax barrier and IP plates,” Opt. Eng.42, 3326–3333 (2003).

Opt. Express

Opt. Express

Opt. Lett.

Proc. IEEE

T. Okoshi, “Three-dimensional displays,” Proc. IEEE68(5), 548–564 (1980).
[CrossRef]

Proc. SPIE

Y. Kusakabe, M. Kanazawa, Y. Nojiri, M. Furuya, and M. Yoshimura, “A high dynamic range and high resolution projector with dual modulation,” Proc. SPIE7241, 72410Q, 72410Q-11 (2009).
[CrossRef]

Y. Takaki, O. Yokoyama, and G. Hamagishi, “Flat-panel display with slanted pixel arrangement for 16-view display,” Proc. SPIE7237, 08–1–8 (2009).

Other

J.-Y. Son, “Autostereoscopic imaging system based on special optical plates,” in Three-Dimensional Television, Video, and Display Technology B. Javidi and F. Okano, ed.(Springer, New York, 2002).

T. Okoshi, 3 Dimensional Imaging Techniques (New York: Academic, 1976), ch. 2, 8–42.

T. Nagoya, T. Kozakai, T. Suzuki, M. Furuya, and K. Iwase, “The D-ILA device for the world’s highest definition (8K4K) projection systems,” Proc. IDW’08, 203–206 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

The proposed projection auto-stereoscopic 3D display system and the viewing zones in the case of a stereo image.

Fig. 2
Fig. 2

The results of convolution under two conditions for the pixel width: (a) h(x) = f(x), (b) h(x) = f(0.1 x).

Fig. 3
Fig. 3

The geometrical diagram of relation between the equidistance condition of the P2 according to the number of projectors and the outermost interval between the centers of projection lenses of projectors. The center positions of the P2 within lenslet pitch are satisfied I = 1/2, 1/3, and 2/5, respectively, when the number of total projectors is considered 1, 3, and 5.

Fig. 4
Fig. 4

(a) Cross-section of 25 LPI lenticular-lens sheet used in the experiment (b) The width (P1 = P = 1.016mm) of pixel with the light source P1 measured on the screen located at the projection distance S0. (c) The width of pixel with the light source P2 (P2 = 0.19mm) reduced through the 25 LPI lenslet.

Fig. 5
Fig. 5

The experiment configuration for the analysis of crosstalk by the light sources P1 and P2. (a) The image characteristic measured by penetration of image with the light source P1 width 1.016 mm through the only parallax barrier plate. (b) The image characteristics measured by penetration of the image with the light source P2 width 0.19 mm through the hybrid lenticular-parallax type optical system

Fig. 6
Fig. 6

For the light source P1, the viewing zone distribution with five viewpoint images measured from the observer position(S = 1,100 mm) and predicted by the simulation.

Fig. 7
Fig. 7

The PC from Fig. 6. In experiments, the minimum PC between the viewpoints is about 20%, which is assumable because of the noise of detector and the ambient-light.

Fig. 8
Fig. 8

The measurement of viewing zone distribution for five viewpoints formed by the light source P2 together with the simulation result.

Fig. 9
Fig. 9

The PC from Fig. 8. The minimum PC between the viewpoints is around 20%, which is believed to be caused by either the ambient-light or the noise of the detector.

Fig. 10
Fig. 10

(a) The configuration of the 42-inch system. (b) The measured image with the light source P1. (c) The measured image with the light source P2.

Fig. 11
Fig. 11

The measured image of the center positions of the light sources P2 that satisfy (a) I = 1/2, (b) I = 1/3, and (c) I = 2/5, respectively, when the number of total projectors is 1, 3, and 5.

Fig. 12
Fig. 12

The simulated encircled energy distribution on the cross-section of the effective pixel image formed through the lenticular sheet with the thickness 3.6 mm. This is to be the evidence why the experiment result of the unit viewing zone has a unique form as seen in the Fig. 8.

Tables (1)

Tables Icon

Table1 The table of optical properties for lenticular lens sheet, lenslet and light source used in the experiment.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

( fh )( y )= f( x )h( yx ) dx= f( yx )h( x )dx
d= S P 1 G j+1 G j = S P 1 BD
A= S P 1 S+d
B= S P 1 ( j max 1 ) ( S+d )
E h,j,m =L ( P 1,2 k ) cos 2 [ tan 1 [ X h,j,m S+d ] ] ( S+d ) 2 + X h,j,m 2
PC=[ j E h,j,m E h,j,m E h,j,m ×100% ]
ID= S o tan[ sin 1 [ ( n d n m )sin[ tan 1 ( IP t ) ] ] ]

Metrics