Abstract

Low-coherence enhanced backscattering (LEBS) spectroscopy is an angular resolved backscattering technique that is sensitive to sub-diffusion light transport length scales in which information about scattering phase function is preserved. Our group has shown the ability to measure the spatial backscattering impulse response function along with depth-selective optical properties in tissue ex-vivo using LEBS. Here we report the design and implementation of a lens-free fiber optic LEBS probe capable of providing depth-limited measurements of the reduced scattering coefficient in-vivo. Experimental measurements combined with Monte Carlo simulation of scattering phantoms consisting of polystyrene microspheres in water are used to validate the performance of the probe. Additionally, depth-limited capabilities are demonstrated using Monte Carlo modeling and experimental measurements from a two-layered phantom.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. A. Wagnières, W. M. Star, and B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol.68(5), 603–632 (1998).
    [PubMed]
  2. A. Richter, K. Yang, F. Richter, H. T. Lynch, and M. Lipkin, “Morphological and morphometric measurements in colorectal mucosa of subjects at increased risk for colonic neoplasia,” Cancer Lett.74(1-2), 65–68 (1993).
    [CrossRef] [PubMed]
  3. C. Booth, G. Brady, and C. S. Potten, “Crowd control in the crypt,” Nat. Med.8(12), 1360–1361 (2002).
    [CrossRef] [PubMed]
  4. R. Barer and S. Joseph, “Refractometry of living cells,” J. Microscop. Sci.s3–95, 399–423 (1954).
  5. J. D. Rogers, I. R. Capoğlu, and V. Backman, “Nonscalar elastic light scattering from continuous random media in the Born approximation,” Opt. Lett.34(12), 1891–1893 (2009).
    [CrossRef] [PubMed]
  6. V. Turzhitsky, A. J. Radosevich, J. D. Rogers, N. N. Mutyal, and V. Backman, “Measurement of optical scattering properties with low-coherence enhanced backscattering spectroscopy,” J. Biomed. Opt.16(6), 067007 (2011).
    [CrossRef] [PubMed]
  7. H. K. Roy, V. Turzhitsky, Y. Kim, M. J. Goldberg, P. Watson, J. D. Rogers, A. J. Gomes, A. Kromine, R. E. Brand, M. Jameel, A. Bogovejic, P. Pradhan, and V. Backman, “Association between rectal optical signatures and colonic neoplasia: potential applications for screening,” Cancer Res.69(10), 4476–4483 (2009).
    [CrossRef] [PubMed]
  8. B. Yu, H. Fu, T. Bydlon, J. E. Bender, and N. Ramanujam, “Diffuse reflectance spectroscopy with a self-calibrating fiber optic probe,” Opt. Lett.33(16), 1783–1785 (2008).
    [CrossRef] [PubMed]
  9. T. Papaioannou, N. W. Preyer, Q. Fang, A. Brightwell, M. Carnohan, G. Cottone, R. Ross, L. R. Jones, and L. Marcu, “Effects of fiber-optic probe design and probe-to-target distance on diffuse reflectance measurements of turbid media: an experimental and computational study at 337 nm,” Appl. Opt.43(14), 2846–2860 (2004).
    [CrossRef] [PubMed]
  10. R. A. Schwarz, D. Arifler, S. K. Chang, I. Pavlova, I. A. Hussain, V. Mack, B. Knight, R. Richards-Kortum, and A. M. Gillenwater, “Ball lens coupled fiber-optic probe for depth-resolved spectroscopy of epithelial tissue,” Opt. Lett.30(10), 1159–1161 (2005).
    [CrossRef] [PubMed]
  11. A. Amelink, H. J. C. M. Sterenborg, M. P. L. Bard, and S. A. Burgers, “In vivo measurement of the local optical properties of tissue by use of differential path-length spectroscopy,” Opt. Lett.29(10), 1087–1089 (2004).
    [CrossRef] [PubMed]
  12. A. Dhar, K. S. Johnson, M. R. Novelli, S. G. Bown, I. J. Bigio, L. B. Lovat, and S. L. Bloom, “Elastic scattering spectroscopy for the diagnosis of colonic lesions: initial results of a novel optical biopsy technique,” Gastrointest. Endosc.63(2), 257–261 (2006).
    [CrossRef] [PubMed]
  13. S. P. Lin, L. Wang, S. L. Jacques, and F. K. Tittel, “Measurement of tissue optical properties by the use of oblique-incidence optical fiber reflectometry,” Appl. Opt.36(1), 136–143 (1997).
    [CrossRef] [PubMed]
  14. V. Turzhitsky, N. N. Mutyal, A. J. Radosevich, and V. Backman, “Multiple scattering model for the penetration depth of low-coherence enhanced backscattering,” J. Biomed. Opt.16(9), 097006 (2011).
    [CrossRef] [PubMed]
  15. J. D. Rogers, V. Stoyneva, V. Turzhitsky, N. N. Mutyal, P. Pradhan, I. R. Çapoğlu, and V. Backman, “Alternate formulation of enhanced backscattering as phase conjugation and diffraction: derivation and experimental observation,” Opt. Express19(13), 11922–11931 (2011).
    [CrossRef] [PubMed]
  16. J. D. Rogers, V. Stoyneva, V. Turzhitsky, N. Mutyal, Y. Ji, H. K. Roy, and V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at sub-diffusion length- scales,” IEEE J. Sel. Top. Quantum Electron. (to be published).
  17. Y. L. Kim, Y. Liu, V. M. Turzhitsky, R. K. Wali, H. K. Roy, and V. Backman, “Depth-resolved low-coherence enhanced backscattering,” Opt. Lett.30(7), 741–743 (2005).
    [CrossRef] [PubMed]
  18. V. Turzhitsky, J. D. Rogers, N. N. Mutyal, H. K. Roy, and V. Backman, “Characterization of light transport in scattering media at sub-diffusion length scales with Low-coherence Enhanced Backscattering,” IEEE J. Sel. Top. Quantum Electron.16(3), 619–626 (2010).
    [CrossRef] [PubMed]
  19. J. C. Ramella-Roman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part II,” Opt. Express13(25), 10392–10405 (2005).
    [CrossRef] [PubMed]

2011 (3)

V. Turzhitsky, A. J. Radosevich, J. D. Rogers, N. N. Mutyal, and V. Backman, “Measurement of optical scattering properties with low-coherence enhanced backscattering spectroscopy,” J. Biomed. Opt.16(6), 067007 (2011).
[CrossRef] [PubMed]

V. Turzhitsky, N. N. Mutyal, A. J. Radosevich, and V. Backman, “Multiple scattering model for the penetration depth of low-coherence enhanced backscattering,” J. Biomed. Opt.16(9), 097006 (2011).
[CrossRef] [PubMed]

J. D. Rogers, V. Stoyneva, V. Turzhitsky, N. N. Mutyal, P. Pradhan, I. R. Çapoğlu, and V. Backman, “Alternate formulation of enhanced backscattering as phase conjugation and diffraction: derivation and experimental observation,” Opt. Express19(13), 11922–11931 (2011).
[CrossRef] [PubMed]

2010 (1)

V. Turzhitsky, J. D. Rogers, N. N. Mutyal, H. K. Roy, and V. Backman, “Characterization of light transport in scattering media at sub-diffusion length scales with Low-coherence Enhanced Backscattering,” IEEE J. Sel. Top. Quantum Electron.16(3), 619–626 (2010).
[CrossRef] [PubMed]

2009 (2)

H. K. Roy, V. Turzhitsky, Y. Kim, M. J. Goldberg, P. Watson, J. D. Rogers, A. J. Gomes, A. Kromine, R. E. Brand, M. Jameel, A. Bogovejic, P. Pradhan, and V. Backman, “Association between rectal optical signatures and colonic neoplasia: potential applications for screening,” Cancer Res.69(10), 4476–4483 (2009).
[CrossRef] [PubMed]

J. D. Rogers, I. R. Capoğlu, and V. Backman, “Nonscalar elastic light scattering from continuous random media in the Born approximation,” Opt. Lett.34(12), 1891–1893 (2009).
[CrossRef] [PubMed]

2008 (1)

2006 (1)

A. Dhar, K. S. Johnson, M. R. Novelli, S. G. Bown, I. J. Bigio, L. B. Lovat, and S. L. Bloom, “Elastic scattering spectroscopy for the diagnosis of colonic lesions: initial results of a novel optical biopsy technique,” Gastrointest. Endosc.63(2), 257–261 (2006).
[CrossRef] [PubMed]

2005 (3)

2004 (2)

2002 (1)

C. Booth, G. Brady, and C. S. Potten, “Crowd control in the crypt,” Nat. Med.8(12), 1360–1361 (2002).
[CrossRef] [PubMed]

1998 (1)

G. A. Wagnières, W. M. Star, and B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol.68(5), 603–632 (1998).
[PubMed]

1997 (1)

1993 (1)

A. Richter, K. Yang, F. Richter, H. T. Lynch, and M. Lipkin, “Morphological and morphometric measurements in colorectal mucosa of subjects at increased risk for colonic neoplasia,” Cancer Lett.74(1-2), 65–68 (1993).
[CrossRef] [PubMed]

1954 (1)

R. Barer and S. Joseph, “Refractometry of living cells,” J. Microscop. Sci.s3–95, 399–423 (1954).

Amelink, A.

Arifler, D.

Backman, V.

V. Turzhitsky, N. N. Mutyal, A. J. Radosevich, and V. Backman, “Multiple scattering model for the penetration depth of low-coherence enhanced backscattering,” J. Biomed. Opt.16(9), 097006 (2011).
[CrossRef] [PubMed]

V. Turzhitsky, A. J. Radosevich, J. D. Rogers, N. N. Mutyal, and V. Backman, “Measurement of optical scattering properties with low-coherence enhanced backscattering spectroscopy,” J. Biomed. Opt.16(6), 067007 (2011).
[CrossRef] [PubMed]

J. D. Rogers, V. Stoyneva, V. Turzhitsky, N. N. Mutyal, P. Pradhan, I. R. Çapoğlu, and V. Backman, “Alternate formulation of enhanced backscattering as phase conjugation and diffraction: derivation and experimental observation,” Opt. Express19(13), 11922–11931 (2011).
[CrossRef] [PubMed]

V. Turzhitsky, J. D. Rogers, N. N. Mutyal, H. K. Roy, and V. Backman, “Characterization of light transport in scattering media at sub-diffusion length scales with Low-coherence Enhanced Backscattering,” IEEE J. Sel. Top. Quantum Electron.16(3), 619–626 (2010).
[CrossRef] [PubMed]

H. K. Roy, V. Turzhitsky, Y. Kim, M. J. Goldberg, P. Watson, J. D. Rogers, A. J. Gomes, A. Kromine, R. E. Brand, M. Jameel, A. Bogovejic, P. Pradhan, and V. Backman, “Association between rectal optical signatures and colonic neoplasia: potential applications for screening,” Cancer Res.69(10), 4476–4483 (2009).
[CrossRef] [PubMed]

J. D. Rogers, I. R. Capoğlu, and V. Backman, “Nonscalar elastic light scattering from continuous random media in the Born approximation,” Opt. Lett.34(12), 1891–1893 (2009).
[CrossRef] [PubMed]

Y. L. Kim, Y. Liu, V. M. Turzhitsky, R. K. Wali, H. K. Roy, and V. Backman, “Depth-resolved low-coherence enhanced backscattering,” Opt. Lett.30(7), 741–743 (2005).
[CrossRef] [PubMed]

J. D. Rogers, V. Stoyneva, V. Turzhitsky, N. Mutyal, Y. Ji, H. K. Roy, and V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at sub-diffusion length- scales,” IEEE J. Sel. Top. Quantum Electron. (to be published).

Bard, M. P. L.

Barer, R.

R. Barer and S. Joseph, “Refractometry of living cells,” J. Microscop. Sci.s3–95, 399–423 (1954).

Bender, J. E.

Bigio, I. J.

A. Dhar, K. S. Johnson, M. R. Novelli, S. G. Bown, I. J. Bigio, L. B. Lovat, and S. L. Bloom, “Elastic scattering spectroscopy for the diagnosis of colonic lesions: initial results of a novel optical biopsy technique,” Gastrointest. Endosc.63(2), 257–261 (2006).
[CrossRef] [PubMed]

Bloom, S. L.

A. Dhar, K. S. Johnson, M. R. Novelli, S. G. Bown, I. J. Bigio, L. B. Lovat, and S. L. Bloom, “Elastic scattering spectroscopy for the diagnosis of colonic lesions: initial results of a novel optical biopsy technique,” Gastrointest. Endosc.63(2), 257–261 (2006).
[CrossRef] [PubMed]

Bogovejic, A.

H. K. Roy, V. Turzhitsky, Y. Kim, M. J. Goldberg, P. Watson, J. D. Rogers, A. J. Gomes, A. Kromine, R. E. Brand, M. Jameel, A. Bogovejic, P. Pradhan, and V. Backman, “Association between rectal optical signatures and colonic neoplasia: potential applications for screening,” Cancer Res.69(10), 4476–4483 (2009).
[CrossRef] [PubMed]

Booth, C.

C. Booth, G. Brady, and C. S. Potten, “Crowd control in the crypt,” Nat. Med.8(12), 1360–1361 (2002).
[CrossRef] [PubMed]

Bown, S. G.

A. Dhar, K. S. Johnson, M. R. Novelli, S. G. Bown, I. J. Bigio, L. B. Lovat, and S. L. Bloom, “Elastic scattering spectroscopy for the diagnosis of colonic lesions: initial results of a novel optical biopsy technique,” Gastrointest. Endosc.63(2), 257–261 (2006).
[CrossRef] [PubMed]

Brady, G.

C. Booth, G. Brady, and C. S. Potten, “Crowd control in the crypt,” Nat. Med.8(12), 1360–1361 (2002).
[CrossRef] [PubMed]

Brand, R. E.

H. K. Roy, V. Turzhitsky, Y. Kim, M. J. Goldberg, P. Watson, J. D. Rogers, A. J. Gomes, A. Kromine, R. E. Brand, M. Jameel, A. Bogovejic, P. Pradhan, and V. Backman, “Association between rectal optical signatures and colonic neoplasia: potential applications for screening,” Cancer Res.69(10), 4476–4483 (2009).
[CrossRef] [PubMed]

Brightwell, A.

Burgers, S. A.

Bydlon, T.

Capoglu, I. R.

Çapoglu, I. R.

Carnohan, M.

Chang, S. K.

Cottone, G.

Dhar, A.

A. Dhar, K. S. Johnson, M. R. Novelli, S. G. Bown, I. J. Bigio, L. B. Lovat, and S. L. Bloom, “Elastic scattering spectroscopy for the diagnosis of colonic lesions: initial results of a novel optical biopsy technique,” Gastrointest. Endosc.63(2), 257–261 (2006).
[CrossRef] [PubMed]

Fang, Q.

Fu, H.

Gillenwater, A. M.

Goldberg, M. J.

H. K. Roy, V. Turzhitsky, Y. Kim, M. J. Goldberg, P. Watson, J. D. Rogers, A. J. Gomes, A. Kromine, R. E. Brand, M. Jameel, A. Bogovejic, P. Pradhan, and V. Backman, “Association between rectal optical signatures and colonic neoplasia: potential applications for screening,” Cancer Res.69(10), 4476–4483 (2009).
[CrossRef] [PubMed]

Gomes, A. J.

H. K. Roy, V. Turzhitsky, Y. Kim, M. J. Goldberg, P. Watson, J. D. Rogers, A. J. Gomes, A. Kromine, R. E. Brand, M. Jameel, A. Bogovejic, P. Pradhan, and V. Backman, “Association between rectal optical signatures and colonic neoplasia: potential applications for screening,” Cancer Res.69(10), 4476–4483 (2009).
[CrossRef] [PubMed]

Hussain, I. A.

Jacques, S. L.

Jameel, M.

H. K. Roy, V. Turzhitsky, Y. Kim, M. J. Goldberg, P. Watson, J. D. Rogers, A. J. Gomes, A. Kromine, R. E. Brand, M. Jameel, A. Bogovejic, P. Pradhan, and V. Backman, “Association between rectal optical signatures and colonic neoplasia: potential applications for screening,” Cancer Res.69(10), 4476–4483 (2009).
[CrossRef] [PubMed]

Ji, Y.

J. D. Rogers, V. Stoyneva, V. Turzhitsky, N. Mutyal, Y. Ji, H. K. Roy, and V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at sub-diffusion length- scales,” IEEE J. Sel. Top. Quantum Electron. (to be published).

Johnson, K. S.

A. Dhar, K. S. Johnson, M. R. Novelli, S. G. Bown, I. J. Bigio, L. B. Lovat, and S. L. Bloom, “Elastic scattering spectroscopy for the diagnosis of colonic lesions: initial results of a novel optical biopsy technique,” Gastrointest. Endosc.63(2), 257–261 (2006).
[CrossRef] [PubMed]

Jones, L. R.

Joseph, S.

R. Barer and S. Joseph, “Refractometry of living cells,” J. Microscop. Sci.s3–95, 399–423 (1954).

Kim, Y.

H. K. Roy, V. Turzhitsky, Y. Kim, M. J. Goldberg, P. Watson, J. D. Rogers, A. J. Gomes, A. Kromine, R. E. Brand, M. Jameel, A. Bogovejic, P. Pradhan, and V. Backman, “Association between rectal optical signatures and colonic neoplasia: potential applications for screening,” Cancer Res.69(10), 4476–4483 (2009).
[CrossRef] [PubMed]

Kim, Y. L.

Knight, B.

Kromine, A.

H. K. Roy, V. Turzhitsky, Y. Kim, M. J. Goldberg, P. Watson, J. D. Rogers, A. J. Gomes, A. Kromine, R. E. Brand, M. Jameel, A. Bogovejic, P. Pradhan, and V. Backman, “Association between rectal optical signatures and colonic neoplasia: potential applications for screening,” Cancer Res.69(10), 4476–4483 (2009).
[CrossRef] [PubMed]

Lin, S. P.

Lipkin, M.

A. Richter, K. Yang, F. Richter, H. T. Lynch, and M. Lipkin, “Morphological and morphometric measurements in colorectal mucosa of subjects at increased risk for colonic neoplasia,” Cancer Lett.74(1-2), 65–68 (1993).
[CrossRef] [PubMed]

Liu, Y.

Lovat, L. B.

A. Dhar, K. S. Johnson, M. R. Novelli, S. G. Bown, I. J. Bigio, L. B. Lovat, and S. L. Bloom, “Elastic scattering spectroscopy for the diagnosis of colonic lesions: initial results of a novel optical biopsy technique,” Gastrointest. Endosc.63(2), 257–261 (2006).
[CrossRef] [PubMed]

Lynch, H. T.

A. Richter, K. Yang, F. Richter, H. T. Lynch, and M. Lipkin, “Morphological and morphometric measurements in colorectal mucosa of subjects at increased risk for colonic neoplasia,” Cancer Lett.74(1-2), 65–68 (1993).
[CrossRef] [PubMed]

Mack, V.

Marcu, L.

Mutyal, N.

J. D. Rogers, V. Stoyneva, V. Turzhitsky, N. Mutyal, Y. Ji, H. K. Roy, and V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at sub-diffusion length- scales,” IEEE J. Sel. Top. Quantum Electron. (to be published).

Mutyal, N. N.

V. Turzhitsky, N. N. Mutyal, A. J. Radosevich, and V. Backman, “Multiple scattering model for the penetration depth of low-coherence enhanced backscattering,” J. Biomed. Opt.16(9), 097006 (2011).
[CrossRef] [PubMed]

V. Turzhitsky, A. J. Radosevich, J. D. Rogers, N. N. Mutyal, and V. Backman, “Measurement of optical scattering properties with low-coherence enhanced backscattering spectroscopy,” J. Biomed. Opt.16(6), 067007 (2011).
[CrossRef] [PubMed]

J. D. Rogers, V. Stoyneva, V. Turzhitsky, N. N. Mutyal, P. Pradhan, I. R. Çapoğlu, and V. Backman, “Alternate formulation of enhanced backscattering as phase conjugation and diffraction: derivation and experimental observation,” Opt. Express19(13), 11922–11931 (2011).
[CrossRef] [PubMed]

V. Turzhitsky, J. D. Rogers, N. N. Mutyal, H. K. Roy, and V. Backman, “Characterization of light transport in scattering media at sub-diffusion length scales with Low-coherence Enhanced Backscattering,” IEEE J. Sel. Top. Quantum Electron.16(3), 619–626 (2010).
[CrossRef] [PubMed]

Novelli, M. R.

A. Dhar, K. S. Johnson, M. R. Novelli, S. G. Bown, I. J. Bigio, L. B. Lovat, and S. L. Bloom, “Elastic scattering spectroscopy for the diagnosis of colonic lesions: initial results of a novel optical biopsy technique,” Gastrointest. Endosc.63(2), 257–261 (2006).
[CrossRef] [PubMed]

Papaioannou, T.

Pavlova, I.

Potten, C. S.

C. Booth, G. Brady, and C. S. Potten, “Crowd control in the crypt,” Nat. Med.8(12), 1360–1361 (2002).
[CrossRef] [PubMed]

Pradhan, P.

J. D. Rogers, V. Stoyneva, V. Turzhitsky, N. N. Mutyal, P. Pradhan, I. R. Çapoğlu, and V. Backman, “Alternate formulation of enhanced backscattering as phase conjugation and diffraction: derivation and experimental observation,” Opt. Express19(13), 11922–11931 (2011).
[CrossRef] [PubMed]

H. K. Roy, V. Turzhitsky, Y. Kim, M. J. Goldberg, P. Watson, J. D. Rogers, A. J. Gomes, A. Kromine, R. E. Brand, M. Jameel, A. Bogovejic, P. Pradhan, and V. Backman, “Association between rectal optical signatures and colonic neoplasia: potential applications for screening,” Cancer Res.69(10), 4476–4483 (2009).
[CrossRef] [PubMed]

Prahl, S. A.

Preyer, N. W.

Radosevich, A. J.

V. Turzhitsky, A. J. Radosevich, J. D. Rogers, N. N. Mutyal, and V. Backman, “Measurement of optical scattering properties with low-coherence enhanced backscattering spectroscopy,” J. Biomed. Opt.16(6), 067007 (2011).
[CrossRef] [PubMed]

V. Turzhitsky, N. N. Mutyal, A. J. Radosevich, and V. Backman, “Multiple scattering model for the penetration depth of low-coherence enhanced backscattering,” J. Biomed. Opt.16(9), 097006 (2011).
[CrossRef] [PubMed]

Ramanujam, N.

Ramella-Roman, J. C.

Richards-Kortum, R.

Richter, A.

A. Richter, K. Yang, F. Richter, H. T. Lynch, and M. Lipkin, “Morphological and morphometric measurements in colorectal mucosa of subjects at increased risk for colonic neoplasia,” Cancer Lett.74(1-2), 65–68 (1993).
[CrossRef] [PubMed]

Richter, F.

A. Richter, K. Yang, F. Richter, H. T. Lynch, and M. Lipkin, “Morphological and morphometric measurements in colorectal mucosa of subjects at increased risk for colonic neoplasia,” Cancer Lett.74(1-2), 65–68 (1993).
[CrossRef] [PubMed]

Rogers, J. D.

V. Turzhitsky, A. J. Radosevich, J. D. Rogers, N. N. Mutyal, and V. Backman, “Measurement of optical scattering properties with low-coherence enhanced backscattering spectroscopy,” J. Biomed. Opt.16(6), 067007 (2011).
[CrossRef] [PubMed]

J. D. Rogers, V. Stoyneva, V. Turzhitsky, N. N. Mutyal, P. Pradhan, I. R. Çapoğlu, and V. Backman, “Alternate formulation of enhanced backscattering as phase conjugation and diffraction: derivation and experimental observation,” Opt. Express19(13), 11922–11931 (2011).
[CrossRef] [PubMed]

V. Turzhitsky, J. D. Rogers, N. N. Mutyal, H. K. Roy, and V. Backman, “Characterization of light transport in scattering media at sub-diffusion length scales with Low-coherence Enhanced Backscattering,” IEEE J. Sel. Top. Quantum Electron.16(3), 619–626 (2010).
[CrossRef] [PubMed]

H. K. Roy, V. Turzhitsky, Y. Kim, M. J. Goldberg, P. Watson, J. D. Rogers, A. J. Gomes, A. Kromine, R. E. Brand, M. Jameel, A. Bogovejic, P. Pradhan, and V. Backman, “Association between rectal optical signatures and colonic neoplasia: potential applications for screening,” Cancer Res.69(10), 4476–4483 (2009).
[CrossRef] [PubMed]

J. D. Rogers, I. R. Capoğlu, and V. Backman, “Nonscalar elastic light scattering from continuous random media in the Born approximation,” Opt. Lett.34(12), 1891–1893 (2009).
[CrossRef] [PubMed]

J. D. Rogers, V. Stoyneva, V. Turzhitsky, N. Mutyal, Y. Ji, H. K. Roy, and V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at sub-diffusion length- scales,” IEEE J. Sel. Top. Quantum Electron. (to be published).

Ross, R.

Roy, H. K.

V. Turzhitsky, J. D. Rogers, N. N. Mutyal, H. K. Roy, and V. Backman, “Characterization of light transport in scattering media at sub-diffusion length scales with Low-coherence Enhanced Backscattering,” IEEE J. Sel. Top. Quantum Electron.16(3), 619–626 (2010).
[CrossRef] [PubMed]

H. K. Roy, V. Turzhitsky, Y. Kim, M. J. Goldberg, P. Watson, J. D. Rogers, A. J. Gomes, A. Kromine, R. E. Brand, M. Jameel, A. Bogovejic, P. Pradhan, and V. Backman, “Association between rectal optical signatures and colonic neoplasia: potential applications for screening,” Cancer Res.69(10), 4476–4483 (2009).
[CrossRef] [PubMed]

Y. L. Kim, Y. Liu, V. M. Turzhitsky, R. K. Wali, H. K. Roy, and V. Backman, “Depth-resolved low-coherence enhanced backscattering,” Opt. Lett.30(7), 741–743 (2005).
[CrossRef] [PubMed]

J. D. Rogers, V. Stoyneva, V. Turzhitsky, N. Mutyal, Y. Ji, H. K. Roy, and V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at sub-diffusion length- scales,” IEEE J. Sel. Top. Quantum Electron. (to be published).

Schwarz, R. A.

Star, W. M.

G. A. Wagnières, W. M. Star, and B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol.68(5), 603–632 (1998).
[PubMed]

Sterenborg, H. J. C. M.

Stoyneva, V.

J. D. Rogers, V. Stoyneva, V. Turzhitsky, N. N. Mutyal, P. Pradhan, I. R. Çapoğlu, and V. Backman, “Alternate formulation of enhanced backscattering as phase conjugation and diffraction: derivation and experimental observation,” Opt. Express19(13), 11922–11931 (2011).
[CrossRef] [PubMed]

J. D. Rogers, V. Stoyneva, V. Turzhitsky, N. Mutyal, Y. Ji, H. K. Roy, and V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at sub-diffusion length- scales,” IEEE J. Sel. Top. Quantum Electron. (to be published).

Tittel, F. K.

Turzhitsky, V.

V. Turzhitsky, A. J. Radosevich, J. D. Rogers, N. N. Mutyal, and V. Backman, “Measurement of optical scattering properties with low-coherence enhanced backscattering spectroscopy,” J. Biomed. Opt.16(6), 067007 (2011).
[CrossRef] [PubMed]

V. Turzhitsky, N. N. Mutyal, A. J. Radosevich, and V. Backman, “Multiple scattering model for the penetration depth of low-coherence enhanced backscattering,” J. Biomed. Opt.16(9), 097006 (2011).
[CrossRef] [PubMed]

J. D. Rogers, V. Stoyneva, V. Turzhitsky, N. N. Mutyal, P. Pradhan, I. R. Çapoğlu, and V. Backman, “Alternate formulation of enhanced backscattering as phase conjugation and diffraction: derivation and experimental observation,” Opt. Express19(13), 11922–11931 (2011).
[CrossRef] [PubMed]

V. Turzhitsky, J. D. Rogers, N. N. Mutyal, H. K. Roy, and V. Backman, “Characterization of light transport in scattering media at sub-diffusion length scales with Low-coherence Enhanced Backscattering,” IEEE J. Sel. Top. Quantum Electron.16(3), 619–626 (2010).
[CrossRef] [PubMed]

H. K. Roy, V. Turzhitsky, Y. Kim, M. J. Goldberg, P. Watson, J. D. Rogers, A. J. Gomes, A. Kromine, R. E. Brand, M. Jameel, A. Bogovejic, P. Pradhan, and V. Backman, “Association between rectal optical signatures and colonic neoplasia: potential applications for screening,” Cancer Res.69(10), 4476–4483 (2009).
[CrossRef] [PubMed]

J. D. Rogers, V. Stoyneva, V. Turzhitsky, N. Mutyal, Y. Ji, H. K. Roy, and V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at sub-diffusion length- scales,” IEEE J. Sel. Top. Quantum Electron. (to be published).

Turzhitsky, V. M.

Wagnières, G. A.

G. A. Wagnières, W. M. Star, and B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol.68(5), 603–632 (1998).
[PubMed]

Wali, R. K.

Wang, L.

Watson, P.

H. K. Roy, V. Turzhitsky, Y. Kim, M. J. Goldberg, P. Watson, J. D. Rogers, A. J. Gomes, A. Kromine, R. E. Brand, M. Jameel, A. Bogovejic, P. Pradhan, and V. Backman, “Association between rectal optical signatures and colonic neoplasia: potential applications for screening,” Cancer Res.69(10), 4476–4483 (2009).
[CrossRef] [PubMed]

Wilson, B. C.

G. A. Wagnières, W. M. Star, and B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol.68(5), 603–632 (1998).
[PubMed]

Yang, K.

A. Richter, K. Yang, F. Richter, H. T. Lynch, and M. Lipkin, “Morphological and morphometric measurements in colorectal mucosa of subjects at increased risk for colonic neoplasia,” Cancer Lett.74(1-2), 65–68 (1993).
[CrossRef] [PubMed]

Yu, B.

Appl. Opt. (2)

Cancer Lett. (1)

A. Richter, K. Yang, F. Richter, H. T. Lynch, and M. Lipkin, “Morphological and morphometric measurements in colorectal mucosa of subjects at increased risk for colonic neoplasia,” Cancer Lett.74(1-2), 65–68 (1993).
[CrossRef] [PubMed]

Cancer Res. (1)

H. K. Roy, V. Turzhitsky, Y. Kim, M. J. Goldberg, P. Watson, J. D. Rogers, A. J. Gomes, A. Kromine, R. E. Brand, M. Jameel, A. Bogovejic, P. Pradhan, and V. Backman, “Association between rectal optical signatures and colonic neoplasia: potential applications for screening,” Cancer Res.69(10), 4476–4483 (2009).
[CrossRef] [PubMed]

Gastrointest. Endosc. (1)

A. Dhar, K. S. Johnson, M. R. Novelli, S. G. Bown, I. J. Bigio, L. B. Lovat, and S. L. Bloom, “Elastic scattering spectroscopy for the diagnosis of colonic lesions: initial results of a novel optical biopsy technique,” Gastrointest. Endosc.63(2), 257–261 (2006).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (2)

J. D. Rogers, V. Stoyneva, V. Turzhitsky, N. Mutyal, Y. Ji, H. K. Roy, and V. Backman, “Polarized enhanced backscattering spectroscopy for characterization of biological tissues at sub-diffusion length- scales,” IEEE J. Sel. Top. Quantum Electron. (to be published).

V. Turzhitsky, J. D. Rogers, N. N. Mutyal, H. K. Roy, and V. Backman, “Characterization of light transport in scattering media at sub-diffusion length scales with Low-coherence Enhanced Backscattering,” IEEE J. Sel. Top. Quantum Electron.16(3), 619–626 (2010).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

V. Turzhitsky, N. N. Mutyal, A. J. Radosevich, and V. Backman, “Multiple scattering model for the penetration depth of low-coherence enhanced backscattering,” J. Biomed. Opt.16(9), 097006 (2011).
[CrossRef] [PubMed]

V. Turzhitsky, A. J. Radosevich, J. D. Rogers, N. N. Mutyal, and V. Backman, “Measurement of optical scattering properties with low-coherence enhanced backscattering spectroscopy,” J. Biomed. Opt.16(6), 067007 (2011).
[CrossRef] [PubMed]

J. Microscop. Sci. (1)

R. Barer and S. Joseph, “Refractometry of living cells,” J. Microscop. Sci.s3–95, 399–423 (1954).

Nat. Med. (1)

C. Booth, G. Brady, and C. S. Potten, “Crowd control in the crypt,” Nat. Med.8(12), 1360–1361 (2002).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (5)

Photochem. Photobiol. (1)

G. A. Wagnières, W. M. Star, and B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol.68(5), 603–632 (1998).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

LEBS peak can be experimentally observed in two ways: (a) lens-based observation and (b) lens-free observation. In lens-based observation the beam of light from a broadband light source is collimated using a lens and relayed to the sample; the backscattered light is then collimated by a lens onto the detector. In lens-free observation the light beam diverges onto the sample; the backscattered diverging beam can then be captured by the detector. The peak can be detected in a separate arm by placement of the beam splitter or in the exact backward direction (probe design) at the light source plane (when a beam splitter is absent).

Fig. 2
Fig. 2

In order to convert the 2D ex-vivo system (Fig. 1) to an in-vivo probe, the beam splitter is removed and the peak is detected in retro-reflective direction at the light source plane. The detectors are the fibers in array (Fig. 3 (b). A, A’&B) surrounding the light source fiber (Z) which collect several backscattering angle cones. (b&c) shows the lens-based and lens-free version of the probe assembly.

Fig. 3
Fig. 3

(a) 2D LEBS peak is shown for white reflectance standard with LSC 27µm at 680nm which is obtained from LEBS ex-vivo system. (b) The front end of the probe is shown, with fiber Z used as illumination and the other three (A’, A & B) used as collection. (c) Once the fiber geometry is superimposed on the LEBS 2D peak, the shown profile is obtained

Fig. 4
Fig. 4

(a) The LEBS intensities collected by various detection fibers of the probe geometry simulated by MC. The fibers A & A’ collect significantly higher (three times) intensity than B due to the presence of an interference signal (LEBS component) (b) The Diffuse Reflectance intensities collected by the same fibers show similar intensities when the interference signal is absent (LSC = 0).

Fig. 5
Fig. 5

(a) The background intensity with the probe pointing towards a dark corner is due to reflection at the fiber interface as is shown in the two probe assemblies. In the case of a lens-based LEBS probe the reflections are 2-3 times stronger due to the presence of reflections from the lens as compared to a lens-free LEBS probe, the consequence of which is a higher SNR for a white reflectance standard in the lens-free LEBS probe as depicted in (b).

Fig. 6
Fig. 6

(a) Depiction of an LEBS fiber optic probe configuration (length is shortened for illustrative purposes), with enlarged cross-section represented. The glass rod (green) is attached to the glass ferrule (yellow) containing four fibers arranged collinearly via an index-matched epoxy. Left inset shows an actual picture of the probe coming out from accessory channel of endoscope. (b) & (c) show the zy and xy cross sections, respectively, of the probe.

Fig. 7
Fig. 7

(a) The setup used for measurement of C(r) of the source (Z) channel of the LEBS probe (b) The experimentally observed C(r) from the LEBS probe corresponds very well with theoretical C(r) from Eq. (2) confirming an LSC of 27µm for the probe. (2)

Fig. 8
Fig. 8

(a) The experimental LEBS intensity (E(Θ,λ)) for a lens-free probe matches closely (r2~0.9) with interference (LEBS) MC simulation. The LEBS intensity shows a significant residual signal (IA-IB) from interference which is directly proportional to μs* while, diffuse reflectance (DR) MC signal is close to zero with no dependence on μs*.(b)An independent validation curve where the µs* measured from phantoms of prescribed optical properties by the probe shows excellent agreement (R2~0.99).

Fig. 9
Fig. 9

The validity of Eq. (13) is verified by comparing the average penetration depth (LSC = 27 µm) with the simulation using Mie theory phase function [14]. Good agreement (R2~0.99) is achieved between both indicating validity of the equation.

Fig. 10
Fig. 10

(a) Schematic of a two-layered phantom. The phantom consists of a superficial layer of thickness Ts and a basal layer of thickness TB. The basal layer is made of scatterers and Hb. The superficial layer is made only of scatterers but no absorber. (b) Shows a representative LEBS intensity spectrum for various superficial layer thicknesses. As the thickness is increased the absorption band vanishes, indicating a localization of LEBS photons to the top 130 microns.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

ILEBS(θ)=FT[P(r).C(r)]
IA,A(Θ=±0.6°,λ)=E(Θ=±0.6°,λ)+ IDiffuse(Θ=±0.6°,λ)
IB(Θ=1.18°,λ)=IDiffuse(Θ=1.18°,λ)
IDiffuse(Θ=±0.6°,λ)~IDiffuse(Θ=1.18°,λ)
E(Θ=±0.6°,λ)=IA,A(Θ=±0.6°,λ)IB(Θ=1.18°,λ)
E (Θ=±0.6°,λ) IDiffuse(Θ=±0.6°,λ)IDiffuse(Θ=1.18°,λ) >4
Lsc= λl 2πrn
C(r)= 2J1( r Lsc ) ( r Lsc )
DR=IDiffuse(Θ=±0.6°,λ)IDiffuse(Θ=1.18°,λ)
D f = dE(Θ=0.6°,λ)λc dλE(Θ=0.6°,λc *0.4+1.54
C(T)= o T p(Z)dZ
PDavg= zp(Z)dz
PDavg=a ( L SC ) 1b (ls*) b
a= a 0 + a 1 g+ a 2 g 2 b= b 0 + b 1 (1g) b 2

Metrics