Abstract

A compact and ultra-narrow linewidth tunable laser with an external cavity based on a simple single-axis-MEMS mirror is presented in this paper. We discuss the simulation of this tunable laser using a two-step hybrid analysis method to obtain an optimal design of the device. A wide wavelength tuning range about 40nm in C-band with a narrow linewidth of less than 50 kHz and wavelength accuracy of ± 1GHz over the entire tuning range can be achieved experimentally. We also conduct several experiments under different conditions to test the tunable laser. This device shows an excellent performance in both single-carrier polarization-multiplexed quadrature phase-shift keying (PM-QPSK) and multi-carrier orthogonal frequency division multiplexing (OFDM) coherent systems.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. J. Xia, G. A. Wellbrock, Y. K. Huang, M. F. Huang, E. Ip, P. N. Ji, D. Y. Qian, A. Tanaka, Y. Shao, T. Wang, Y. Aono, and T. Tajima, “21.7Tb/s field trial with 22 DP-8QAM/QPSK optical supperchannels over 1503-km of installed SSMF,” in Proceeding of Optical Fiber Communication Conference (Los Angeles, USA, 2012), paper PDP5D.6.
  2. O. Interconn. Forum, “Implementation agreement for integrated polarization multiplexed quadrature modulated transmitters,” in Proc. Opt. Internetw. Forum, (Mar. 2010), pp. 1–20. www.oiforum.com
  3. S. L. Zhang, M. F. Huang, F. Yaman, E. Maeto, D. Y. Qian, Y. Q. Zhang, L. Xu, Y. Shao, I. Djordjevic, T. Wang, Y. Inada, T. Inoue, T. Ogata, and Y. Aoki, “40×117.6Gb/s PDM-16-QAM OFDM transmission over 10181 km with soft-decision LDPC coding and nonlinearity compensation,” in Proceeding of Optical Fiber Communication Conference (Los Angeles, USA, 2012), paper PDP5C.4.
  4. Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission over 600-km SSMF fiber with subwavelength bandwidth access,” Opt. Express17(11), 9421–9427 (2009).
    [CrossRef] [PubMed]
  5. R. Dischler and F. Buchali, “Transmission of 1.2 Tb/s Continuous Waveband PDM‐OFDM‐FDM Signal with Spectral Efficiency of 3.3 bit/s/Hz over 400 km of SSMF,” in Proceeding of Optical Fiber Communication Conference (San Diego, USA, 2012), paper PDP C2.
  6. S. Zhang, P. Y. Kam, C. Yu, and J. Chen, “Laser Linewidth Tolerance of Decision-Aided Maximum Likelihood Phase Estimation in Coherent Optical M-ary PSK and QAM Systems,” IEEE Photon. Technol. Lett.21(15), 1075–1077 (2009).
    [CrossRef]
  7. M. Seimetz, High-Order Modulation for Optical Fiber Transmission (Springer Series in Optical Sciences, 2009), Chap. 7.
  8. I. Fatadin and S. J. Savory, “Impact of phase to amplitude noise conversion in coherent optical systems with digital dispersion compensation,” Opt. Express18(15), 16273–16278 (2010).
    [CrossRef] [PubMed]
  9. C. Xie, “Local Oscillator Phase noise Induced Penalties in Optical Coherent Detection Systems Using Electronic Chromatics Dispersion Compensation,” in Proceeding of Optical Fiber Communication Conference (San Diego, USA, 2012), Paper OMT4.
  10. J. De Merlier, K. Mizutani, S. Sudo, K. Sato, and K. Kudo, “Wavelength channel accuracy of an external cavity wavelength tunable laser with intracavity wavelength reference etalon,” J. Lightwave Technol.24(8), 3202–3209 (2006).
    [CrossRef]
  11. K. Sato, K. Mizutani, S. Sudo, K. Tsuruoka, K. Naniwae, and K. Kudo, “Wideband external cavity wavelength-tunable laser utilizing a liquid-crystal-based mirror and an intracavity etalon,” J. Lightwave Technol.25(8), 2226–2232 (2007).
    [CrossRef]
  12. A. Q. Liu and X. M. Zhang, “A review of MEMS external-cavity tunable lasers,” J. Micromech. Microeng.17(1), R1–R13 (2007).
    [CrossRef]
  13. E. Ip, J. M. Kahn, D. Anthon, and J. Hutchins, “Linewidth measurements of MEMS-based tunable lasers for phase-locking applications,” IEEE Photon. Technol. Lett.17(10), 2029–2031 (2005).
    [CrossRef]
  14. X. M. Zhang, A. Q. Liu, C. Lu, and D. Y. Tang, “Continuous wavelength tuning in micromachined Littrow external-cavity lasers,” IEEE J. Quantum Electron.41(2), 187–197 (2005).
    [CrossRef]
  15. W. R. Trutna and L. F. Stokes, “Continuously tuned external cavity semiconductor laser,” J. Lightwave Technol.11(8), 1279–1286 (1993).
    [CrossRef]
  16. N. Kaneda, A. Leven, and Y.-K. Chen, “Block length effect on 5.0 Gbit/s real-time QPSK intradyne receivers with standard DFB lasers,” Electron. Lett.43(20), 1106–1107 (2007).
    [CrossRef]
  17. X. Yi, W. Shieh, and Y. Ma, “Phase noise effects on high spectral efficiency coherent optical OFDM transmission,” J. Lightwave Technol.26(10), 1309–1316 (2008).
    [CrossRef]
  18. S. D. Saliba and R. E. Scholten, “Linewidths below 100 kHz with external cavity diode lasers,” Appl. Opt.48(36), 6961–6966 (2009).
    [CrossRef] [PubMed]
  19. W. Li, W. P. Huang, and X. Li, “Digital filter approach for simulation of a complex integrated laser diode based on the traveling wave model,” IEEE J. Quantum Electron.40(5), 473–480 (2004).
    [CrossRef]
  20. S. L. Sochava and W. B. Chapman, “Intra-cavity etalon with asymmetric power transfer function,” US Patent, 7061946 B2, 1–18 (2006).
  21. H. Stao and J. Ohya, “Theory of spectral linewidth of external cavity semiconductor lasers,” IEEE J. Quantum Electron.22(7), 1060–1063 (1986).
    [CrossRef]
  22. T. Fujita, J. Ohya, S. Ishizuka, K. Fujito, and H. Sato, “Oscillation frequency shift suppression of semiconductor lasers coupled to external cavity,” Electron. Lett.20(10), 416–417 (1984).
    [CrossRef]
  23. O. Nilsson, S. Saito, and Y. Yamamoto, “Oscillation frequency, linewidth reduction and frequency modulation characteristics for a diode laser with external grating feedback,” Electron. Lett.17(17), 589–591 (1981).
    [CrossRef]
  24. N. Olsson and J. Van Der Ziel, “Performance characteristics of 1.5-µm external cavity semiconductor lasers for coherent optical communication,” J. Lightwave Technol.5(4), 510–515 (1987).
    [CrossRef]
  25. H. Loh, Y. J. Lin, I. Teper, M. Cetina, J. Simon, J. K. Thompson, and V. Vuletić, “Influence of grating parameters on the linewidths of external-cavity diode lasers,” Appl. Opt.45(36), 9191–9197 (2006).
    [CrossRef] [PubMed]
  26. A. Romano, M. D. Donno, and A. Pianciola, “Phase-control in an external-cavity tunable laser,” US Patent, 7505490 B2, 1–24 (2009).
  27. S. Camatel and V. Ferrero, “Narrow linewidth CW laser phase noise characterization methods for coherent transmission system application,” J. Lightwave Technol.26(17), 3048–3055 (2008).
    [CrossRef]
  28. N. H. Zhu, J. W. Man, H. G. Zhang, J. H. Ke, W. Han, W. Chen, Y. Liu, X. Wang, H. Q. Yuan, and L. Xie, “Lineshape analysis of the beat signal between optical carrier and delayed sidebands,” IEEE J. Quantum Electron.46(3), 347–353 (2010).
    [CrossRef]

2010

I. Fatadin and S. J. Savory, “Impact of phase to amplitude noise conversion in coherent optical systems with digital dispersion compensation,” Opt. Express18(15), 16273–16278 (2010).
[CrossRef] [PubMed]

N. H. Zhu, J. W. Man, H. G. Zhang, J. H. Ke, W. Han, W. Chen, Y. Liu, X. Wang, H. Q. Yuan, and L. Xie, “Lineshape analysis of the beat signal between optical carrier and delayed sidebands,” IEEE J. Quantum Electron.46(3), 347–353 (2010).
[CrossRef]

2009

2008

2007

N. Kaneda, A. Leven, and Y.-K. Chen, “Block length effect on 5.0 Gbit/s real-time QPSK intradyne receivers with standard DFB lasers,” Electron. Lett.43(20), 1106–1107 (2007).
[CrossRef]

K. Sato, K. Mizutani, S. Sudo, K. Tsuruoka, K. Naniwae, and K. Kudo, “Wideband external cavity wavelength-tunable laser utilizing a liquid-crystal-based mirror and an intracavity etalon,” J. Lightwave Technol.25(8), 2226–2232 (2007).
[CrossRef]

A. Q. Liu and X. M. Zhang, “A review of MEMS external-cavity tunable lasers,” J. Micromech. Microeng.17(1), R1–R13 (2007).
[CrossRef]

2006

2005

E. Ip, J. M. Kahn, D. Anthon, and J. Hutchins, “Linewidth measurements of MEMS-based tunable lasers for phase-locking applications,” IEEE Photon. Technol. Lett.17(10), 2029–2031 (2005).
[CrossRef]

X. M. Zhang, A. Q. Liu, C. Lu, and D. Y. Tang, “Continuous wavelength tuning in micromachined Littrow external-cavity lasers,” IEEE J. Quantum Electron.41(2), 187–197 (2005).
[CrossRef]

2004

W. Li, W. P. Huang, and X. Li, “Digital filter approach for simulation of a complex integrated laser diode based on the traveling wave model,” IEEE J. Quantum Electron.40(5), 473–480 (2004).
[CrossRef]

1993

W. R. Trutna and L. F. Stokes, “Continuously tuned external cavity semiconductor laser,” J. Lightwave Technol.11(8), 1279–1286 (1993).
[CrossRef]

1987

N. Olsson and J. Van Der Ziel, “Performance characteristics of 1.5-µm external cavity semiconductor lasers for coherent optical communication,” J. Lightwave Technol.5(4), 510–515 (1987).
[CrossRef]

1986

H. Stao and J. Ohya, “Theory of spectral linewidth of external cavity semiconductor lasers,” IEEE J. Quantum Electron.22(7), 1060–1063 (1986).
[CrossRef]

1984

T. Fujita, J. Ohya, S. Ishizuka, K. Fujito, and H. Sato, “Oscillation frequency shift suppression of semiconductor lasers coupled to external cavity,” Electron. Lett.20(10), 416–417 (1984).
[CrossRef]

1981

O. Nilsson, S. Saito, and Y. Yamamoto, “Oscillation frequency, linewidth reduction and frequency modulation characteristics for a diode laser with external grating feedback,” Electron. Lett.17(17), 589–591 (1981).
[CrossRef]

Anthon, D.

E. Ip, J. M. Kahn, D. Anthon, and J. Hutchins, “Linewidth measurements of MEMS-based tunable lasers for phase-locking applications,” IEEE Photon. Technol. Lett.17(10), 2029–2031 (2005).
[CrossRef]

Camatel, S.

Cetina, M.

Chen, J.

S. Zhang, P. Y. Kam, C. Yu, and J. Chen, “Laser Linewidth Tolerance of Decision-Aided Maximum Likelihood Phase Estimation in Coherent Optical M-ary PSK and QAM Systems,” IEEE Photon. Technol. Lett.21(15), 1075–1077 (2009).
[CrossRef]

Chen, S.

Chen, W.

N. H. Zhu, J. W. Man, H. G. Zhang, J. H. Ke, W. Han, W. Chen, Y. Liu, X. Wang, H. Q. Yuan, and L. Xie, “Lineshape analysis of the beat signal between optical carrier and delayed sidebands,” IEEE J. Quantum Electron.46(3), 347–353 (2010).
[CrossRef]

Chen, Y.-K.

N. Kaneda, A. Leven, and Y.-K. Chen, “Block length effect on 5.0 Gbit/s real-time QPSK intradyne receivers with standard DFB lasers,” Electron. Lett.43(20), 1106–1107 (2007).
[CrossRef]

De Merlier, J.

Fatadin, I.

Ferrero, V.

Fujita, T.

T. Fujita, J. Ohya, S. Ishizuka, K. Fujito, and H. Sato, “Oscillation frequency shift suppression of semiconductor lasers coupled to external cavity,” Electron. Lett.20(10), 416–417 (1984).
[CrossRef]

Fujito, K.

T. Fujita, J. Ohya, S. Ishizuka, K. Fujito, and H. Sato, “Oscillation frequency shift suppression of semiconductor lasers coupled to external cavity,” Electron. Lett.20(10), 416–417 (1984).
[CrossRef]

Han, W.

N. H. Zhu, J. W. Man, H. G. Zhang, J. H. Ke, W. Han, W. Chen, Y. Liu, X. Wang, H. Q. Yuan, and L. Xie, “Lineshape analysis of the beat signal between optical carrier and delayed sidebands,” IEEE J. Quantum Electron.46(3), 347–353 (2010).
[CrossRef]

Huang, W. P.

W. Li, W. P. Huang, and X. Li, “Digital filter approach for simulation of a complex integrated laser diode based on the traveling wave model,” IEEE J. Quantum Electron.40(5), 473–480 (2004).
[CrossRef]

Hutchins, J.

E. Ip, J. M. Kahn, D. Anthon, and J. Hutchins, “Linewidth measurements of MEMS-based tunable lasers for phase-locking applications,” IEEE Photon. Technol. Lett.17(10), 2029–2031 (2005).
[CrossRef]

Ip, E.

E. Ip, J. M. Kahn, D. Anthon, and J. Hutchins, “Linewidth measurements of MEMS-based tunable lasers for phase-locking applications,” IEEE Photon. Technol. Lett.17(10), 2029–2031 (2005).
[CrossRef]

Ishizuka, S.

T. Fujita, J. Ohya, S. Ishizuka, K. Fujito, and H. Sato, “Oscillation frequency shift suppression of semiconductor lasers coupled to external cavity,” Electron. Lett.20(10), 416–417 (1984).
[CrossRef]

Kahn, J. M.

E. Ip, J. M. Kahn, D. Anthon, and J. Hutchins, “Linewidth measurements of MEMS-based tunable lasers for phase-locking applications,” IEEE Photon. Technol. Lett.17(10), 2029–2031 (2005).
[CrossRef]

Kam, P. Y.

S. Zhang, P. Y. Kam, C. Yu, and J. Chen, “Laser Linewidth Tolerance of Decision-Aided Maximum Likelihood Phase Estimation in Coherent Optical M-ary PSK and QAM Systems,” IEEE Photon. Technol. Lett.21(15), 1075–1077 (2009).
[CrossRef]

Kaneda, N.

N. Kaneda, A. Leven, and Y.-K. Chen, “Block length effect on 5.0 Gbit/s real-time QPSK intradyne receivers with standard DFB lasers,” Electron. Lett.43(20), 1106–1107 (2007).
[CrossRef]

Ke, J. H.

N. H. Zhu, J. W. Man, H. G. Zhang, J. H. Ke, W. Han, W. Chen, Y. Liu, X. Wang, H. Q. Yuan, and L. Xie, “Lineshape analysis of the beat signal between optical carrier and delayed sidebands,” IEEE J. Quantum Electron.46(3), 347–353 (2010).
[CrossRef]

Kudo, K.

Leven, A.

N. Kaneda, A. Leven, and Y.-K. Chen, “Block length effect on 5.0 Gbit/s real-time QPSK intradyne receivers with standard DFB lasers,” Electron. Lett.43(20), 1106–1107 (2007).
[CrossRef]

Li, W.

W. Li, W. P. Huang, and X. Li, “Digital filter approach for simulation of a complex integrated laser diode based on the traveling wave model,” IEEE J. Quantum Electron.40(5), 473–480 (2004).
[CrossRef]

Li, X.

W. Li, W. P. Huang, and X. Li, “Digital filter approach for simulation of a complex integrated laser diode based on the traveling wave model,” IEEE J. Quantum Electron.40(5), 473–480 (2004).
[CrossRef]

Lin, Y. J.

Liu, A. Q.

A. Q. Liu and X. M. Zhang, “A review of MEMS external-cavity tunable lasers,” J. Micromech. Microeng.17(1), R1–R13 (2007).
[CrossRef]

X. M. Zhang, A. Q. Liu, C. Lu, and D. Y. Tang, “Continuous wavelength tuning in micromachined Littrow external-cavity lasers,” IEEE J. Quantum Electron.41(2), 187–197 (2005).
[CrossRef]

Liu, Y.

N. H. Zhu, J. W. Man, H. G. Zhang, J. H. Ke, W. Han, W. Chen, Y. Liu, X. Wang, H. Q. Yuan, and L. Xie, “Lineshape analysis of the beat signal between optical carrier and delayed sidebands,” IEEE J. Quantum Electron.46(3), 347–353 (2010).
[CrossRef]

Loh, H.

Lu, C.

X. M. Zhang, A. Q. Liu, C. Lu, and D. Y. Tang, “Continuous wavelength tuning in micromachined Littrow external-cavity lasers,” IEEE J. Quantum Electron.41(2), 187–197 (2005).
[CrossRef]

Ma, Y.

Man, J. W.

N. H. Zhu, J. W. Man, H. G. Zhang, J. H. Ke, W. Han, W. Chen, Y. Liu, X. Wang, H. Q. Yuan, and L. Xie, “Lineshape analysis of the beat signal between optical carrier and delayed sidebands,” IEEE J. Quantum Electron.46(3), 347–353 (2010).
[CrossRef]

Mizutani, K.

Naniwae, K.

Nilsson, O.

O. Nilsson, S. Saito, and Y. Yamamoto, “Oscillation frequency, linewidth reduction and frequency modulation characteristics for a diode laser with external grating feedback,” Electron. Lett.17(17), 589–591 (1981).
[CrossRef]

Ohya, J.

H. Stao and J. Ohya, “Theory of spectral linewidth of external cavity semiconductor lasers,” IEEE J. Quantum Electron.22(7), 1060–1063 (1986).
[CrossRef]

T. Fujita, J. Ohya, S. Ishizuka, K. Fujito, and H. Sato, “Oscillation frequency shift suppression of semiconductor lasers coupled to external cavity,” Electron. Lett.20(10), 416–417 (1984).
[CrossRef]

Olsson, N.

N. Olsson and J. Van Der Ziel, “Performance characteristics of 1.5-µm external cavity semiconductor lasers for coherent optical communication,” J. Lightwave Technol.5(4), 510–515 (1987).
[CrossRef]

Saito, S.

O. Nilsson, S. Saito, and Y. Yamamoto, “Oscillation frequency, linewidth reduction and frequency modulation characteristics for a diode laser with external grating feedback,” Electron. Lett.17(17), 589–591 (1981).
[CrossRef]

Saliba, S. D.

Sato, H.

T. Fujita, J. Ohya, S. Ishizuka, K. Fujito, and H. Sato, “Oscillation frequency shift suppression of semiconductor lasers coupled to external cavity,” Electron. Lett.20(10), 416–417 (1984).
[CrossRef]

Sato, K.

Savory, S. J.

Scholten, R. E.

Shieh, W.

Simon, J.

Stao, H.

H. Stao and J. Ohya, “Theory of spectral linewidth of external cavity semiconductor lasers,” IEEE J. Quantum Electron.22(7), 1060–1063 (1986).
[CrossRef]

Stokes, L. F.

W. R. Trutna and L. F. Stokes, “Continuously tuned external cavity semiconductor laser,” J. Lightwave Technol.11(8), 1279–1286 (1993).
[CrossRef]

Sudo, S.

Tang, D. Y.

X. M. Zhang, A. Q. Liu, C. Lu, and D. Y. Tang, “Continuous wavelength tuning in micromachined Littrow external-cavity lasers,” IEEE J. Quantum Electron.41(2), 187–197 (2005).
[CrossRef]

Tang, Y.

Teper, I.

Thompson, J. K.

Trutna, W. R.

W. R. Trutna and L. F. Stokes, “Continuously tuned external cavity semiconductor laser,” J. Lightwave Technol.11(8), 1279–1286 (1993).
[CrossRef]

Tsuruoka, K.

Van Der Ziel, J.

N. Olsson and J. Van Der Ziel, “Performance characteristics of 1.5-µm external cavity semiconductor lasers for coherent optical communication,” J. Lightwave Technol.5(4), 510–515 (1987).
[CrossRef]

Vuletic, V.

Wang, X.

N. H. Zhu, J. W. Man, H. G. Zhang, J. H. Ke, W. Han, W. Chen, Y. Liu, X. Wang, H. Q. Yuan, and L. Xie, “Lineshape analysis of the beat signal between optical carrier and delayed sidebands,” IEEE J. Quantum Electron.46(3), 347–353 (2010).
[CrossRef]

Xie, L.

N. H. Zhu, J. W. Man, H. G. Zhang, J. H. Ke, W. Han, W. Chen, Y. Liu, X. Wang, H. Q. Yuan, and L. Xie, “Lineshape analysis of the beat signal between optical carrier and delayed sidebands,” IEEE J. Quantum Electron.46(3), 347–353 (2010).
[CrossRef]

Yamamoto, Y.

O. Nilsson, S. Saito, and Y. Yamamoto, “Oscillation frequency, linewidth reduction and frequency modulation characteristics for a diode laser with external grating feedback,” Electron. Lett.17(17), 589–591 (1981).
[CrossRef]

Yang, Q.

Yi, X.

Yu, C.

S. Zhang, P. Y. Kam, C. Yu, and J. Chen, “Laser Linewidth Tolerance of Decision-Aided Maximum Likelihood Phase Estimation in Coherent Optical M-ary PSK and QAM Systems,” IEEE Photon. Technol. Lett.21(15), 1075–1077 (2009).
[CrossRef]

Yuan, H. Q.

N. H. Zhu, J. W. Man, H. G. Zhang, J. H. Ke, W. Han, W. Chen, Y. Liu, X. Wang, H. Q. Yuan, and L. Xie, “Lineshape analysis of the beat signal between optical carrier and delayed sidebands,” IEEE J. Quantum Electron.46(3), 347–353 (2010).
[CrossRef]

Zhang, H. G.

N. H. Zhu, J. W. Man, H. G. Zhang, J. H. Ke, W. Han, W. Chen, Y. Liu, X. Wang, H. Q. Yuan, and L. Xie, “Lineshape analysis of the beat signal between optical carrier and delayed sidebands,” IEEE J. Quantum Electron.46(3), 347–353 (2010).
[CrossRef]

Zhang, S.

S. Zhang, P. Y. Kam, C. Yu, and J. Chen, “Laser Linewidth Tolerance of Decision-Aided Maximum Likelihood Phase Estimation in Coherent Optical M-ary PSK and QAM Systems,” IEEE Photon. Technol. Lett.21(15), 1075–1077 (2009).
[CrossRef]

Zhang, X. M.

A. Q. Liu and X. M. Zhang, “A review of MEMS external-cavity tunable lasers,” J. Micromech. Microeng.17(1), R1–R13 (2007).
[CrossRef]

X. M. Zhang, A. Q. Liu, C. Lu, and D. Y. Tang, “Continuous wavelength tuning in micromachined Littrow external-cavity lasers,” IEEE J. Quantum Electron.41(2), 187–197 (2005).
[CrossRef]

Zhu, N. H.

N. H. Zhu, J. W. Man, H. G. Zhang, J. H. Ke, W. Han, W. Chen, Y. Liu, X. Wang, H. Q. Yuan, and L. Xie, “Lineshape analysis of the beat signal between optical carrier and delayed sidebands,” IEEE J. Quantum Electron.46(3), 347–353 (2010).
[CrossRef]

Appl. Opt.

Electron. Lett.

T. Fujita, J. Ohya, S. Ishizuka, K. Fujito, and H. Sato, “Oscillation frequency shift suppression of semiconductor lasers coupled to external cavity,” Electron. Lett.20(10), 416–417 (1984).
[CrossRef]

O. Nilsson, S. Saito, and Y. Yamamoto, “Oscillation frequency, linewidth reduction and frequency modulation characteristics for a diode laser with external grating feedback,” Electron. Lett.17(17), 589–591 (1981).
[CrossRef]

N. Kaneda, A. Leven, and Y.-K. Chen, “Block length effect on 5.0 Gbit/s real-time QPSK intradyne receivers with standard DFB lasers,” Electron. Lett.43(20), 1106–1107 (2007).
[CrossRef]

IEEE J. Quantum Electron.

W. Li, W. P. Huang, and X. Li, “Digital filter approach for simulation of a complex integrated laser diode based on the traveling wave model,” IEEE J. Quantum Electron.40(5), 473–480 (2004).
[CrossRef]

X. M. Zhang, A. Q. Liu, C. Lu, and D. Y. Tang, “Continuous wavelength tuning in micromachined Littrow external-cavity lasers,” IEEE J. Quantum Electron.41(2), 187–197 (2005).
[CrossRef]

H. Stao and J. Ohya, “Theory of spectral linewidth of external cavity semiconductor lasers,” IEEE J. Quantum Electron.22(7), 1060–1063 (1986).
[CrossRef]

N. H. Zhu, J. W. Man, H. G. Zhang, J. H. Ke, W. Han, W. Chen, Y. Liu, X. Wang, H. Q. Yuan, and L. Xie, “Lineshape analysis of the beat signal between optical carrier and delayed sidebands,” IEEE J. Quantum Electron.46(3), 347–353 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

E. Ip, J. M. Kahn, D. Anthon, and J. Hutchins, “Linewidth measurements of MEMS-based tunable lasers for phase-locking applications,” IEEE Photon. Technol. Lett.17(10), 2029–2031 (2005).
[CrossRef]

S. Zhang, P. Y. Kam, C. Yu, and J. Chen, “Laser Linewidth Tolerance of Decision-Aided Maximum Likelihood Phase Estimation in Coherent Optical M-ary PSK and QAM Systems,” IEEE Photon. Technol. Lett.21(15), 1075–1077 (2009).
[CrossRef]

J. Lightwave Technol.

J. Micromech. Microeng.

A. Q. Liu and X. M. Zhang, “A review of MEMS external-cavity tunable lasers,” J. Micromech. Microeng.17(1), R1–R13 (2007).
[CrossRef]

Opt. Express

Other

R. Dischler and F. Buchali, “Transmission of 1.2 Tb/s Continuous Waveband PDM‐OFDM‐FDM Signal with Spectral Efficiency of 3.3 bit/s/Hz over 400 km of SSMF,” in Proceeding of Optical Fiber Communication Conference (San Diego, USA, 2012), paper PDP C2.

T. J. Xia, G. A. Wellbrock, Y. K. Huang, M. F. Huang, E. Ip, P. N. Ji, D. Y. Qian, A. Tanaka, Y. Shao, T. Wang, Y. Aono, and T. Tajima, “21.7Tb/s field trial with 22 DP-8QAM/QPSK optical supperchannels over 1503-km of installed SSMF,” in Proceeding of Optical Fiber Communication Conference (Los Angeles, USA, 2012), paper PDP5D.6.

O. Interconn. Forum, “Implementation agreement for integrated polarization multiplexed quadrature modulated transmitters,” in Proc. Opt. Internetw. Forum, (Mar. 2010), pp. 1–20. www.oiforum.com

S. L. Zhang, M. F. Huang, F. Yaman, E. Maeto, D. Y. Qian, Y. Q. Zhang, L. Xu, Y. Shao, I. Djordjevic, T. Wang, Y. Inada, T. Inoue, T. Ogata, and Y. Aoki, “40×117.6Gb/s PDM-16-QAM OFDM transmission over 10181 km with soft-decision LDPC coding and nonlinearity compensation,” in Proceeding of Optical Fiber Communication Conference (Los Angeles, USA, 2012), paper PDP5C.4.

C. Xie, “Local Oscillator Phase noise Induced Penalties in Optical Coherent Detection Systems Using Electronic Chromatics Dispersion Compensation,” in Proceeding of Optical Fiber Communication Conference (San Diego, USA, 2012), Paper OMT4.

M. Seimetz, High-Order Modulation for Optical Fiber Transmission (Springer Series in Optical Sciences, 2009), Chap. 7.

S. L. Sochava and W. B. Chapman, “Intra-cavity etalon with asymmetric power transfer function,” US Patent, 7061946 B2, 1–18 (2006).

A. Romano, M. D. Donno, and A. Pianciola, “Phase-control in an external-cavity tunable laser,” US Patent, 7505490 B2, 1–24 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

(a) Layout of the proposed MEMS ECTL. (b) Combination effect of etalon transmission and TOF to realize a C-band tunable laser with 50GHz grid fixed at ITU-T wavelengths.

Fig. 2
Fig. 2

Calculated and measured relationship between collimated beam size and TOF bandwidth.

Fig. 3
Fig. 3

(a) Ray tracing diagram by ZEMAX. (b) Simulated cavity loss induced by limited MEMS size.

Fig. 4
Fig. 4

(a) Wavelength accuracy. (b) Continuous tuning range as a function of etalon’s reflectivity with different external cavity loss.

Fig. 5
Fig. 5

Schematic diagram showing the improved alignment scheme between the transmission peaks of the etalon and the TOF to optimize the tuning behavior of the ECTL.

Fig. 6
Fig. 6

Simulated output power variation and frequency tuning behavior during the phase tuning when the transmission peaks of the etalon and the grating are (a) peak-to-peak aligned and (b) not peak-to-peak aligned as shown in Fig. 5. The etalon’s reflectivity is 0.65 in the simulation.

Fig. 7
Fig. 7

Simulated spectral linewidth of the ECTL as a function of etalon’s reflectivity for different external cavity loss.

Fig. 8
Fig. 8

Layout of the MEMS ECTL module (the inset is a photograph of the packaged ITLA).

Fig. 9
Fig. 9

(a) Wavelength tuning characteristics showing 100 channels with 50GHz grid in C-band. (b) Wavelength accuracy of the ITLA module in C-band.

Fig. 10
Fig. 10

(a) Measured RIN results of the ITLA. (b) Spectral linewidth of the ITLA in C-band.

Fig. 11
Fig. 11

(a) 112Gbit/s PM-QPSK experimental setup. (b) BER versus OSNR curves for different ITLA. Inset is the constellation diagram for the proposed ITLA. ASE: amplified spontaneous emission, VOA: variable optical attenuator, OSA: optical spectral analyser.

Fig. 12
Fig. 12

12.5Gbit/s CO-OFDM experimental setup for the proposed ITLA test. AWG: arbitrary wavefrom generator.

Fig. 13
Fig. 13

BER versus OSNR curves in CO-OFDM experiment. (a) FFT size is 128. (b) FFT size is 256. (c) FFT size is 512. (d) FFT size is 1024.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

η(λ)exp{ 4 π 2 ω 2 θ (λ) 2 λ 2 }
α(r)= 2 π ω x ω y 0 2π 0 r exp{ 2 r 2 cos 2 (θ) ω x 2 2 r 2 sin 2 (θ) ω y 2 } rdrdθ
Δν= α 2 β 2 R sp ξ 4πS + R sp ξ 4π(S+ S e )
R sp = v g 2 hνg(ν) a m S 2 P out
a m = 1 l ln(1/ r out r eff )+ a in
ξ= l/ v g l/ v g + l eff / v gc
l eff = c 2Δ f cavity

Metrics