Abstract

We present a simple, cost-effective, large scale fabrication technique for antireflective disordered subwavelength structures (d-SWSs) on GaAs substrate by Ag etch masks formed using spin-coated Ag ink and subsequent inductively coupled plasma (ICP) etching process. The antireflection characteristics of GaAs d-SWSs rely on their geometric profiles, which were controlled by adjusting the distribution of Ag etch masks via changing the concentration of Ag atoms and the sintering temperature of Ag ink as well as the ICP etching conditions. The fabricated GaAs d-SWSs drastically reduced the reflection loss compared to that of bulk GaAs (>30%) in the wavelength range of 300-870 nm. The most desirable GaAs d-SWSs for practical solar cell applications exhibited a solar-weighted reflectance (SWR) of 2.12%, which is much lower than that of bulk GaAs (38.6%), and its incident angle-dependent SWR was also investigated.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Yoon, S. Jo, I. S. Chun, I. Jung, H. S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature465(7296), 329–333 (2010).
    [CrossRef] [PubMed]
  2. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007).
    [CrossRef]
  3. B. H. Na, G. W. Ju, H. J. Choi, Y. C. Cho, Y. H. Park, and Y. T. Lee, “Large aperture asymmetric Fabry Perot modulator based on asymmetric tandem quantum well for low voltage operation,” Opt. Express20(6), 6003–6009 (2012).
    [CrossRef] [PubMed]
  4. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 39),” Prog. Photovolt. Res. Appl.20(1), 12–20 (2012).
    [CrossRef]
  5. B. J. Kim and J. Kim, “Fabrication of GaAs subwavelength structure (SWS) for solar cell applications,” Opt. Express19(S3Suppl 3), A326–A330 (2011).
    [CrossRef] [PubMed]
  6. Y. M. Song, S. Y. Bae, J. S. Yu, and Y. T. Lee, “Closely packed and aspect-ratio-controlled antireflection subwavelength gratings on GaAs using a lenslike shape transfer,” Opt. Lett.34(11), 1702–1704 (2009).
    [CrossRef] [PubMed]
  7. S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett.93(13), 133108 (2008).
    [CrossRef]
  8. A. R. Parker and H. E. Townley, “Biomimetics of photonic nanostructures,” Nat. Nanotechnol.2(6), 347–353 (2007).
    [CrossRef] [PubMed]
  9. Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small6(9), 984–987 (2010).
    [CrossRef] [PubMed]
  10. J. Tommila, V. Polojärvi, A. Aho, A. Tukianinen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells94(10), 1845–1848 (2010).
    [CrossRef]
  11. Y. Lee, K. Koh, H. Na, K. Kim, J.-J. Kang, and J. Kim, “Lithography-free fabrication of large area subwavelength antireflection structures using thermally dewetted Pt/Pd alloy etch mask,” Nanoscale Res. Lett.4(4), 364–370 (2009).
    [CrossRef] [PubMed]
  12. J. W. Leem, J. S. Yu, Y. M. Song, and Y. T. Lee, “Antireflective characteristics of disordered GaAs subwavelength structures by thermally dewetted Au nanoparticles,” Sol. Energy Mater. Sol. Cells95(2), 669–676 (2011).
    [CrossRef]
  13. C. H. Chiu, P. Yu, H. C. Kuo, C. C. Chen, T. C. Lu, S. C. Wang, S. H. Hsu, Y. J. Cheng, and Y. C. Chang, “Broadband and omnidirectional antireflection employing disordered GaN nanopillars,” Opt. Express16(12), 8748–8754 (2008).
    [CrossRef] [PubMed]
  14. C. I. Yeo, Y. M. Song, S. J. Jang, and Y. T. Lee, “Wafer-scale broadband antireflective silicon fabricated by metal-assisted chemical etching using spin-coating Ag ink,” Opt. Express19(S5Suppl 5), A1109–A1116 (2011).
    [CrossRef] [PubMed]
  15. Y. Dan, K. Seo, K. Takei, J. H. Meza, A. Javey, and K. B. Crozier, “Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires,” Nano Lett.11(6), 2527–2532 (2011).
    [CrossRef] [PubMed]
  16. J. M. Lee and B. I. Kim, “Thermal dewetting of Pt thin film: Etch-masks for the fabrication of semiconductor nanostructures,” Mater. Sci. Eng. A449–451, 769–773 (2007).
    [CrossRef]
  17. Y. Kojima and T. Kato, “Nanoparticle formation in Au thin films by electron-beam-induced dewetting,” Nanotechnology19(25), 255605 (2008).
    [CrossRef] [PubMed]
  18. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am.71(7), 811–818 (1981).
    [CrossRef]
  19. Web site for NREL’s AM1.5 Standard Data set: http://rredc.nrel.gov/solar/spectra/am1.5/ .
  20. H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl.15(5), 415–423 (2007).
    [CrossRef]

2012 (2)

2011 (4)

B. J. Kim and J. Kim, “Fabrication of GaAs subwavelength structure (SWS) for solar cell applications,” Opt. Express19(S3Suppl 3), A326–A330 (2011).
[CrossRef] [PubMed]

J. W. Leem, J. S. Yu, Y. M. Song, and Y. T. Lee, “Antireflective characteristics of disordered GaAs subwavelength structures by thermally dewetted Au nanoparticles,” Sol. Energy Mater. Sol. Cells95(2), 669–676 (2011).
[CrossRef]

C. I. Yeo, Y. M. Song, S. J. Jang, and Y. T. Lee, “Wafer-scale broadband antireflective silicon fabricated by metal-assisted chemical etching using spin-coating Ag ink,” Opt. Express19(S5Suppl 5), A1109–A1116 (2011).
[CrossRef] [PubMed]

Y. Dan, K. Seo, K. Takei, J. H. Meza, A. Javey, and K. B. Crozier, “Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires,” Nano Lett.11(6), 2527–2532 (2011).
[CrossRef] [PubMed]

2010 (3)

J. Yoon, S. Jo, I. S. Chun, I. Jung, H. S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature465(7296), 329–333 (2010).
[CrossRef] [PubMed]

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small6(9), 984–987 (2010).
[CrossRef] [PubMed]

J. Tommila, V. Polojärvi, A. Aho, A. Tukianinen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells94(10), 1845–1848 (2010).
[CrossRef]

2009 (2)

Y. Lee, K. Koh, H. Na, K. Kim, J.-J. Kang, and J. Kim, “Lithography-free fabrication of large area subwavelength antireflection structures using thermally dewetted Pt/Pd alloy etch mask,” Nanoscale Res. Lett.4(4), 364–370 (2009).
[CrossRef] [PubMed]

Y. M. Song, S. Y. Bae, J. S. Yu, and Y. T. Lee, “Closely packed and aspect-ratio-controlled antireflection subwavelength gratings on GaAs using a lenslike shape transfer,” Opt. Lett.34(11), 1702–1704 (2009).
[CrossRef] [PubMed]

2008 (3)

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett.93(13), 133108 (2008).
[CrossRef]

C. H. Chiu, P. Yu, H. C. Kuo, C. C. Chen, T. C. Lu, S. C. Wang, S. H. Hsu, Y. J. Cheng, and Y. C. Chang, “Broadband and omnidirectional antireflection employing disordered GaN nanopillars,” Opt. Express16(12), 8748–8754 (2008).
[CrossRef] [PubMed]

Y. Kojima and T. Kato, “Nanoparticle formation in Au thin films by electron-beam-induced dewetting,” Nanotechnology19(25), 255605 (2008).
[CrossRef] [PubMed]

2007 (4)

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl.15(5), 415–423 (2007).
[CrossRef]

J. M. Lee and B. I. Kim, “Thermal dewetting of Pt thin film: Etch-masks for the fabrication of semiconductor nanostructures,” Mater. Sci. Eng. A449–451, 769–773 (2007).
[CrossRef]

A. R. Parker and H. E. Townley, “Biomimetics of photonic nanostructures,” Nat. Nanotechnol.2(6), 347–353 (2007).
[CrossRef] [PubMed]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007).
[CrossRef]

1981 (1)

Aho, A.

J. Tommila, V. Polojärvi, A. Aho, A. Tukianinen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells94(10), 1845–1848 (2010).
[CrossRef]

Arafune, K.

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl.15(5), 415–423 (2007).
[CrossRef]

Bae, S. Y.

Bagnall, D. M.

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett.93(13), 133108 (2008).
[CrossRef]

Boden, S. A.

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett.93(13), 133108 (2008).
[CrossRef]

Chang, Y. C.

Chang-Hasnain, C. J.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007).
[CrossRef]

Chen, C. C.

Cheng, Y. J.

Chiu, C. H.

Cho, Y. C.

Choi, H. J.

Chun, I. S.

J. Yoon, S. Jo, I. S. Chun, I. Jung, H. S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature465(7296), 329–333 (2010).
[CrossRef] [PubMed]

Coleman, J. J.

J. Yoon, S. Jo, I. S. Chun, I. Jung, H. S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature465(7296), 329–333 (2010).
[CrossRef] [PubMed]

Crozier, K. B.

Y. Dan, K. Seo, K. Takei, J. H. Meza, A. Javey, and K. B. Crozier, “Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires,” Nano Lett.11(6), 2527–2532 (2011).
[CrossRef] [PubMed]

Dan, Y.

Y. Dan, K. Seo, K. Takei, J. H. Meza, A. Javey, and K. B. Crozier, “Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires,” Nano Lett.11(6), 2527–2532 (2011).
[CrossRef] [PubMed]

Dunlop, E. D.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 39),” Prog. Photovolt. Res. Appl.20(1), 12–20 (2012).
[CrossRef]

Emery, K.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 39),” Prog. Photovolt. Res. Appl.20(1), 12–20 (2012).
[CrossRef]

Gaylord, T. K.

Green, M. A.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 39),” Prog. Photovolt. Res. Appl.20(1), 12–20 (2012).
[CrossRef]

Guina, M.

J. Tommila, V. Polojärvi, A. Aho, A. Tukianinen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells94(10), 1845–1848 (2010).
[CrossRef]

Hishikawa, Y.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 39),” Prog. Photovolt. Res. Appl.20(1), 12–20 (2012).
[CrossRef]

Hsu, S. H.

Huang, M. C. Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007).
[CrossRef]

Jang, S. J.

Javey, A.

Y. Dan, K. Seo, K. Takei, J. H. Meza, A. Javey, and K. B. Crozier, “Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires,” Nano Lett.11(6), 2527–2532 (2011).
[CrossRef] [PubMed]

Jo, S.

J. Yoon, S. Jo, I. S. Chun, I. Jung, H. S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature465(7296), 329–333 (2010).
[CrossRef] [PubMed]

Ju, G. W.

Jung, I.

J. Yoon, S. Jo, I. S. Chun, I. Jung, H. S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature465(7296), 329–333 (2010).
[CrossRef] [PubMed]

Kanamori, Y.

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl.15(5), 415–423 (2007).
[CrossRef]

Kang, J.-J.

Y. Lee, K. Koh, H. Na, K. Kim, J.-J. Kang, and J. Kim, “Lithography-free fabrication of large area subwavelength antireflection structures using thermally dewetted Pt/Pd alloy etch mask,” Nanoscale Res. Lett.4(4), 364–370 (2009).
[CrossRef] [PubMed]

Kato, T.

Y. Kojima and T. Kato, “Nanoparticle formation in Au thin films by electron-beam-induced dewetting,” Nanotechnology19(25), 255605 (2008).
[CrossRef] [PubMed]

Kim, B. I.

J. M. Lee and B. I. Kim, “Thermal dewetting of Pt thin film: Etch-masks for the fabrication of semiconductor nanostructures,” Mater. Sci. Eng. A449–451, 769–773 (2007).
[CrossRef]

Kim, B. J.

Kim, H. S.

J. Yoon, S. Jo, I. S. Chun, I. Jung, H. S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature465(7296), 329–333 (2010).
[CrossRef] [PubMed]

Kim, J.

B. J. Kim and J. Kim, “Fabrication of GaAs subwavelength structure (SWS) for solar cell applications,” Opt. Express19(S3Suppl 3), A326–A330 (2011).
[CrossRef] [PubMed]

Y. Lee, K. Koh, H. Na, K. Kim, J.-J. Kang, and J. Kim, “Lithography-free fabrication of large area subwavelength antireflection structures using thermally dewetted Pt/Pd alloy etch mask,” Nanoscale Res. Lett.4(4), 364–370 (2009).
[CrossRef] [PubMed]

Kim, K.

Y. Lee, K. Koh, H. Na, K. Kim, J.-J. Kang, and J. Kim, “Lithography-free fabrication of large area subwavelength antireflection structures using thermally dewetted Pt/Pd alloy etch mask,” Nanoscale Res. Lett.4(4), 364–370 (2009).
[CrossRef] [PubMed]

Koh, K.

Y. Lee, K. Koh, H. Na, K. Kim, J.-J. Kang, and J. Kim, “Lithography-free fabrication of large area subwavelength antireflection structures using thermally dewetted Pt/Pd alloy etch mask,” Nanoscale Res. Lett.4(4), 364–370 (2009).
[CrossRef] [PubMed]

Kojima, Y.

Y. Kojima and T. Kato, “Nanoparticle formation in Au thin films by electron-beam-induced dewetting,” Nanotechnology19(25), 255605 (2008).
[CrossRef] [PubMed]

Kontio, J. M.

J. Tommila, V. Polojärvi, A. Aho, A. Tukianinen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells94(10), 1845–1848 (2010).
[CrossRef]

Kuo, H. C.

Lee, J. M.

J. M. Lee and B. I. Kim, “Thermal dewetting of Pt thin film: Etch-masks for the fabrication of semiconductor nanostructures,” Mater. Sci. Eng. A449–451, 769–773 (2007).
[CrossRef]

Lee, Y.

Y. Lee, K. Koh, H. Na, K. Kim, J.-J. Kang, and J. Kim, “Lithography-free fabrication of large area subwavelength antireflection structures using thermally dewetted Pt/Pd alloy etch mask,” Nanoscale Res. Lett.4(4), 364–370 (2009).
[CrossRef] [PubMed]

Lee, Y. T.

Leem, J. W.

J. W. Leem, J. S. Yu, Y. M. Song, and Y. T. Lee, “Antireflective characteristics of disordered GaAs subwavelength structures by thermally dewetted Au nanoparticles,” Sol. Energy Mater. Sol. Cells95(2), 669–676 (2011).
[CrossRef]

Li, X.

J. Yoon, S. Jo, I. S. Chun, I. Jung, H. S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature465(7296), 329–333 (2010).
[CrossRef] [PubMed]

Lu, T. C.

Meitl, M.

J. Yoon, S. Jo, I. S. Chun, I. Jung, H. S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature465(7296), 329–333 (2010).
[CrossRef] [PubMed]

Menard, E.

J. Yoon, S. Jo, I. S. Chun, I. Jung, H. S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature465(7296), 329–333 (2010).
[CrossRef] [PubMed]

Meza, J. H.

Y. Dan, K. Seo, K. Takei, J. H. Meza, A. Javey, and K. B. Crozier, “Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires,” Nano Lett.11(6), 2527–2532 (2011).
[CrossRef] [PubMed]

Moharam, M. G.

Na, B. H.

Na, H.

Y. Lee, K. Koh, H. Na, K. Kim, J.-J. Kang, and J. Kim, “Lithography-free fabrication of large area subwavelength antireflection structures using thermally dewetted Pt/Pd alloy etch mask,” Nanoscale Res. Lett.4(4), 364–370 (2009).
[CrossRef] [PubMed]

Niemi, T.

J. Tommila, V. Polojärvi, A. Aho, A. Tukianinen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells94(10), 1845–1848 (2010).
[CrossRef]

Ohshita, Y.

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl.15(5), 415–423 (2007).
[CrossRef]

Paik, U.

J. Yoon, S. Jo, I. S. Chun, I. Jung, H. S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature465(7296), 329–333 (2010).
[CrossRef] [PubMed]

Park, Y. H.

Parker, A. R.

A. R. Parker and H. E. Townley, “Biomimetics of photonic nanostructures,” Nat. Nanotechnol.2(6), 347–353 (2007).
[CrossRef] [PubMed]

Polojärvi, V.

J. Tommila, V. Polojärvi, A. Aho, A. Tukianinen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells94(10), 1845–1848 (2010).
[CrossRef]

Rogers, J. A.

J. Yoon, S. Jo, I. S. Chun, I. Jung, H. S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature465(7296), 329–333 (2010).
[CrossRef] [PubMed]

Sai, H.

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl.15(5), 415–423 (2007).
[CrossRef]

Salmi, J.

J. Tommila, V. Polojärvi, A. Aho, A. Tukianinen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells94(10), 1845–1848 (2010).
[CrossRef]

Schramm, A.

J. Tommila, V. Polojärvi, A. Aho, A. Tukianinen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells94(10), 1845–1848 (2010).
[CrossRef]

Seo, K.

Y. Dan, K. Seo, K. Takei, J. H. Meza, A. Javey, and K. B. Crozier, “Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires,” Nano Lett.11(6), 2527–2532 (2011).
[CrossRef] [PubMed]

Song, Y. M.

C. I. Yeo, Y. M. Song, S. J. Jang, and Y. T. Lee, “Wafer-scale broadband antireflective silicon fabricated by metal-assisted chemical etching using spin-coating Ag ink,” Opt. Express19(S5Suppl 5), A1109–A1116 (2011).
[CrossRef] [PubMed]

J. W. Leem, J. S. Yu, Y. M. Song, and Y. T. Lee, “Antireflective characteristics of disordered GaAs subwavelength structures by thermally dewetted Au nanoparticles,” Sol. Energy Mater. Sol. Cells95(2), 669–676 (2011).
[CrossRef]

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small6(9), 984–987 (2010).
[CrossRef] [PubMed]

Y. M. Song, S. Y. Bae, J. S. Yu, and Y. T. Lee, “Closely packed and aspect-ratio-controlled antireflection subwavelength gratings on GaAs using a lenslike shape transfer,” Opt. Lett.34(11), 1702–1704 (2009).
[CrossRef] [PubMed]

Takei, K.

Y. Dan, K. Seo, K. Takei, J. H. Meza, A. Javey, and K. B. Crozier, “Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires,” Nano Lett.11(6), 2527–2532 (2011).
[CrossRef] [PubMed]

Tommila, J.

J. Tommila, V. Polojärvi, A. Aho, A. Tukianinen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells94(10), 1845–1848 (2010).
[CrossRef]

Townley, H. E.

A. R. Parker and H. E. Townley, “Biomimetics of photonic nanostructures,” Nat. Nanotechnol.2(6), 347–353 (2007).
[CrossRef] [PubMed]

Tukianinen, A.

J. Tommila, V. Polojärvi, A. Aho, A. Tukianinen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells94(10), 1845–1848 (2010).
[CrossRef]

Turtiainen, A.

J. Tommila, V. Polojärvi, A. Aho, A. Tukianinen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells94(10), 1845–1848 (2010).
[CrossRef]

Viheriälä, J.

J. Tommila, V. Polojärvi, A. Aho, A. Tukianinen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells94(10), 1845–1848 (2010).
[CrossRef]

Wang, S. C.

Warta, W.

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 39),” Prog. Photovolt. Res. Appl.20(1), 12–20 (2012).
[CrossRef]

Yamaguchi, M.

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl.15(5), 415–423 (2007).
[CrossRef]

Yeo, C. I.

Yoon, J.

J. Yoon, S. Jo, I. S. Chun, I. Jung, H. S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature465(7296), 329–333 (2010).
[CrossRef] [PubMed]

Yu, J. S.

J. W. Leem, J. S. Yu, Y. M. Song, and Y. T. Lee, “Antireflective characteristics of disordered GaAs subwavelength structures by thermally dewetted Au nanoparticles,” Sol. Energy Mater. Sol. Cells95(2), 669–676 (2011).
[CrossRef]

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small6(9), 984–987 (2010).
[CrossRef] [PubMed]

Y. M. Song, S. Y. Bae, J. S. Yu, and Y. T. Lee, “Closely packed and aspect-ratio-controlled antireflection subwavelength gratings on GaAs using a lenslike shape transfer,” Opt. Lett.34(11), 1702–1704 (2009).
[CrossRef] [PubMed]

Yu, P.

Zhou, Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett.93(13), 133108 (2008).
[CrossRef]

J. Opt. Soc. Am. (1)

Mater. Sci. Eng. A (1)

J. M. Lee and B. I. Kim, “Thermal dewetting of Pt thin film: Etch-masks for the fabrication of semiconductor nanostructures,” Mater. Sci. Eng. A449–451, 769–773 (2007).
[CrossRef]

Nano Lett. (1)

Y. Dan, K. Seo, K. Takei, J. H. Meza, A. Javey, and K. B. Crozier, “Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires,” Nano Lett.11(6), 2527–2532 (2011).
[CrossRef] [PubMed]

Nanoscale Res. Lett. (1)

Y. Lee, K. Koh, H. Na, K. Kim, J.-J. Kang, and J. Kim, “Lithography-free fabrication of large area subwavelength antireflection structures using thermally dewetted Pt/Pd alloy etch mask,” Nanoscale Res. Lett.4(4), 364–370 (2009).
[CrossRef] [PubMed]

Nanotechnology (1)

Y. Kojima and T. Kato, “Nanoparticle formation in Au thin films by electron-beam-induced dewetting,” Nanotechnology19(25), 255605 (2008).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

A. R. Parker and H. E. Townley, “Biomimetics of photonic nanostructures,” Nat. Nanotechnol.2(6), 347–353 (2007).
[CrossRef] [PubMed]

Nat. Photonics (1)

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007).
[CrossRef]

Nature (1)

J. Yoon, S. Jo, I. S. Chun, I. Jung, H. S. Kim, M. Meitl, E. Menard, X. Li, J. J. Coleman, U. Paik, and J. A. Rogers, “GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies,” Nature465(7296), 329–333 (2010).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Prog. Photovolt. Res. Appl. (2)

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 39),” Prog. Photovolt. Res. Appl.20(1), 12–20 (2012).
[CrossRef]

H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl.15(5), 415–423 (2007).
[CrossRef]

Small (1)

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small6(9), 984–987 (2010).
[CrossRef] [PubMed]

Sol. Energy Mater. Sol. Cells (2)

J. Tommila, V. Polojärvi, A. Aho, A. Tukianinen, J. Viheriälä, J. Salmi, A. Schramm, J. M. Kontio, A. Turtiainen, T. Niemi, and M. Guina, “Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography,” Sol. Energy Mater. Sol. Cells94(10), 1845–1848 (2010).
[CrossRef]

J. W. Leem, J. S. Yu, Y. M. Song, and Y. T. Lee, “Antireflective characteristics of disordered GaAs subwavelength structures by thermally dewetted Au nanoparticles,” Sol. Energy Mater. Sol. Cells95(2), 669–676 (2011).
[CrossRef]

Other (1)

Web site for NREL’s AM1.5 Standard Data set: http://rredc.nrel.gov/solar/spectra/am1.5/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Top-view (inset, 45° tilted view) SEM images and (b) fill factor of Ag etch masks formed by spin-coated Ag ink with different Ag ink ratios of 25%, 35%, and 50% at various sintering temperatures of 150 °C, 200 °C, 250 °C, and 300 °C for 5 min. (c) Schematic diagram of the process steps for fabricating GaAs d-SWSs using the spin-coated Ag ink and the ICP etching

Fig. 2
Fig. 2

(a) 45° tilted view SEM images of the GaAs d-SWSs fabricated using Ag masks formed using different Ag ink ratios of 50%, 35%, and 25% at a sintering temperature of 250 °C for 5 min. The insets show corresponding cross-sectional SEM images. (b) Contour plot of the calculated reflectance as a function of the period of the GaAs SWSs. (c) Measured hemispherical reflectance spectra of the corresponding GaAs d-SWSs as a function of wavelength.

Fig. 3
Fig. 3

Measured hemispherical reflectance spectra of the GaAs d-SWSs fabricated using differently sintered Ag masks at various sintering temperatures of 150 °C, 200 °C, 250 °C, and 300 °C for 5 min. The insets show corresponding 45° tilted view SEM images.

Fig. 4
Fig. 4

Measured hemispherical reflectance spectra of the GaAs d-SWSs fabricated using Ag etch masks with different RF powers of 50, 75, and 100 W. The insets show corresponding cross-sectional view SEM images.

Fig. 5
Fig. 5

Measured hemispherical reflectance spectra of the GaAs d-SWSs fabricated using Ag etch masks with different Ar flow rate of 0, 30, and 60 sccm. The insets show corresponding cross-sectional view SEM images.

Fig. 6
Fig. 6

Measured hemispherical reflectance spectra of the GaAs d-SWSs fabricated using Ag etch masks with different etching times 120, 210, and 300 s. The insets show corresponding cross-sectional view SEM images.

Fig. 7
Fig. 7

Incident angle-dependent SWRs of the bulk GaAs and the GaAs d-SWSs fabricated using Ag etch masks formed with 35% Ag ink ratio at a sintering temperature of 250 °C under a RF power of 75 W for 210 s without Ar gas. The inset shows contour plot of the incident angle-dependent reflectance of the corresponding structure.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

SWR= R(λ) N photon dλ N photon dλ

Metrics