Abstract

We propose an amplified all-optical polarization phase modulator assisted by a local surface plasmon in Au-hybrid CdSe quantum dots. When the local surface plasmon of a spherical Au quantum dot is in resonance with the exciton energy level of a CdSe quantum dot, a significant enhancement of the linear and nonlinear refractive index is found in both the real and imaginary terms via the interaction with the dipole field of the local surface plasmon. Given a gating pulse intensity, an elliptical polarization induced by the phase retardation is described in terms of elliptical and rotational angles. In the case that a larger excitation than the bleaching intensity is applied, the signal light can be amplified due to the presence of gain in the CdSe quantum dot. This enables a longer propagation of the signal light relative to the metal loss, resulting in more feasible polarization modulation.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. I. Klimov, Nanocrystal Quantum Dots, 2nd ed. (CRS press Taylor & Francis Group, 2010).
    [CrossRef]
  2. J. Zhang, Y. Tang, K. Lee, and M. Ouyang, “Tayloring light-matter-spin interactions in colloidal heterostructures,” Nature466, 91–95 (2010).
    [CrossRef] [PubMed]
  3. D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nature Photon.1, 402–406 (2007).
    [CrossRef]
  4. J. B. Lee and N. A. Kotov, “Thermometer design at the nanoscale,” Nano Today2, 48–51 (2007).
    [CrossRef]
  5. A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett.6, 984–994 (2006).
    [CrossRef]
  6. W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-Metal nanoparticle molecule: hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett.97, 146804 (2006).
    [CrossRef] [PubMed]
  7. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nature Mater.3, 601–605 (2004).
    [CrossRef]
  8. K. Okamoto, S. Vyawahare, and A. Schere, “Surface-plasmon enhanced bright emission from CdSe quantum-dot nanocrystals,” J. Opt. Soc. Am. B23, 1674–1678 (2006).
    [CrossRef]
  9. O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, “Enhanced luminescence of CdSe quantum dots on gold colloids,” Nano Lett.2, 1449–1452 (2002).
    [CrossRef]
  10. Y. Ito, K. Matsuda, and Y. Kanemitsu, “Mechanism of photoluminescence enhancement in single semiconductor nanocrystals on metal surface,” Phys. Rev. B75, 033309 (2007).
    [CrossRef]
  11. D. E. Gomez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett.10, 274–278 (2010).
    [CrossRef]
  12. C. W. Chen, C. H. Wang, C. C. Cheng, C. M. Wei, and Y. F. Chen, “Surface plasmon induced optical anisotropy of CdSe quantum dots on well-aligned gold nanorods grating,” J. Phys. Chem.C115, 1520–1523 (2011).
  13. M. I. Stockman, “Spasers explained,” Nat. Photonics2, 327–329 (2008).
    [CrossRef]
  14. M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett.101, 226806 (2008).
    [CrossRef] [PubMed]
  15. A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, “Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states,” Phys. Rev. B54, 4843–4856 (1996).
    [CrossRef]
  16. K. C. Je, I. Shin, J. H. Kim, and K. Kyhm, “Optical nonlinearities of fine exciton states in a CdSe quantum dot,” Appl. Phys. Lett.97, 103110 (2010).
    [CrossRef]
  17. H. Htoon, M. Furis, S. A. Crooker, S. Jeong, and V. I. Klimov, “Linearly polarized ‘fine structure’ of the bright exciton state in individual CdSe nanocrystal quantum dots,” Phys. Rev. B77, 035328 (2008).
    [CrossRef]
  18. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single molecule fluorescence,” Phys. Rev. Lett.96, 113002 (2006).
    [CrossRef] [PubMed]
  19. A. M. Munro, B. Zacher, A. Graham, and N. R. Amstrong, “Photoemission spectroscopy of tethered CdSe nanocrystals: shifts in ionization potential and local vacuum level as a function of nanocrystal capping ligand,” ACS Appl. Mat. Interfaces2, 863–869 (2010).
    [CrossRef]
  20. E. Marx, D. S. Ginger, K. Walzer, K. Stokbro, and N. C. Greenham, “Self-assembled monolayers of CdSe nanocrystals on doped GaAs substrates,” Nano Lett.2, 911–914 (2002).
    [CrossRef]
  21. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
    [CrossRef]
  22. A. Trügler, Strong Coupling between a Metallic Nanoparticle and a Single Molecule, Diplomarbeit Thesis (Karl-Franzens Universität Graz, 2007).
  23. H. Haug and S. W. Koch, Quantum Theory of the Optical and Electric Properties of Semiconductors, 4th ed. (World Scientific, 2004).
  24. M. Hawton and D. Nelson, “Quasibosonic exciton dynamics near the semiconductor band ege,” Phys. Rev. B57, 4000–4008 (1998).
    [CrossRef]
  25. The asymmetric absorption spectrum is also obtained for increasing the excitation as the nonlinear Fano effect in [6]
  26. A. Greilich, M. Schwab, T. Berstermann, T. Auer, R. Oulton, D. R. Yakovlev, M. Bayer, V. Stavarache, D. Reuter, and A. Wieck, “Tailored quantum dots for entangled photon pair creation,” Phys. Rev. B73, 045323 (2006).
    [CrossRef]
  27. R. R. Cooney, S. L. Sewall, D. M. Sagar, and P. Kambhampati, “Gain control in semiconductor quantum dots via state-resolved optical pumping,” Phys. Rev. Lett.102, 127404 (2009).
    [CrossRef] [PubMed]
  28. P. Kambhampati, “Multiexcitons in semiconductor nanocrystals: a platform for optoelectronics at high carrier concentration,” J. Phys. Chem. Lett.3(9), 1182–1190 (2012).
    [CrossRef]
  29. J. Kim, J. Lee, and K. Kyhm, “Surface-plasmon-assisted modal gain enhancement in Au-hybrid CdSe/ZnS nanocrystal quantum dots,” Appl. Phys. Lett.99, 213112 (2011).
    [CrossRef]

2012

P. Kambhampati, “Multiexcitons in semiconductor nanocrystals: a platform for optoelectronics at high carrier concentration,” J. Phys. Chem. Lett.3(9), 1182–1190 (2012).
[CrossRef]

2011

J. Kim, J. Lee, and K. Kyhm, “Surface-plasmon-assisted modal gain enhancement in Au-hybrid CdSe/ZnS nanocrystal quantum dots,” Appl. Phys. Lett.99, 213112 (2011).
[CrossRef]

C. W. Chen, C. H. Wang, C. C. Cheng, C. M. Wei, and Y. F. Chen, “Surface plasmon induced optical anisotropy of CdSe quantum dots on well-aligned gold nanorods grating,” J. Phys. Chem.C115, 1520–1523 (2011).

2010

K. C. Je, I. Shin, J. H. Kim, and K. Kyhm, “Optical nonlinearities of fine exciton states in a CdSe quantum dot,” Appl. Phys. Lett.97, 103110 (2010).
[CrossRef]

A. M. Munro, B. Zacher, A. Graham, and N. R. Amstrong, “Photoemission spectroscopy of tethered CdSe nanocrystals: shifts in ionization potential and local vacuum level as a function of nanocrystal capping ligand,” ACS Appl. Mat. Interfaces2, 863–869 (2010).
[CrossRef]

J. Zhang, Y. Tang, K. Lee, and M. Ouyang, “Tayloring light-matter-spin interactions in colloidal heterostructures,” Nature466, 91–95 (2010).
[CrossRef] [PubMed]

D. E. Gomez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett.10, 274–278 (2010).
[CrossRef]

2009

R. R. Cooney, S. L. Sewall, D. M. Sagar, and P. Kambhampati, “Gain control in semiconductor quantum dots via state-resolved optical pumping,” Phys. Rev. Lett.102, 127404 (2009).
[CrossRef] [PubMed]

2008

H. Htoon, M. Furis, S. A. Crooker, S. Jeong, and V. I. Klimov, “Linearly polarized ‘fine structure’ of the bright exciton state in individual CdSe nanocrystal quantum dots,” Phys. Rev. B77, 035328 (2008).
[CrossRef]

M. I. Stockman, “Spasers explained,” Nat. Photonics2, 327–329 (2008).
[CrossRef]

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett.101, 226806 (2008).
[CrossRef] [PubMed]

2007

Y. Ito, K. Matsuda, and Y. Kanemitsu, “Mechanism of photoluminescence enhancement in single semiconductor nanocrystals on metal surface,” Phys. Rev. B75, 033309 (2007).
[CrossRef]

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nature Photon.1, 402–406 (2007).
[CrossRef]

J. B. Lee and N. A. Kotov, “Thermometer design at the nanoscale,” Nano Today2, 48–51 (2007).
[CrossRef]

2006

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett.6, 984–994 (2006).
[CrossRef]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-Metal nanoparticle molecule: hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett.97, 146804 (2006).
[CrossRef] [PubMed]

K. Okamoto, S. Vyawahare, and A. Schere, “Surface-plasmon enhanced bright emission from CdSe quantum-dot nanocrystals,” J. Opt. Soc. Am. B23, 1674–1678 (2006).
[CrossRef]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single molecule fluorescence,” Phys. Rev. Lett.96, 113002 (2006).
[CrossRef] [PubMed]

A. Greilich, M. Schwab, T. Berstermann, T. Auer, R. Oulton, D. R. Yakovlev, M. Bayer, V. Stavarache, D. Reuter, and A. Wieck, “Tailored quantum dots for entangled photon pair creation,” Phys. Rev. B73, 045323 (2006).
[CrossRef]

2004

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nature Mater.3, 601–605 (2004).
[CrossRef]

2002

O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, “Enhanced luminescence of CdSe quantum dots on gold colloids,” Nano Lett.2, 1449–1452 (2002).
[CrossRef]

E. Marx, D. S. Ginger, K. Walzer, K. Stokbro, and N. C. Greenham, “Self-assembled monolayers of CdSe nanocrystals on doped GaAs substrates,” Nano Lett.2, 911–914 (2002).
[CrossRef]

1998

M. Hawton and D. Nelson, “Quasibosonic exciton dynamics near the semiconductor band ege,” Phys. Rev. B57, 4000–4008 (1998).
[CrossRef]

1996

A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, “Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states,” Phys. Rev. B54, 4843–4856 (1996).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Amstrong, N. R.

A. M. Munro, B. Zacher, A. Graham, and N. R. Amstrong, “Photoemission spectroscopy of tethered CdSe nanocrystals: shifts in ionization potential and local vacuum level as a function of nanocrystal capping ligand,” ACS Appl. Mat. Interfaces2, 863–869 (2010).
[CrossRef]

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single molecule fluorescence,” Phys. Rev. Lett.96, 113002 (2006).
[CrossRef] [PubMed]

Artemyev, M.

O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, “Enhanced luminescence of CdSe quantum dots on gold colloids,” Nano Lett.2, 1449–1452 (2002).
[CrossRef]

Atwater, H. A.

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nature Photon.1, 402–406 (2007).
[CrossRef]

Auer, T.

A. Greilich, M. Schwab, T. Berstermann, T. Auer, R. Oulton, D. R. Yakovlev, M. Bayer, V. Stavarache, D. Reuter, and A. Wieck, “Tailored quantum dots for entangled photon pair creation,” Phys. Rev. B73, 045323 (2006).
[CrossRef]

Bawendi, M.

A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, “Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states,” Phys. Rev. B54, 4843–4856 (1996).
[CrossRef]

Bayer, M.

A. Greilich, M. Schwab, T. Berstermann, T. Auer, R. Oulton, D. R. Yakovlev, M. Bayer, V. Stavarache, D. Reuter, and A. Wieck, “Tailored quantum dots for entangled photon pair creation,” Phys. Rev. B73, 045323 (2006).
[CrossRef]

Berstermann, T.

A. Greilich, M. Schwab, T. Berstermann, T. Auer, R. Oulton, D. R. Yakovlev, M. Bayer, V. Stavarache, D. Reuter, and A. Wieck, “Tailored quantum dots for entangled photon pair creation,” Phys. Rev. B73, 045323 (2006).
[CrossRef]

Bharadwaj, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single molecule fluorescence,” Phys. Rev. Lett.96, 113002 (2006).
[CrossRef] [PubMed]

Bryant, G. W.

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett.6, 984–994 (2006).
[CrossRef]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-Metal nanoparticle molecule: hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett.97, 146804 (2006).
[CrossRef] [PubMed]

Chen, C. W.

C. W. Chen, C. H. Wang, C. C. Cheng, C. M. Wei, and Y. F. Chen, “Surface plasmon induced optical anisotropy of CdSe quantum dots on well-aligned gold nanorods grating,” J. Phys. Chem.C115, 1520–1523 (2011).

Chen, Y. F.

C. W. Chen, C. H. Wang, C. C. Cheng, C. M. Wei, and Y. F. Chen, “Surface plasmon induced optical anisotropy of CdSe quantum dots on well-aligned gold nanorods grating,” J. Phys. Chem.C115, 1520–1523 (2011).

Cheng, C. C.

C. W. Chen, C. H. Wang, C. C. Cheng, C. M. Wei, and Y. F. Chen, “Surface plasmon induced optical anisotropy of CdSe quantum dots on well-aligned gold nanorods grating,” J. Phys. Chem.C115, 1520–1523 (2011).

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Cooney, R. R.

R. R. Cooney, S. L. Sewall, D. M. Sagar, and P. Kambhampati, “Gain control in semiconductor quantum dots via state-resolved optical pumping,” Phys. Rev. Lett.102, 127404 (2009).
[CrossRef] [PubMed]

Crooker, S. A.

H. Htoon, M. Furis, S. A. Crooker, S. Jeong, and V. I. Klimov, “Linearly polarized ‘fine structure’ of the bright exciton state in individual CdSe nanocrystal quantum dots,” Phys. Rev. B77, 035328 (2008).
[CrossRef]

Davis, T. J.

D. E. Gomez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett.10, 274–278 (2010).
[CrossRef]

Efros, A. L.

A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, “Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states,” Phys. Rev. B54, 4843–4856 (1996).
[CrossRef]

Furis, M.

H. Htoon, M. Furis, S. A. Crooker, S. Jeong, and V. I. Klimov, “Linearly polarized ‘fine structure’ of the bright exciton state in individual CdSe nanocrystal quantum dots,” Phys. Rev. B77, 035328 (2008).
[CrossRef]

Gaponenko, S.

O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, “Enhanced luminescence of CdSe quantum dots on gold colloids,” Nano Lett.2, 1449–1452 (2002).
[CrossRef]

Ginger, D. S.

E. Marx, D. S. Ginger, K. Walzer, K. Stokbro, and N. C. Greenham, “Self-assembled monolayers of CdSe nanocrystals on doped GaAs substrates,” Nano Lett.2, 911–914 (2002).
[CrossRef]

Gomez, D. E.

D. E. Gomez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett.10, 274–278 (2010).
[CrossRef]

Govorov, A. O.

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-Metal nanoparticle molecule: hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett.97, 146804 (2006).
[CrossRef] [PubMed]

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett.6, 984–994 (2006).
[CrossRef]

Graham, A.

A. M. Munro, B. Zacher, A. Graham, and N. R. Amstrong, “Photoemission spectroscopy of tethered CdSe nanocrystals: shifts in ionization potential and local vacuum level as a function of nanocrystal capping ligand,” ACS Appl. Mat. Interfaces2, 863–869 (2010).
[CrossRef]

Greenham, N. C.

E. Marx, D. S. Ginger, K. Walzer, K. Stokbro, and N. C. Greenham, “Self-assembled monolayers of CdSe nanocrystals on doped GaAs substrates,” Nano Lett.2, 911–914 (2002).
[CrossRef]

Greilich, A.

A. Greilich, M. Schwab, T. Berstermann, T. Auer, R. Oulton, D. R. Yakovlev, M. Bayer, V. Stavarache, D. Reuter, and A. Wieck, “Tailored quantum dots for entangled photon pair creation,” Phys. Rev. B73, 045323 (2006).
[CrossRef]

Haug, H.

H. Haug and S. W. Koch, Quantum Theory of the Optical and Electric Properties of Semiconductors, 4th ed. (World Scientific, 2004).

Hawton, M.

M. Hawton and D. Nelson, “Quasibosonic exciton dynamics near the semiconductor band ege,” Phys. Rev. B57, 4000–4008 (1998).
[CrossRef]

Htoon, H.

H. Htoon, M. Furis, S. A. Crooker, S. Jeong, and V. I. Klimov, “Linearly polarized ‘fine structure’ of the bright exciton state in individual CdSe nanocrystal quantum dots,” Phys. Rev. B77, 035328 (2008).
[CrossRef]

Ito, Y.

Y. Ito, K. Matsuda, and Y. Kanemitsu, “Mechanism of photoluminescence enhancement in single semiconductor nanocrystals on metal surface,” Phys. Rev. B75, 033309 (2007).
[CrossRef]

Je, K. C.

K. C. Je, I. Shin, J. H. Kim, and K. Kyhm, “Optical nonlinearities of fine exciton states in a CdSe quantum dot,” Appl. Phys. Lett.97, 103110 (2010).
[CrossRef]

Jeong, S.

H. Htoon, M. Furis, S. A. Crooker, S. Jeong, and V. I. Klimov, “Linearly polarized ‘fine structure’ of the bright exciton state in individual CdSe nanocrystal quantum dots,” Phys. Rev. B77, 035328 (2008).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Kambhampati, P.

P. Kambhampati, “Multiexcitons in semiconductor nanocrystals: a platform for optoelectronics at high carrier concentration,” J. Phys. Chem. Lett.3(9), 1182–1190 (2012).
[CrossRef]

R. R. Cooney, S. L. Sewall, D. M. Sagar, and P. Kambhampati, “Gain control in semiconductor quantum dots via state-resolved optical pumping,” Phys. Rev. Lett.102, 127404 (2009).
[CrossRef] [PubMed]

Kanemitsu, Y.

Y. Ito, K. Matsuda, and Y. Kanemitsu, “Mechanism of photoluminescence enhancement in single semiconductor nanocrystals on metal surface,” Phys. Rev. B75, 033309 (2007).
[CrossRef]

Kim, J.

J. Kim, J. Lee, and K. Kyhm, “Surface-plasmon-assisted modal gain enhancement in Au-hybrid CdSe/ZnS nanocrystal quantum dots,” Appl. Phys. Lett.99, 213112 (2011).
[CrossRef]

Kim, J. H.

K. C. Je, I. Shin, J. H. Kim, and K. Kyhm, “Optical nonlinearities of fine exciton states in a CdSe quantum dot,” Appl. Phys. Lett.97, 103110 (2010).
[CrossRef]

Klimov, V. I.

H. Htoon, M. Furis, S. A. Crooker, S. Jeong, and V. I. Klimov, “Linearly polarized ‘fine structure’ of the bright exciton state in individual CdSe nanocrystal quantum dots,” Phys. Rev. B77, 035328 (2008).
[CrossRef]

V. I. Klimov, Nanocrystal Quantum Dots, 2nd ed. (CRS press Taylor & Francis Group, 2010).
[CrossRef]

Koch, S. W.

H. Haug and S. W. Koch, Quantum Theory of the Optical and Electric Properties of Semiconductors, 4th ed. (World Scientific, 2004).

Kotov, N. A.

J. B. Lee and N. A. Kotov, “Thermometer design at the nanoscale,” Nano Today2, 48–51 (2007).
[CrossRef]

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett.6, 984–994 (2006).
[CrossRef]

Kulakovich, O.

O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, “Enhanced luminescence of CdSe quantum dots on gold colloids,” Nano Lett.2, 1449–1452 (2002).
[CrossRef]

Kuno, M.

A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, “Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states,” Phys. Rev. B54, 4843–4856 (1996).
[CrossRef]

Kyhm, K.

J. Kim, J. Lee, and K. Kyhm, “Surface-plasmon-assisted modal gain enhancement in Au-hybrid CdSe/ZnS nanocrystal quantum dots,” Appl. Phys. Lett.99, 213112 (2011).
[CrossRef]

K. C. Je, I. Shin, J. H. Kim, and K. Kyhm, “Optical nonlinearities of fine exciton states in a CdSe quantum dot,” Appl. Phys. Lett.97, 103110 (2010).
[CrossRef]

Lee, J.

J. Kim, J. Lee, and K. Kyhm, “Surface-plasmon-assisted modal gain enhancement in Au-hybrid CdSe/ZnS nanocrystal quantum dots,” Appl. Phys. Lett.99, 213112 (2011).
[CrossRef]

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett.6, 984–994 (2006).
[CrossRef]

Lee, J. B.

J. B. Lee and N. A. Kotov, “Thermometer design at the nanoscale,” Nano Today2, 48–51 (2007).
[CrossRef]

Lee, K.

J. Zhang, Y. Tang, K. Lee, and M. Ouyang, “Tayloring light-matter-spin interactions in colloidal heterostructures,” Nature466, 91–95 (2010).
[CrossRef] [PubMed]

Lezec, H. J.

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nature Photon.1, 402–406 (2007).
[CrossRef]

Marx, E.

E. Marx, D. S. Ginger, K. Walzer, K. Stokbro, and N. C. Greenham, “Self-assembled monolayers of CdSe nanocrystals on doped GaAs substrates,” Nano Lett.2, 911–914 (2002).
[CrossRef]

Maskevich, S.

O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, “Enhanced luminescence of CdSe quantum dots on gold colloids,” Nano Lett.2, 1449–1452 (2002).
[CrossRef]

Matsuda, K.

Y. Ito, K. Matsuda, and Y. Kanemitsu, “Mechanism of photoluminescence enhancement in single semiconductor nanocrystals on metal surface,” Phys. Rev. B75, 033309 (2007).
[CrossRef]

Mayy, M.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett.101, 226806 (2008).
[CrossRef] [PubMed]

Mukai, T.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nature Mater.3, 601–605 (2004).
[CrossRef]

Mulvaney, P.

D. E. Gomez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett.10, 274–278 (2010).
[CrossRef]

Munro, A. M.

A. M. Munro, B. Zacher, A. Graham, and N. R. Amstrong, “Photoemission spectroscopy of tethered CdSe nanocrystals: shifts in ionization potential and local vacuum level as a function of nanocrystal capping ligand,” ACS Appl. Mat. Interfaces2, 863–869 (2010).
[CrossRef]

Nabiev, I.

O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, “Enhanced luminescence of CdSe quantum dots on gold colloids,” Nano Lett.2, 1449–1452 (2002).
[CrossRef]

Naik, R.

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett.6, 984–994 (2006).
[CrossRef]

Narukawa, Y.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nature Mater.3, 601–605 (2004).
[CrossRef]

Nelson, D.

M. Hawton and D. Nelson, “Quasibosonic exciton dynamics near the semiconductor band ege,” Phys. Rev. B57, 4000–4008 (1998).
[CrossRef]

Niki, I.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nature Mater.3, 601–605 (2004).
[CrossRef]

Nirmal, M.

A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, “Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states,” Phys. Rev. B54, 4843–4856 (1996).
[CrossRef]

Noginov, M. A.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett.101, 226806 (2008).
[CrossRef] [PubMed]

Noginova, N.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett.101, 226806 (2008).
[CrossRef] [PubMed]

Norris, D. J.

A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, “Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states,” Phys. Rev. B54, 4843–4856 (1996).
[CrossRef]

Novotny, L.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single molecule fluorescence,” Phys. Rev. Lett.96, 113002 (2006).
[CrossRef] [PubMed]

Okamoto, K.

K. Okamoto, S. Vyawahare, and A. Schere, “Surface-plasmon enhanced bright emission from CdSe quantum-dot nanocrystals,” J. Opt. Soc. Am. B23, 1674–1678 (2006).
[CrossRef]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nature Mater.3, 601–605 (2004).
[CrossRef]

Oulton, R.

A. Greilich, M. Schwab, T. Berstermann, T. Auer, R. Oulton, D. R. Yakovlev, M. Bayer, V. Stavarache, D. Reuter, and A. Wieck, “Tailored quantum dots for entangled photon pair creation,” Phys. Rev. B73, 045323 (2006).
[CrossRef]

Ouyang, M.

J. Zhang, Y. Tang, K. Lee, and M. Ouyang, “Tayloring light-matter-spin interactions in colloidal heterostructures,” Nature466, 91–95 (2010).
[CrossRef] [PubMed]

Pacifici, D.

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nature Photon.1, 402–406 (2007).
[CrossRef]

Podolskiy, V. A.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett.101, 226806 (2008).
[CrossRef] [PubMed]

Reuter, D.

A. Greilich, M. Schwab, T. Berstermann, T. Auer, R. Oulton, D. R. Yakovlev, M. Bayer, V. Stavarache, D. Reuter, and A. Wieck, “Tailored quantum dots for entangled photon pair creation,” Phys. Rev. B73, 045323 (2006).
[CrossRef]

Ritzo, B. A.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett.101, 226806 (2008).
[CrossRef] [PubMed]

Rosen, M.

A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, “Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states,” Phys. Rev. B54, 4843–4856 (1996).
[CrossRef]

Sagar, D. M.

R. R. Cooney, S. L. Sewall, D. M. Sagar, and P. Kambhampati, “Gain control in semiconductor quantum dots via state-resolved optical pumping,” Phys. Rev. Lett.102, 127404 (2009).
[CrossRef] [PubMed]

Schere, A.

Scherer, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nature Mater.3, 601–605 (2004).
[CrossRef]

Schwab, M.

A. Greilich, M. Schwab, T. Berstermann, T. Auer, R. Oulton, D. R. Yakovlev, M. Bayer, V. Stavarache, D. Reuter, and A. Wieck, “Tailored quantum dots for entangled photon pair creation,” Phys. Rev. B73, 045323 (2006).
[CrossRef]

Sewall, S. L.

R. R. Cooney, S. L. Sewall, D. M. Sagar, and P. Kambhampati, “Gain control in semiconductor quantum dots via state-resolved optical pumping,” Phys. Rev. Lett.102, 127404 (2009).
[CrossRef] [PubMed]

Shin, I.

K. C. Je, I. Shin, J. H. Kim, and K. Kyhm, “Optical nonlinearities of fine exciton states in a CdSe quantum dot,” Appl. Phys. Lett.97, 103110 (2010).
[CrossRef]

Shvartser, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nature Mater.3, 601–605 (2004).
[CrossRef]

Skeini, T.

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett.6, 984–994 (2006).
[CrossRef]

Slocik, J. M.

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett.6, 984–994 (2006).
[CrossRef]

Stavarache, V.

A. Greilich, M. Schwab, T. Berstermann, T. Auer, R. Oulton, D. R. Yakovlev, M. Bayer, V. Stavarache, D. Reuter, and A. Wieck, “Tailored quantum dots for entangled photon pair creation,” Phys. Rev. B73, 045323 (2006).
[CrossRef]

Stockman, M. I.

M. I. Stockman, “Spasers explained,” Nat. Photonics2, 327–329 (2008).
[CrossRef]

Stokbro, K.

E. Marx, D. S. Ginger, K. Walzer, K. Stokbro, and N. C. Greenham, “Self-assembled monolayers of CdSe nanocrystals on doped GaAs substrates,” Nano Lett.2, 911–914 (2002).
[CrossRef]

Strekal, N.

O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, “Enhanced luminescence of CdSe quantum dots on gold colloids,” Nano Lett.2, 1449–1452 (2002).
[CrossRef]

Tang, Y.

J. Zhang, Y. Tang, K. Lee, and M. Ouyang, “Tayloring light-matter-spin interactions in colloidal heterostructures,” Nature466, 91–95 (2010).
[CrossRef] [PubMed]

Trügler, A.

A. Trügler, Strong Coupling between a Metallic Nanoparticle and a Single Molecule, Diplomarbeit Thesis (Karl-Franzens Universität Graz, 2007).

Vernon, K. C.

D. E. Gomez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett.10, 274–278 (2010).
[CrossRef]

Vyawahare, S.

Walzer, K.

E. Marx, D. S. Ginger, K. Walzer, K. Stokbro, and N. C. Greenham, “Self-assembled monolayers of CdSe nanocrystals on doped GaAs substrates,” Nano Lett.2, 911–914 (2002).
[CrossRef]

Wang, C. H.

C. W. Chen, C. H. Wang, C. C. Cheng, C. M. Wei, and Y. F. Chen, “Surface plasmon induced optical anisotropy of CdSe quantum dots on well-aligned gold nanorods grating,” J. Phys. Chem.C115, 1520–1523 (2011).

Wei, C. M.

C. W. Chen, C. H. Wang, C. C. Cheng, C. M. Wei, and Y. F. Chen, “Surface plasmon induced optical anisotropy of CdSe quantum dots on well-aligned gold nanorods grating,” J. Phys. Chem.C115, 1520–1523 (2011).

Wieck, A.

A. Greilich, M. Schwab, T. Berstermann, T. Auer, R. Oulton, D. R. Yakovlev, M. Bayer, V. Stavarache, D. Reuter, and A. Wieck, “Tailored quantum dots for entangled photon pair creation,” Phys. Rev. B73, 045323 (2006).
[CrossRef]

Woggon, U.

O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, “Enhanced luminescence of CdSe quantum dots on gold colloids,” Nano Lett.2, 1449–1452 (2002).
[CrossRef]

Yakovlev, D. R.

A. Greilich, M. Schwab, T. Berstermann, T. Auer, R. Oulton, D. R. Yakovlev, M. Bayer, V. Stavarache, D. Reuter, and A. Wieck, “Tailored quantum dots for entangled photon pair creation,” Phys. Rev. B73, 045323 (2006).
[CrossRef]

Yaroshevich, A.

O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, “Enhanced luminescence of CdSe quantum dots on gold colloids,” Nano Lett.2, 1449–1452 (2002).
[CrossRef]

Zacher, B.

A. M. Munro, B. Zacher, A. Graham, and N. R. Amstrong, “Photoemission spectroscopy of tethered CdSe nanocrystals: shifts in ionization potential and local vacuum level as a function of nanocrystal capping ligand,” ACS Appl. Mat. Interfaces2, 863–869 (2010).
[CrossRef]

Zhang, J.

J. Zhang, Y. Tang, K. Lee, and M. Ouyang, “Tayloring light-matter-spin interactions in colloidal heterostructures,” Nature466, 91–95 (2010).
[CrossRef] [PubMed]

Zhang, W.

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett.6, 984–994 (2006).
[CrossRef]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-Metal nanoparticle molecule: hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett.97, 146804 (2006).
[CrossRef] [PubMed]

Zhu, G.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett.101, 226806 (2008).
[CrossRef] [PubMed]

ACS Appl. Mat. Interfaces

A. M. Munro, B. Zacher, A. Graham, and N. R. Amstrong, “Photoemission spectroscopy of tethered CdSe nanocrystals: shifts in ionization potential and local vacuum level as a function of nanocrystal capping ligand,” ACS Appl. Mat. Interfaces2, 863–869 (2010).
[CrossRef]

Appl. Phys. Lett.

K. C. Je, I. Shin, J. H. Kim, and K. Kyhm, “Optical nonlinearities of fine exciton states in a CdSe quantum dot,” Appl. Phys. Lett.97, 103110 (2010).
[CrossRef]

J. Kim, J. Lee, and K. Kyhm, “Surface-plasmon-assisted modal gain enhancement in Au-hybrid CdSe/ZnS nanocrystal quantum dots,” Appl. Phys. Lett.99, 213112 (2011).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem.

C. W. Chen, C. H. Wang, C. C. Cheng, C. M. Wei, and Y. F. Chen, “Surface plasmon induced optical anisotropy of CdSe quantum dots on well-aligned gold nanorods grating,” J. Phys. Chem.C115, 1520–1523 (2011).

J. Phys. Chem. Lett.

P. Kambhampati, “Multiexcitons in semiconductor nanocrystals: a platform for optoelectronics at high carrier concentration,” J. Phys. Chem. Lett.3(9), 1182–1190 (2012).
[CrossRef]

Nano Lett.

D. E. Gomez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett.10, 274–278 (2010).
[CrossRef]

E. Marx, D. S. Ginger, K. Walzer, K. Stokbro, and N. C. Greenham, “Self-assembled monolayers of CdSe nanocrystals on doped GaAs substrates,” Nano Lett.2, 911–914 (2002).
[CrossRef]

O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, “Enhanced luminescence of CdSe quantum dots on gold colloids,” Nano Lett.2, 1449–1452 (2002).
[CrossRef]

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett.6, 984–994 (2006).
[CrossRef]

Nano Today

J. B. Lee and N. A. Kotov, “Thermometer design at the nanoscale,” Nano Today2, 48–51 (2007).
[CrossRef]

Nat. Photonics

M. I. Stockman, “Spasers explained,” Nat. Photonics2, 327–329 (2008).
[CrossRef]

Nature

J. Zhang, Y. Tang, K. Lee, and M. Ouyang, “Tayloring light-matter-spin interactions in colloidal heterostructures,” Nature466, 91–95 (2010).
[CrossRef] [PubMed]

Nature Mater.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nature Mater.3, 601–605 (2004).
[CrossRef]

Nature Photon.

D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nature Photon.1, 402–406 (2007).
[CrossRef]

Phys. Rev. B

Y. Ito, K. Matsuda, and Y. Kanemitsu, “Mechanism of photoluminescence enhancement in single semiconductor nanocrystals on metal surface,” Phys. Rev. B75, 033309 (2007).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, “Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states,” Phys. Rev. B54, 4843–4856 (1996).
[CrossRef]

A. Greilich, M. Schwab, T. Berstermann, T. Auer, R. Oulton, D. R. Yakovlev, M. Bayer, V. Stavarache, D. Reuter, and A. Wieck, “Tailored quantum dots for entangled photon pair creation,” Phys. Rev. B73, 045323 (2006).
[CrossRef]

H. Htoon, M. Furis, S. A. Crooker, S. Jeong, and V. I. Klimov, “Linearly polarized ‘fine structure’ of the bright exciton state in individual CdSe nanocrystal quantum dots,” Phys. Rev. B77, 035328 (2008).
[CrossRef]

M. Hawton and D. Nelson, “Quasibosonic exciton dynamics near the semiconductor band ege,” Phys. Rev. B57, 4000–4008 (1998).
[CrossRef]

Phys. Rev. Lett.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single molecule fluorescence,” Phys. Rev. Lett.96, 113002 (2006).
[CrossRef] [PubMed]

R. R. Cooney, S. L. Sewall, D. M. Sagar, and P. Kambhampati, “Gain control in semiconductor quantum dots via state-resolved optical pumping,” Phys. Rev. Lett.102, 127404 (2009).
[CrossRef] [PubMed]

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett.101, 226806 (2008).
[CrossRef] [PubMed]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-Metal nanoparticle molecule: hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett.97, 146804 (2006).
[CrossRef] [PubMed]

Other

V. I. Klimov, Nanocrystal Quantum Dots, 2nd ed. (CRS press Taylor & Francis Group, 2010).
[CrossRef]

A. Trügler, Strong Coupling between a Metallic Nanoparticle and a Single Molecule, Diplomarbeit Thesis (Karl-Franzens Universität Graz, 2007).

H. Haug and S. W. Koch, Quantum Theory of the Optical and Electric Properties of Semiconductors, 4th ed. (World Scientific, 2004).

The asymmetric absorption spectrum is also obtained for increasing the excitation as the nonlinear Fano effect in [6]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic diagram of an amplified all-optical phase modulator in Au-hybrid CdSe/ZnS NQDs. (b) State occupancy for the detuning factor δ is enhanced in the presence of a Au NQD, which separated by 10nm from a 3nm radius CdSe NQD (c). (d) The real/imaginary (solid/dotted) dielectric constant of Au and η.

Fig. 2
Fig. 2

Both the real and imaginary spectrum of the linear ((a) and (b)) and nonlinear ((d) and (e)) refractive index for the bright exciton states (±1L, ±1U, and 0U) in a CdSe NQD are enhanced in the presence of Au, where a 3-nm radius CdSe NQD is in resonance with a Au NQD with a separation of d = 10nm and the nonlinear complex refractive index spectrum depends on an injected pulse area Θ. The dependence of the linear refractive index on d, the Au-separation distance, is also shown (c).

Fig. 3
Fig. 3

The state occupancy (a) and the maximum real/imaginary (b)/(c) coefficient of the refractive index change of the three bright exciton states with increasing excitation intensity are enhanced in the presence of a Au NQD. Schematic diagram of an amplified all-optical phase modulator (d). The Stokes parameters (e), the elliptical (ε) and rotational (θ) angle at 2.1502 eV (g) with increasing excitation intensity. The corresponding elliptical polarization is shown schematically (f).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

H = i ε i α i α i i j E CdSe ( t ) [ d j i α i α j + d i j α j α i ]
E CdSe ( t ) = 3 ε 0 ε s + 2 ε 0 [ E 0 ( t ) + ξ p m 4 π ε 0 r 3 ] ,
p m = 4 π ε 0 ε m ε 0 ε m + 2 ε 0 R 3 [ E 0 ( t ) + ξ p s 4 π ε 0 r 3 ]
p i t = ( i ω i + γ 0 ) p i + i Ω i ( 1 2 f i ) ,
f i t = i ( Ω i * p i Ω i p i * )
d d t p i n = ( i ω i + γ 0 ) p i n + i Ω i t ( t ) * ( δ n , 1 2 f i n 1 ) + i Ω i p ( t ) * ( δ n , 1 2 f i n + 1 ) ,
d d t f i n = i Ω i t ( t ) * p i n + 1 i Ω i p ( t ) * p i n 1 + i Ω i t ( t ) ( p i n + 1 ) * + i Ω i p ( t ) ( p i n 1 ) *
( E x E y ) = ( 1 0 ) exp ( i ω c n ˜ ( I ) z ) + ( 0 1 ) exp ( i ω c n ˜ ( 0 ) z )

Metrics