Abstract

A monolithic 25 Gbaud DQPSK receiver based on delay interferometers and balanced detection has been designed and fabricated on the hybrid Si/InGaAs platform. The integrated 30 µm long InGaAs p-i-n photodetectors have a responsivity of 0.64 A/W at 1550 nm and a 3dB bandwidth higher than 25 GHz. The delay interferometer shows a delay time of 39.2 ps and an extinction ratio higher than 20 dB. The demodulation of a 25 Gb/s DPSK signal by a single branch of the receiver demonstrates its correct working principle.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE94(5), 952–985 (2006).
    [CrossRef]
  2. P. J. Winzer, G. Raybon, H. Song, A. Adamiecki, S. Corteselli, A. H. Gnauck, D. A. Fishman, C. R. Doerr, S. Chandrasekhar, L. L. Buhl, T. J. Xia, G. Wellbrock, W. Lee, B. Basch, T. Kawanishi, K. Higuma, and Y. Painchaud, “100-Gb/s DQPSK transmission: From Laboratory Experiments to Field Trials,” J. Lightwave Technol.26(20), 3388–3402 (2008).
    [CrossRef]
  3. P. J. Winzer and R.-J. Essiambre, “Advanced Modulation Formats for High-Capacity Optical Transport Networks,” J. Lightwave Technol.24(12), 4711–4728 (2006).
    [CrossRef]
  4. L. Zimmermann, K. Voigt, G. Winzer, and K. Petermann, “Towards Silicon on Insulator DQPSK demodulators,” Proc. of OFC/NFOEC 2010, paper OThB3, San Diego, CA (2010).
  5. C. R. Doerr and L. Chen, “Monolithic PDM-DQPSK receiver in silicon,” Proc. of ECOC 2010, paper PD 3.6 (2010).
  6. R. Nagarajan, J. Rahn, M. Kato, J. Pleumeekers, D. Lambert, V. Lal, H.-S. Tsai, A. Nilsson, A. Dentai, M. Kuntz, R. Malendevich, J. Tang, J. Zhang, T. Butrie, M. Raburn, B. Little, W. Chen, G. Goldfarb, V. Dominic, B. Taylor, M. Reffle, F. Kish, and D. Welch, “10 Channel, 45.6 Gb/s per channel, polarization-multiplexed DQPSK, InP receiver photonic integrated circuit,” J. Lightwave Technol.29(4), 386–395 (2011).
    [CrossRef]
  7. C. R. Doerr, N. K. Fontaine, and L. L. Buhl, “PDM-DQPSK silicon receiver with integrated monitor and minimum number of controls,” IEEE Photon. Technol. Lett.24(8), 697–699 (2012).
    [CrossRef]
  8. T. Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D. L. Kwong, “Silicon modulators and Germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
    [CrossRef]
  9. K. Suzuki, H. C. Nguyen, T. Tamanuki, F. Shinobu, Y. Saito, Y. Sakai, and T. Baba, “Slow-light-based variable symbol-rate silicon photonics DQPSK receiver,” Opt. Express20(4), 4796–4804 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-20-4-4796 .
    [CrossRef] [PubMed]
  10. S. Faralli, K. N. Nguyen, H.-W. Chen, J. D. Peters, J. M. Garcia, D. J. Blumenthal, and J. E. Bowers, “25 Gbaud DQPSK Receiver Integrated on the Hybrid Silicon Platform,” Proc. of Group Four Photonics Conference 2011, 326–328, London, UK (2011).
  11. H. Park, A. W. Fang, D. Liang, Y.-H. Kuo, H.-H. Chang, B. R. Koch, H.-W. Chen, M. N. Sysak, R. Jones, and J. E. Bowers, “Photonic Integration on the Hybrid Silicon Evanescent Device Platform,” Adv. Opt. Tech. 682978 (2008).
  12. F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced Backscattering in optical silicon waveguides,” Phys. Rev. Lett.104(3), 033902 (2010).
    [CrossRef] [PubMed]
  13. H. Park, Y.-H. Kuo, A. W. Fang, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent preamplifier and photodetector,” Opt. Express15(21), 13539–13546 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-21-13539 .
    [CrossRef] [PubMed]
  14. H. H. Chang, Y. H. Kuo, R. Jones, A. Barkai, and J. E. Bowers, “Integrated Hybrid Silicon Triplexer,” Opt. Express18(23), 23891–23899 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-23-23891 .
    [CrossRef] [PubMed]
  15. H.-W. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microwave Theory Tech.58(11), 3213–3219 (2010).
    [CrossRef]
  16. D. Liang, M. Fiorentino, R. G. Beausoleil, and J. E. Bowers, “Low-Threshold Hybrid Silicon Microring resonator lasers,” Proc. of IEEE/LEOS Winter Topical Meeting, paper TuD4.1 (2010).
  17. M. N. Sysak, D. Liang, R. Jones, G. Kurczveil, M. Piels, M. Fiorentino, R. G. Beausoleil, and J. E. Bowers, “Hybrid silicon laser technology: a thermal perspective,” IEEE J. Sel. Top. Quantum Electron.17(6), 1490–1498 (2011).
    [CrossRef]
  18. D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express19(11), 10940–10949 (2011), http://www.opticsinfobase.org/oe/fulltext.cfm?uri=oe-19-11-10940&id=214189 .
    [CrossRef] [PubMed]

2012

2011

2010

T. Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D. L. Kwong, “Silicon modulators and Germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced Backscattering in optical silicon waveguides,” Phys. Rev. Lett.104(3), 033902 (2010).
[CrossRef] [PubMed]

H.-W. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microwave Theory Tech.58(11), 3213–3219 (2010).
[CrossRef]

H. H. Chang, Y. H. Kuo, R. Jones, A. Barkai, and J. E. Bowers, “Integrated Hybrid Silicon Triplexer,” Opt. Express18(23), 23891–23899 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-23-23891 .
[CrossRef] [PubMed]

2008

2007

2006

Adamiecki, A.

Ang, K.-W.

T. Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D. L. Kwong, “Silicon modulators and Germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

Baba, T.

Barkai, A.

Basch, B.

Beausoleil, R. G.

M. N. Sysak, D. Liang, R. Jones, G. Kurczveil, M. Piels, M. Fiorentino, R. G. Beausoleil, and J. E. Bowers, “Hybrid silicon laser technology: a thermal perspective,” IEEE J. Sel. Top. Quantum Electron.17(6), 1490–1498 (2011).
[CrossRef]

Bovington, J.

H.-W. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microwave Theory Tech.58(11), 3213–3219 (2010).
[CrossRef]

Bowers, J. E.

Buhl, L. L.

Butrie, T.

Canciamilla, A.

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced Backscattering in optical silicon waveguides,” Phys. Rev. Lett.104(3), 033902 (2010).
[CrossRef] [PubMed]

Chandrasekhar, S.

Chang, H. H.

Chen, H.-W.

H.-W. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microwave Theory Tech.58(11), 3213–3219 (2010).
[CrossRef]

Chen, W.

Cohen, O.

Corteselli, S.

Dai, D.

Dentai, A.

Doerr, C. R.

Dominic, V.

Essiambre, R.-J.

Fang, A. W.

H.-W. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microwave Theory Tech.58(11), 3213–3219 (2010).
[CrossRef]

H. Park, Y.-H. Kuo, A. W. Fang, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent preamplifier and photodetector,” Opt. Express15(21), 13539–13546 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-21-13539 .
[CrossRef] [PubMed]

Fang, Q.

T. Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D. L. Kwong, “Silicon modulators and Germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

Ferrari, C.

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced Backscattering in optical silicon waveguides,” Phys. Rev. Lett.104(3), 033902 (2010).
[CrossRef] [PubMed]

Fiorentino, M.

M. N. Sysak, D. Liang, R. Jones, G. Kurczveil, M. Piels, M. Fiorentino, R. G. Beausoleil, and J. E. Bowers, “Hybrid silicon laser technology: a thermal perspective,” IEEE J. Sel. Top. Quantum Electron.17(6), 1490–1498 (2011).
[CrossRef]

Fishman, D. A.

Fontaine, N. K.

C. R. Doerr, N. K. Fontaine, and L. L. Buhl, “PDM-DQPSK silicon receiver with integrated monitor and minimum number of controls,” IEEE Photon. Technol. Lett.24(8), 697–699 (2012).
[CrossRef]

Gnauck, A. H.

Goldfarb, G.

Higuma, K.

Jones, R.

Kato, M.

Kawanishi, T.

Kish, F.

Kuntz, M.

Kuo, Y. H.

Kuo, Y.-H.

Kurczveil, G.

M. N. Sysak, D. Liang, R. Jones, G. Kurczveil, M. Piels, M. Fiorentino, R. G. Beausoleil, and J. E. Bowers, “Hybrid silicon laser technology: a thermal perspective,” IEEE J. Sel. Top. Quantum Electron.17(6), 1490–1498 (2011).
[CrossRef]

Kwong, D. L.

T. Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D. L. Kwong, “Silicon modulators and Germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

Lal, V.

Lambert, D.

Lee, W.

Liang, D.

M. N. Sysak, D. Liang, R. Jones, G. Kurczveil, M. Piels, M. Fiorentino, R. G. Beausoleil, and J. E. Bowers, “Hybrid silicon laser technology: a thermal perspective,” IEEE J. Sel. Top. Quantum Electron.17(6), 1490–1498 (2011).
[CrossRef]

H.-W. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microwave Theory Tech.58(11), 3213–3219 (2010).
[CrossRef]

Liow, T. Y.

T. Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D. L. Kwong, “Silicon modulators and Germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

Little, B.

Lo, G.-Q.

T. Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D. L. Kwong, “Silicon modulators and Germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

Malendevich, R.

Martinelli, M.

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced Backscattering in optical silicon waveguides,” Phys. Rev. Lett.104(3), 033902 (2010).
[CrossRef] [PubMed]

Melloni, A.

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced Backscattering in optical silicon waveguides,” Phys. Rev. Lett.104(3), 033902 (2010).
[CrossRef] [PubMed]

Morichetti, F.

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced Backscattering in optical silicon waveguides,” Phys. Rev. Lett.104(3), 033902 (2010).
[CrossRef] [PubMed]

Nagarajan, R.

Nguyen, H. C.

Nilsson, A.

Painchaud, Y.

Paniccia, M. J.

Park, H.

Peters, J. D.

H.-W. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microwave Theory Tech.58(11), 3213–3219 (2010).
[CrossRef]

Piels, M.

M. N. Sysak, D. Liang, R. Jones, G. Kurczveil, M. Piels, M. Fiorentino, R. G. Beausoleil, and J. E. Bowers, “Hybrid silicon laser technology: a thermal perspective,” IEEE J. Sel. Top. Quantum Electron.17(6), 1490–1498 (2011).
[CrossRef]

Pleumeekers, J.

Raburn, M.

Rahn, J.

Raybon, G.

Reffle, M.

Saito, Y.

Sakai, Y.

Shinobu, F.

Song, H.

Song, J.-F.

T. Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D. L. Kwong, “Silicon modulators and Germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

Suzuki, K.

Sysak, M. N.

M. N. Sysak, D. Liang, R. Jones, G. Kurczveil, M. Piels, M. Fiorentino, R. G. Beausoleil, and J. E. Bowers, “Hybrid silicon laser technology: a thermal perspective,” IEEE J. Sel. Top. Quantum Electron.17(6), 1490–1498 (2011).
[CrossRef]

Tamanuki, T.

Tang, J.

Taylor, B.

Torregiani, M.

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced Backscattering in optical silicon waveguides,” Phys. Rev. Lett.104(3), 033902 (2010).
[CrossRef] [PubMed]

Tsai, H.-S.

Wang, Z.

H.-W. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microwave Theory Tech.58(11), 3213–3219 (2010).
[CrossRef]

Welch, D.

Wellbrock, G.

Winzer, P. J.

Xia, T. J.

Xiong, Y.-Z.

T. Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D. L. Kwong, “Silicon modulators and Germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

Yu, M.-B.

T. Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D. L. Kwong, “Silicon modulators and Germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

Zhang, J.

IEEE J. Sel. Top. Quantum Electron.

T. Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D. L. Kwong, “Silicon modulators and Germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

M. N. Sysak, D. Liang, R. Jones, G. Kurczveil, M. Piels, M. Fiorentino, R. G. Beausoleil, and J. E. Bowers, “Hybrid silicon laser technology: a thermal perspective,” IEEE J. Sel. Top. Quantum Electron.17(6), 1490–1498 (2011).
[CrossRef]

IEEE Photon. Technol. Lett.

C. R. Doerr, N. K. Fontaine, and L. L. Buhl, “PDM-DQPSK silicon receiver with integrated monitor and minimum number of controls,” IEEE Photon. Technol. Lett.24(8), 697–699 (2012).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

H.-W. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microwave Theory Tech.58(11), 3213–3219 (2010).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Phys. Rev. Lett.

F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced Backscattering in optical silicon waveguides,” Phys. Rev. Lett.104(3), 033902 (2010).
[CrossRef] [PubMed]

Proc. IEEE

P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE94(5), 952–985 (2006).
[CrossRef]

Other

D. Liang, M. Fiorentino, R. G. Beausoleil, and J. E. Bowers, “Low-Threshold Hybrid Silicon Microring resonator lasers,” Proc. of IEEE/LEOS Winter Topical Meeting, paper TuD4.1 (2010).

S. Faralli, K. N. Nguyen, H.-W. Chen, J. D. Peters, J. M. Garcia, D. J. Blumenthal, and J. E. Bowers, “25 Gbaud DQPSK Receiver Integrated on the Hybrid Silicon Platform,” Proc. of Group Four Photonics Conference 2011, 326–328, London, UK (2011).

H. Park, A. W. Fang, D. Liang, Y.-H. Kuo, H.-H. Chang, B. R. Koch, H.-W. Chen, M. N. Sysak, R. Jones, and J. E. Bowers, “Photonic Integration on the Hybrid Silicon Evanescent Device Platform,” Adv. Opt. Tech. 682978 (2008).

L. Zimmermann, K. Voigt, G. Winzer, and K. Petermann, “Towards Silicon on Insulator DQPSK demodulators,” Proc. of OFC/NFOEC 2010, paper OThB3, San Diego, CA (2010).

C. R. Doerr and L. Chen, “Monolithic PDM-DQPSK receiver in silicon,” Proc. of ECOC 2010, paper PD 3.6 (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

DQPSK receiver based on Mach-Zehnder delay interferometers and balanced detection. The footprint of the device is 1.8 x 3.5 mm2.

Fig. 2
Fig. 2

(a) Mask layout of the DQPSK receiver based on Mach-Zehnder delay interferometers and balanced photodetectors. Waveguides are shown in blue, metal contacts are light green. The layout includes stand-alone single PD test structures on the left. (b) Details of the balanced p-i-n InGaAs PD structure.

Fig. 3
Fig. 3

I-V curve of PIN photodetectors with different lengths.

Fig. 4
Fig. 4

Responsivity of PIN photodetectors with different lengths measured at 1550 nm.

Fig. 5
Fig. 5

Frequency response of the p-i-n photodiodes: 3dB Bandwidth of the p-i-n photodiodes vs. the PD lengths measured at 1550 nm for 3V reverse bias voltage.

Fig. 6
Fig. 6

Frequency response of the p-i-n photodiodes: normalized frequency response for different p-i-n PD lengths at 3V reversed bias voltage measured at 1550 nm.

Fig. 7
Fig. 7

Attenuation measurements of the spiral waveguides by cut back method.

Fig. 8
Fig. 8

Spectral response of the delay interferometer filter. Optical output power vs. frequency for the delay interferometer designed with (dark line) and without (gray line) the compensation of the delay line loss.

Fig. 9
Fig. 9

Experimental set-up for receiving a 25 Gb/s DPSK modulated signal.

Fig. 10
Fig. 10

BER vs. Received Power of the 25 Gb/s DPSK TE polarized signal

Tables (1)

Tables Icon

Table 1 Series Resistance

Metrics