Abstract

We demonstrate a free-running 3-GHz slab-coupled optical waveguide (SCOW) optoelectronic oscillator (OEO) with low phase-noise (<-120 dBc/Hz at 1-kHz offset) and ultra-low sidemode spurs. These sidemodes are indistinguishable from noise on a spectrum analyzer measurement (>88 dB down from carrier). The SCOW-OEO uses high-power low-noise SCOW components in a single-loop cavity employing 1.5-km delay. The noise properties of our SCOW external-cavity laser (SCOWECL) and SCOW photodiode (SCOWPD) are characterized and shown to be suitable for generation of high spectral purity microwave tones. Through comparisons made with SCOW-OEO topologies employing amplification, we observe the sidemode levels to be degraded by any amplifiers (optical or RF) introduced within the OEO cavity.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B13(8), 1725–1735 (1996).
    [CrossRef]
  2. X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron.32(7), 1141–1149 (1996).
    [CrossRef]
  3. Y. K. Chembo, K. Volyanskiy, L. Larger, E. Rubiola, and P. Colet, “Determination of phase noise spectra in optoelectronic microwave oscillators: a Langevin approach,” IEEE J. Quantum Electron.45(2), 178–186 (2009).
    [CrossRef]
  4. C. Henry, “Theory of spontaneous emission noise in open resonators and its application to lasers and optical amplifiers,” J. Lightwave Technol.4(3), 288–297 (1986).
    [CrossRef]
  5. D. Eliyahu, D. Seidel, and L. Maleki, “RF amplitude and phase-noise reduction of an optical link and an opto-electronic oscillator,” IEEE Trans. Microw. Theory Tech.56(2), 449–456 (2008).
    [CrossRef]
  6. D. Eliyahu, D. Seidel, and L. Maleki, “Phase noise of a high performance OEO and an ultra low noise floor cross-correlation microwave photonic homodyne system,” in Proc. FCS, (2008), pp. 811–814.
  7. C. W. Nelson, A. Hati, and D. A. Howe, “Relative intensity noise suppression for RF photonic links,” IEEE Photon. Technol. Lett.20(18), 1542–1544 (2008).
    [CrossRef]
  8. P. S. Devgan, V. J. Urick, J. F. Diehl, and K. J. Williams, “Improvement in the phase noise of a 10 GHz optoelectronic oscillator using all-photonic gain,” J. Lightwave Technol.27(15), 3189–3193 (2009).
    [CrossRef]
  9. W. Zhou, O. Okusaga, C. Nelson, D. Howe, and G. Carter, “10 GHz dual loop opto-electronic oscillator without RF-amplifiers,” in Proc. SPIE, (2008), pp. 68970Z–1–68970Z–6.
  10. W. Loh, F. J. O'Donnell, J. J. Plant, M. A. Brattain, L. J. Missaggia, and P. W. Juodawlkis, “Packaged, high-power, narrow-linewidth slab-coupled optical waveguide external cavity laser (SCOWECL),” IEEE Photon. Technol. Lett.23(14), 974–976 (2011).
    [CrossRef]
  11. J. Klamkin, S. M. Madison, D. C. Oakley, A. Napoleone, F. J. O’Donnell, M. Sheehan, L. J. Missaggia, J. M. Caissie, J. J. Plant, and P. W. Juodawlkis, “Uni-traveling-carrier variable confinement waveguide photodiodes,” Opt. Express19(11), 10199–10205 (2011).
    [CrossRef] [PubMed]
  12. P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O'Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-μm slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications,” IEEE J. Sel. Top. Quantum Electron.17(6), 1698–1714 (2011).
    [CrossRef]
  13. X. S. Yao and L. Maleki, “Ultralow phase noise dual-loop optoelectronic oscillator,” in Proc. OFC, (1998), pp. 353–354.
  14. W. Zhou and G. Blasche, “Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level,” IEEE Trans. Microw. Theory Tech.53(3), 929–933 (2005).
    [CrossRef]
  15. O. Okusaga, E. J. Adles, E. C. Levy, W. Zhou, G. M. Carter, C. R. Menyuk, and M. Horowitz, “Spurious mode reduction in dual injection-locked optoelectronic oscillators,” Opt. Express19(7), 5839–5854 (2011).
    [CrossRef] [PubMed]
  16. W. Loh, J. Klamkin, S. M. Madison, F. J. O'Donnell, J. J. Plant, S. Yegnanarayanan, R. J. Ram, and P. W. Juodawlkis, “Slab-coupled optical waveguide (SCOW) based optoelectronic oscillator (OEO),” in Proc. IPC, (2011), pp. 605–606.
  17. C. H. Cox, Analog Optical Links: Theory and Practice (Cambridge University Press, 2004).
  18. G. E. Obarski and J. D. Splett, “Transfer standard for the spectral density of relative intensity noise of optical fiber sources near 1550 nm,” J. Opt. Soc. Am. B18(6), 750–761 (2001).
    [CrossRef]
  19. W. Loh, S. Yegnanarayanan, R. J. Ram, and P. W. Juodawlkis, “Super-homogeneous saturation of microwave-photonic gain in optoelectronic oscillator systems,” IEEE Photon. J.4(5), 1256–1266 (2012).
    [CrossRef]
  20. A. David and M. Horowitz, “Low-frequency transmitted intensity noise induced by stimulated Brillouin scattering in optical fibers,” Opt. Express19(12), 11792–11803 (2011).
    [CrossRef] [PubMed]
  21. K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, “Traveling-wave photodetector theory,” IEEE Trans. Microw. Theory Tech.45(8), 1310–1319 (1997).
    [CrossRef]

2012

W. Loh, S. Yegnanarayanan, R. J. Ram, and P. W. Juodawlkis, “Super-homogeneous saturation of microwave-photonic gain in optoelectronic oscillator systems,” IEEE Photon. J.4(5), 1256–1266 (2012).
[CrossRef]

2011

A. David and M. Horowitz, “Low-frequency transmitted intensity noise induced by stimulated Brillouin scattering in optical fibers,” Opt. Express19(12), 11792–11803 (2011).
[CrossRef] [PubMed]

O. Okusaga, E. J. Adles, E. C. Levy, W. Zhou, G. M. Carter, C. R. Menyuk, and M. Horowitz, “Spurious mode reduction in dual injection-locked optoelectronic oscillators,” Opt. Express19(7), 5839–5854 (2011).
[CrossRef] [PubMed]

W. Loh, F. J. O'Donnell, J. J. Plant, M. A. Brattain, L. J. Missaggia, and P. W. Juodawlkis, “Packaged, high-power, narrow-linewidth slab-coupled optical waveguide external cavity laser (SCOWECL),” IEEE Photon. Technol. Lett.23(14), 974–976 (2011).
[CrossRef]

J. Klamkin, S. M. Madison, D. C. Oakley, A. Napoleone, F. J. O’Donnell, M. Sheehan, L. J. Missaggia, J. M. Caissie, J. J. Plant, and P. W. Juodawlkis, “Uni-traveling-carrier variable confinement waveguide photodiodes,” Opt. Express19(11), 10199–10205 (2011).
[CrossRef] [PubMed]

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O'Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-μm slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications,” IEEE J. Sel. Top. Quantum Electron.17(6), 1698–1714 (2011).
[CrossRef]

2009

Y. K. Chembo, K. Volyanskiy, L. Larger, E. Rubiola, and P. Colet, “Determination of phase noise spectra in optoelectronic microwave oscillators: a Langevin approach,” IEEE J. Quantum Electron.45(2), 178–186 (2009).
[CrossRef]

P. S. Devgan, V. J. Urick, J. F. Diehl, and K. J. Williams, “Improvement in the phase noise of a 10 GHz optoelectronic oscillator using all-photonic gain,” J. Lightwave Technol.27(15), 3189–3193 (2009).
[CrossRef]

2008

D. Eliyahu, D. Seidel, and L. Maleki, “RF amplitude and phase-noise reduction of an optical link and an opto-electronic oscillator,” IEEE Trans. Microw. Theory Tech.56(2), 449–456 (2008).
[CrossRef]

C. W. Nelson, A. Hati, and D. A. Howe, “Relative intensity noise suppression for RF photonic links,” IEEE Photon. Technol. Lett.20(18), 1542–1544 (2008).
[CrossRef]

2005

W. Zhou and G. Blasche, “Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level,” IEEE Trans. Microw. Theory Tech.53(3), 929–933 (2005).
[CrossRef]

2001

1997

K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, “Traveling-wave photodetector theory,” IEEE Trans. Microw. Theory Tech.45(8), 1310–1319 (1997).
[CrossRef]

1996

X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B13(8), 1725–1735 (1996).
[CrossRef]

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron.32(7), 1141–1149 (1996).
[CrossRef]

1986

C. Henry, “Theory of spontaneous emission noise in open resonators and its application to lasers and optical amplifiers,” J. Lightwave Technol.4(3), 288–297 (1986).
[CrossRef]

Adles, E. J.

Blasche, G.

W. Zhou and G. Blasche, “Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level,” IEEE Trans. Microw. Theory Tech.53(3), 929–933 (2005).
[CrossRef]

Bowers, J. E.

K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, “Traveling-wave photodetector theory,” IEEE Trans. Microw. Theory Tech.45(8), 1310–1319 (1997).
[CrossRef]

Brattain, M. A.

W. Loh, F. J. O'Donnell, J. J. Plant, M. A. Brattain, L. J. Missaggia, and P. W. Juodawlkis, “Packaged, high-power, narrow-linewidth slab-coupled optical waveguide external cavity laser (SCOWECL),” IEEE Photon. Technol. Lett.23(14), 974–976 (2011).
[CrossRef]

Caissie, J. M.

Carter, G. M.

Chembo, Y. K.

Y. K. Chembo, K. Volyanskiy, L. Larger, E. Rubiola, and P. Colet, “Determination of phase noise spectra in optoelectronic microwave oscillators: a Langevin approach,” IEEE J. Quantum Electron.45(2), 178–186 (2009).
[CrossRef]

Colet, P.

Y. K. Chembo, K. Volyanskiy, L. Larger, E. Rubiola, and P. Colet, “Determination of phase noise spectra in optoelectronic microwave oscillators: a Langevin approach,” IEEE J. Quantum Electron.45(2), 178–186 (2009).
[CrossRef]

David, A.

Delfyett, P. J.

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O'Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-μm slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications,” IEEE J. Sel. Top. Quantum Electron.17(6), 1698–1714 (2011).
[CrossRef]

Devgan, P. S.

Diehl, J. F.

Donnelly, J. P.

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O'Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-μm slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications,” IEEE J. Sel. Top. Quantum Electron.17(6), 1698–1714 (2011).
[CrossRef]

Eliyahu, D.

D. Eliyahu, D. Seidel, and L. Maleki, “RF amplitude and phase-noise reduction of an optical link and an opto-electronic oscillator,” IEEE Trans. Microw. Theory Tech.56(2), 449–456 (2008).
[CrossRef]

Gee, S.

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O'Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-μm slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications,” IEEE J. Sel. Top. Quantum Electron.17(6), 1698–1714 (2011).
[CrossRef]

Giboney, K. S.

K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, “Traveling-wave photodetector theory,” IEEE Trans. Microw. Theory Tech.45(8), 1310–1319 (1997).
[CrossRef]

Gopinath, J. T.

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O'Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-μm slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications,” IEEE J. Sel. Top. Quantum Electron.17(6), 1698–1714 (2011).
[CrossRef]

Hati, A.

C. W. Nelson, A. Hati, and D. A. Howe, “Relative intensity noise suppression for RF photonic links,” IEEE Photon. Technol. Lett.20(18), 1542–1544 (2008).
[CrossRef]

Henry, C.

C. Henry, “Theory of spontaneous emission noise in open resonators and its application to lasers and optical amplifiers,” J. Lightwave Technol.4(3), 288–297 (1986).
[CrossRef]

Horowitz, M.

Howe, D. A.

C. W. Nelson, A. Hati, and D. A. Howe, “Relative intensity noise suppression for RF photonic links,” IEEE Photon. Technol. Lett.20(18), 1542–1544 (2008).
[CrossRef]

Juodawlkis, P. W.

W. Loh, S. Yegnanarayanan, R. J. Ram, and P. W. Juodawlkis, “Super-homogeneous saturation of microwave-photonic gain in optoelectronic oscillator systems,” IEEE Photon. J.4(5), 1256–1266 (2012).
[CrossRef]

J. Klamkin, S. M. Madison, D. C. Oakley, A. Napoleone, F. J. O’Donnell, M. Sheehan, L. J. Missaggia, J. M. Caissie, J. J. Plant, and P. W. Juodawlkis, “Uni-traveling-carrier variable confinement waveguide photodiodes,” Opt. Express19(11), 10199–10205 (2011).
[CrossRef] [PubMed]

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O'Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-μm slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications,” IEEE J. Sel. Top. Quantum Electron.17(6), 1698–1714 (2011).
[CrossRef]

W. Loh, F. J. O'Donnell, J. J. Plant, M. A. Brattain, L. J. Missaggia, and P. W. Juodawlkis, “Packaged, high-power, narrow-linewidth slab-coupled optical waveguide external cavity laser (SCOWECL),” IEEE Photon. Technol. Lett.23(14), 974–976 (2011).
[CrossRef]

Klamkin, J.

J. Klamkin, S. M. Madison, D. C. Oakley, A. Napoleone, F. J. O’Donnell, M. Sheehan, L. J. Missaggia, J. M. Caissie, J. J. Plant, and P. W. Juodawlkis, “Uni-traveling-carrier variable confinement waveguide photodiodes,” Opt. Express19(11), 10199–10205 (2011).
[CrossRef] [PubMed]

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O'Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-μm slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications,” IEEE J. Sel. Top. Quantum Electron.17(6), 1698–1714 (2011).
[CrossRef]

Larger, L.

Y. K. Chembo, K. Volyanskiy, L. Larger, E. Rubiola, and P. Colet, “Determination of phase noise spectra in optoelectronic microwave oscillators: a Langevin approach,” IEEE J. Quantum Electron.45(2), 178–186 (2009).
[CrossRef]

Levy, E. C.

Loh, W.

W. Loh, S. Yegnanarayanan, R. J. Ram, and P. W. Juodawlkis, “Super-homogeneous saturation of microwave-photonic gain in optoelectronic oscillator systems,” IEEE Photon. J.4(5), 1256–1266 (2012).
[CrossRef]

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O'Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-μm slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications,” IEEE J. Sel. Top. Quantum Electron.17(6), 1698–1714 (2011).
[CrossRef]

W. Loh, F. J. O'Donnell, J. J. Plant, M. A. Brattain, L. J. Missaggia, and P. W. Juodawlkis, “Packaged, high-power, narrow-linewidth slab-coupled optical waveguide external cavity laser (SCOWECL),” IEEE Photon. Technol. Lett.23(14), 974–976 (2011).
[CrossRef]

Madison, S. M.

Maleki, L.

D. Eliyahu, D. Seidel, and L. Maleki, “RF amplitude and phase-noise reduction of an optical link and an opto-electronic oscillator,” IEEE Trans. Microw. Theory Tech.56(2), 449–456 (2008).
[CrossRef]

X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B13(8), 1725–1735 (1996).
[CrossRef]

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron.32(7), 1141–1149 (1996).
[CrossRef]

Menyuk, C. R.

Missaggia, L. J.

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O'Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-μm slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications,” IEEE J. Sel. Top. Quantum Electron.17(6), 1698–1714 (2011).
[CrossRef]

J. Klamkin, S. M. Madison, D. C. Oakley, A. Napoleone, F. J. O’Donnell, M. Sheehan, L. J. Missaggia, J. M. Caissie, J. J. Plant, and P. W. Juodawlkis, “Uni-traveling-carrier variable confinement waveguide photodiodes,” Opt. Express19(11), 10199–10205 (2011).
[CrossRef] [PubMed]

W. Loh, F. J. O'Donnell, J. J. Plant, M. A. Brattain, L. J. Missaggia, and P. W. Juodawlkis, “Packaged, high-power, narrow-linewidth slab-coupled optical waveguide external cavity laser (SCOWECL),” IEEE Photon. Technol. Lett.23(14), 974–976 (2011).
[CrossRef]

Napoleone, A.

J. Klamkin, S. M. Madison, D. C. Oakley, A. Napoleone, F. J. O’Donnell, M. Sheehan, L. J. Missaggia, J. M. Caissie, J. J. Plant, and P. W. Juodawlkis, “Uni-traveling-carrier variable confinement waveguide photodiodes,” Opt. Express19(11), 10199–10205 (2011).
[CrossRef] [PubMed]

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O'Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-μm slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications,” IEEE J. Sel. Top. Quantum Electron.17(6), 1698–1714 (2011).
[CrossRef]

Nelson, C. W.

C. W. Nelson, A. Hati, and D. A. Howe, “Relative intensity noise suppression for RF photonic links,” IEEE Photon. Technol. Lett.20(18), 1542–1544 (2008).
[CrossRef]

O’Donnell, F. J.

Oakley, D. C.

J. Klamkin, S. M. Madison, D. C. Oakley, A. Napoleone, F. J. O’Donnell, M. Sheehan, L. J. Missaggia, J. M. Caissie, J. J. Plant, and P. W. Juodawlkis, “Uni-traveling-carrier variable confinement waveguide photodiodes,” Opt. Express19(11), 10199–10205 (2011).
[CrossRef] [PubMed]

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O'Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-μm slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications,” IEEE J. Sel. Top. Quantum Electron.17(6), 1698–1714 (2011).
[CrossRef]

Obarski, G. E.

O'Donnell, F. J.

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O'Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-μm slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications,” IEEE J. Sel. Top. Quantum Electron.17(6), 1698–1714 (2011).
[CrossRef]

W. Loh, F. J. O'Donnell, J. J. Plant, M. A. Brattain, L. J. Missaggia, and P. W. Juodawlkis, “Packaged, high-power, narrow-linewidth slab-coupled optical waveguide external cavity laser (SCOWECL),” IEEE Photon. Technol. Lett.23(14), 974–976 (2011).
[CrossRef]

Okusaga, O.

Plant, J. J.

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O'Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-μm slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications,” IEEE J. Sel. Top. Quantum Electron.17(6), 1698–1714 (2011).
[CrossRef]

W. Loh, F. J. O'Donnell, J. J. Plant, M. A. Brattain, L. J. Missaggia, and P. W. Juodawlkis, “Packaged, high-power, narrow-linewidth slab-coupled optical waveguide external cavity laser (SCOWECL),” IEEE Photon. Technol. Lett.23(14), 974–976 (2011).
[CrossRef]

J. Klamkin, S. M. Madison, D. C. Oakley, A. Napoleone, F. J. O’Donnell, M. Sheehan, L. J. Missaggia, J. M. Caissie, J. J. Plant, and P. W. Juodawlkis, “Uni-traveling-carrier variable confinement waveguide photodiodes,” Opt. Express19(11), 10199–10205 (2011).
[CrossRef] [PubMed]

Ram, R. J.

W. Loh, S. Yegnanarayanan, R. J. Ram, and P. W. Juodawlkis, “Super-homogeneous saturation of microwave-photonic gain in optoelectronic oscillator systems,” IEEE Photon. J.4(5), 1256–1266 (2012).
[CrossRef]

Ripin, D. J.

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O'Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-μm slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications,” IEEE J. Sel. Top. Quantum Electron.17(6), 1698–1714 (2011).
[CrossRef]

Rodwell, M. J. W.

K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, “Traveling-wave photodetector theory,” IEEE Trans. Microw. Theory Tech.45(8), 1310–1319 (1997).
[CrossRef]

Rubiola, E.

Y. K. Chembo, K. Volyanskiy, L. Larger, E. Rubiola, and P. Colet, “Determination of phase noise spectra in optoelectronic microwave oscillators: a Langevin approach,” IEEE J. Quantum Electron.45(2), 178–186 (2009).
[CrossRef]

Seidel, D.

D. Eliyahu, D. Seidel, and L. Maleki, “RF amplitude and phase-noise reduction of an optical link and an opto-electronic oscillator,” IEEE Trans. Microw. Theory Tech.56(2), 449–456 (2008).
[CrossRef]

Sheehan, M.

Splett, J. D.

Urick, V. J.

Volyanskiy, K.

Y. K. Chembo, K. Volyanskiy, L. Larger, E. Rubiola, and P. Colet, “Determination of phase noise spectra in optoelectronic microwave oscillators: a Langevin approach,” IEEE J. Quantum Electron.45(2), 178–186 (2009).
[CrossRef]

Williams, K. J.

Yao, X. S.

X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B13(8), 1725–1735 (1996).
[CrossRef]

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron.32(7), 1141–1149 (1996).
[CrossRef]

Yegnanarayanan, S.

W. Loh, S. Yegnanarayanan, R. J. Ram, and P. W. Juodawlkis, “Super-homogeneous saturation of microwave-photonic gain in optoelectronic oscillator systems,” IEEE Photon. J.4(5), 1256–1266 (2012).
[CrossRef]

Zhou, W.

O. Okusaga, E. J. Adles, E. C. Levy, W. Zhou, G. M. Carter, C. R. Menyuk, and M. Horowitz, “Spurious mode reduction in dual injection-locked optoelectronic oscillators,” Opt. Express19(7), 5839–5854 (2011).
[CrossRef] [PubMed]

W. Zhou and G. Blasche, “Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level,” IEEE Trans. Microw. Theory Tech.53(3), 929–933 (2005).
[CrossRef]

IEEE J. Quantum Electron.

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron.32(7), 1141–1149 (1996).
[CrossRef]

Y. K. Chembo, K. Volyanskiy, L. Larger, E. Rubiola, and P. Colet, “Determination of phase noise spectra in optoelectronic microwave oscillators: a Langevin approach,” IEEE J. Quantum Electron.45(2), 178–186 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

P. W. Juodawlkis, J. J. Plant, W. Loh, L. J. Missaggia, F. J. O'Donnell, D. C. Oakley, A. Napoleone, J. Klamkin, J. T. Gopinath, D. J. Ripin, S. Gee, P. J. Delfyett, and J. P. Donnelly, “High-power, low-noise 1.5-μm slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications,” IEEE J. Sel. Top. Quantum Electron.17(6), 1698–1714 (2011).
[CrossRef]

IEEE Photon. J.

W. Loh, S. Yegnanarayanan, R. J. Ram, and P. W. Juodawlkis, “Super-homogeneous saturation of microwave-photonic gain in optoelectronic oscillator systems,” IEEE Photon. J.4(5), 1256–1266 (2012).
[CrossRef]

IEEE Photon. Technol. Lett.

C. W. Nelson, A. Hati, and D. A. Howe, “Relative intensity noise suppression for RF photonic links,” IEEE Photon. Technol. Lett.20(18), 1542–1544 (2008).
[CrossRef]

W. Loh, F. J. O'Donnell, J. J. Plant, M. A. Brattain, L. J. Missaggia, and P. W. Juodawlkis, “Packaged, high-power, narrow-linewidth slab-coupled optical waveguide external cavity laser (SCOWECL),” IEEE Photon. Technol. Lett.23(14), 974–976 (2011).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

D. Eliyahu, D. Seidel, and L. Maleki, “RF amplitude and phase-noise reduction of an optical link and an opto-electronic oscillator,” IEEE Trans. Microw. Theory Tech.56(2), 449–456 (2008).
[CrossRef]

W. Zhou and G. Blasche, “Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level,” IEEE Trans. Microw. Theory Tech.53(3), 929–933 (2005).
[CrossRef]

K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, “Traveling-wave photodetector theory,” IEEE Trans. Microw. Theory Tech.45(8), 1310–1319 (1997).
[CrossRef]

J. Lightwave Technol.

C. Henry, “Theory of spontaneous emission noise in open resonators and its application to lasers and optical amplifiers,” J. Lightwave Technol.4(3), 288–297 (1986).
[CrossRef]

P. S. Devgan, V. J. Urick, J. F. Diehl, and K. J. Williams, “Improvement in the phase noise of a 10 GHz optoelectronic oscillator using all-photonic gain,” J. Lightwave Technol.27(15), 3189–3193 (2009).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Other

W. Zhou, O. Okusaga, C. Nelson, D. Howe, and G. Carter, “10 GHz dual loop opto-electronic oscillator without RF-amplifiers,” in Proc. SPIE, (2008), pp. 68970Z–1–68970Z–6.

D. Eliyahu, D. Seidel, and L. Maleki, “Phase noise of a high performance OEO and an ultra low noise floor cross-correlation microwave photonic homodyne system,” in Proc. FCS, (2008), pp. 811–814.

W. Loh, J. Klamkin, S. M. Madison, F. J. O'Donnell, J. J. Plant, S. Yegnanarayanan, R. J. Ram, and P. W. Juodawlkis, “Slab-coupled optical waveguide (SCOW) based optoelectronic oscillator (OEO),” in Proc. IPC, (2011), pp. 605–606.

C. H. Cox, Analog Optical Links: Theory and Practice (Cambridge University Press, 2004).

X. S. Yao and L. Maleki, “Ultralow phase noise dual-loop optoelectronic oscillator,” in Proc. OFC, (1998), pp. 353–354.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of SCOW-OEO system.

Fig. 2
Fig. 2

Measured SCOWECL (solid squares) and commercial ECL (open circles) (a) low-frequency (10 Hz-2 MHz) and (b) high-frequency (10 Hz – 10 GHz) RIN with corresponding shot-noise floor (solid line). The RIN of a Lightwave Electronics Nd:YAG laser (dashed line) is also provided for comparison (assumed shot-noise limited at high-frequencies).

Fig. 4
Fig. 4

Measured SCOW-OEO phase noise operating under (a) highest performance conditions (phase modulation, no RF amplification) and (b) lower performance conditions (phase modulation, RF amplification and no phase modulation, no RF amplification). The noise-floor of the SSA (dashed line) is also provided.

Fig. 3
Fig. 3

Measured dependence of VC-SCOWPD phase (solid squares) and amplitude (open circles) on DC photocurrent at 3 GHz operation and −3.5 V DC bias.

Fig. 5
Fig. 5

Measured SCOW-OEO RF spectrum at (a) low offset frequencies (−2.5 kHz to 2.5 kHz) and (b) and high offset frequencies (−175 kHz to 175 kHz) under varying operating conditions.

Fig. 6
Fig. 6

Measured 3 GHz SCOW-OEO phase-noise for two configurations: one comprising a DSC50S + low-noise RF amplifier and one comprising a VC-SCOWPD. Cross-correlation averaging (1000x) was used for reducing the noise-floor (dashed line) of the measurement system.

Metrics