## Abstract

We recently realized that there was an error in the expression of the non-linear interference power in case of distributed amplification reported in [G. Bosco Opt. Express **19** B438 (2011)] Eq. (4). In this erratum we correct the error in Eq. (4) and in all related equations and plots.

© 2012 OSA

Full Article |

PDF Article

**OSA Recommended Articles**
### Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.

### Equations (4)

Equations on this page are rendered with MathJax. Learn more.

(1)
$${P}_{\text{NLI}}^{\text{DA}}\approx \frac{16}{27}{\gamma}^{2}{L}_{\text{tot}}{P}_{\text{Tx},\text{ch}}^{3}\frac{\text{ln}\left({\pi}^{2}\left|{\beta}_{2}\right|{L}_{\text{tot}}{N}_{\text{ch}}^{2}{R}_{s}^{2}\right)}{\pi \left|{\beta}_{2}\right|{R}_{s}^{3}}{B}_{n}$$
(2)
$$d=\frac{16}{27}{\gamma}^{2}\frac{\text{ln}\left({\pi}^{2}\left|{\beta}_{2}\right|{L}_{\text{tot}}{B}_{\text{WDM}}^{2}\right)}{\pi \left|{\beta}_{2}\right|}$$
(3)
$${C}_{\text{max}}^{\text{DA}}=2{\text{log}}_{2}\left(1+\frac{1}{{L}_{\text{tot}}{\left[4\alpha h\nu {K}_{T}\right]}^{\frac{2}{3}}{\left[{\gamma}^{2}\text{ln}\left({\pi}^{2}\left|{\beta}_{2}\right|{L}_{\text{tot}}{B}_{WDM}^{2}\right)\right]}^{\frac{1}{3}}}\right)$$
(4)
$${G}_{Tx,\mathit{opt}}^{DA}={\left(\frac{c}{2d}\right)}^{\frac{1}{3}}=\frac{3}{{2}^{4/3}}{\left(\frac{2\alpha h\nu {K}_{T}\pi \left|{\beta}_{2}\right|}{{\gamma}^{2}\text{ln}\left({\pi}^{2}\left|{\beta}_{2}\right|{L}_{\text{tot}}{B}_{\text{WDM}}^{2}\right)}\right)}^{\frac{1}{3}}$$