Abstract

We cooled ultrathin tapered fibers to cryogenic temperatures and controllably coupled them with high-Q microsphere resonators at a wavelength close to the optical transition of diamond nitrogen vacancy centers. The 310-nm-diameter tapered fibers were stably nanopositioned close to the microspheres with a positioning stability of approximately 10 nm over a temperature range of 7–28 K. A cavity-induced phase shift was observed in this temperature range, demonstrating a discrete transition from undercoupling to overcoupling.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Benson, “Assembly of hybrid photonic architectures from nanophotonic constituents,” Nature (London)480, 193–199 (2011).
    [CrossRef]
  2. D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vuckovic, H. Park, and M. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett.10, 3922–3926 (2010).
    [CrossRef] [PubMed]
  3. Y. Park, A. Cook, and H. Wang, “Cavity qed with diamond nanocrystals and silica microspheres,” Nano Lett.6, 2075–2079 (2006).
    [CrossRef] [PubMed]
  4. O. Arcizet, V. Jacques, A. Siria, P. Poncharal, P. Vincent, and S. Seidelin, “A single nitrogen-vacancy defect coupled to a nanomechanical oscillator,” Nat. Physics7, 879–883 (2011).
    [CrossRef]
  5. P. E. Barclay, C. Santori, K.-M. Fu, R. G. Beausoleil, and O. Painter, “Coherent interference effects in a nano-assembled diamond NV center cavity-QED system,” Opt. Express17, 8081–8097 (2009).
    [CrossRef] [PubMed]
  6. C. Santori, P. Barclay, K. Fu, R. Beausoleil, S. Spillane, and M. Fisch, “Nanophotonics for quantum optics using nitrogen-vacancy centers in diamond,” Nanotechnology21, 274008 (2010).
    [CrossRef] [PubMed]
  7. A. Faraon, P.E. Barclay, C. Santori, K.M.C. Fu, and R.G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics5, 301–305 (2011).
    [CrossRef]
  8. A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” arXiv:1202.0806v1 (2012).
  9. Y. C. Liu, Y. F. Xiao, B. B. Li, X. F. Jiang, Y. Li, and Q. Gong, “Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: Photon transport benefitting from Rayleigh scattering,” Phys. Rev. A84, 011805 (2011).
    [CrossRef]
  10. Y. F. Xiao, C. L. Zou, P. Xue, L. Xiao, Y. Li, C. H. Dong, Z. F. Han, and Q. Gong, “Quantum electrodynamics in a whispering-gallery microcavity coated with a polymer nanolayer,” Phys. Rev. A81, 053807 (2010).
    [CrossRef]
  11. K. Kojima, H. Hofmann, S. Takeuchi, and K. Sasaki, “Nonlinear interaction of two photons with a one-dimensional atom: Spatiotemporal quantum coherence in the emitted field,” Phys. Rev. A68, 013803 (2003).
    [CrossRef]
  12. K. Kojima, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Efficiencies for the single-mode operation of a quantum optical nonlinear shift gate,” Phys. Rev. A70, 013810 (2004).
    [CrossRef]
  13. K. Koshino, S. Ishizaka, and Y. Nakamura, “Deterministic photon-photon SWAP gate using a λ system,” Phys. Rev. A82, 010301 (2010).
    [CrossRef]
  14. M. Wallquist, K. Hammerer, P. Rabl, M. Lukin, and P. Zoller, “Hybrid quantum devices and quantum engineering,” Physica ScriptaT137, 014001 (2009).
    [CrossRef]
  15. S. Spillane, T. Kippenberg, and K. Vahala, “Ultralow-threshold raman laser using a spherical dielectric microcavity,” Nature (London)415, 621–623 (2002).
    [CrossRef]
  16. T. Aoki, B. Dayan, E. Wilcut, W. Bowen, A. Parkins, T. Kippenberg, K. Vahala, and H. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature (London)443, 671–674 (2006).
    [CrossRef]
  17. M. Larsson, K. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica microsphere,” Nano Lett.9, 1447–1450 (2009).
    [CrossRef] [PubMed]
  18. A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Physics4, 415–419 (2008).
    [CrossRef]
  19. A. Schliesser, O. Arcizet, R. Rivière, G. Anetsberger, and T. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the heisenberg uncertainty limit,” Nat. Physics5, 509–514 (2009).
    [CrossRef]
  20. E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T.J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature (London)482, 63–67 (2012).
    [CrossRef]
  21. A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett.86, 261106 (2005).
    [CrossRef]
  22. H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Fiber-microsphere laser with a sub-micrometer sol-gel silica glass layer codoped with erbium, aluminum, and phosphorus,” Appl. Phys. Lett.90, 101103 (2007).
    [CrossRef]
  23. H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Control of spontaneous emission coupling factor β in fiber-coupled microsphere resonators,” Appl. Phys. Lett.92, 071115 (2008).
    [CrossRef]
  24. H. Takashima, T. Asai, K. Toubaru, M. Fujiwara, K. Sasaki, and S. Takeuchi, “Fiber-microsphere system at cryogenic temperatures toward cavity qed using diamond nv centers,” Opt. Express18, 15169–15173 (2010).
    [CrossRef] [PubMed]
  25. M. Cai and K. Vahala, “Highly efficient optical power transfer to whispering-gallery modes by use of a symmetrical dual-coupling configuration,” Opt. Lett.25, 260–262 (2000).
    [CrossRef]
  26. M. Pototschnig, Y. Chassagneux, J. Hwang, G. Zumofen, A. Renn, and V. Sandoghdar, “Controlling the phase of a light beam with a single molecule,” Phys. Rev. Lett.107, 63001 (2011).
    [CrossRef]
  27. A. Tanaka, T. Asai, K. Toubaru, H. Takashima, M. Fujiwara, R. Okamoto, and S. Takeuchi, “Phase shift spectra of a fiber-microsphere system at the single photon level,” Opt. Express19, 2278–2285 (2011).
    [CrossRef] [PubMed]
  28. M. Cai, O. Painter, and K. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett.85, 74–77 (2000).
    [CrossRef] [PubMed]
  29. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko“Ultimate Q of optical microsphere resonators,” Opt. Lett.21, 453–455 (1996).
    [CrossRef] [PubMed]
  30. A.H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett.108, 033602 (2012).
    [CrossRef] [PubMed]
  31. M. Fujiwara, K. Toubaru, T. Noda, H. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett.11, 4362–4365 (2011).
    [CrossRef] [PubMed]
  32. M. Fujiwara, K. Toubaru, and S. Takeuchi, “Optical transmittance degradation in tapered fibers,” Opt. Express19, 8596–8601 (2011).
    [CrossRef] [PubMed]
  33. The overall transmittance of the tapered fibers (including the fiber coupling loss, the fiber connection loss, and the scattering loss at the UV adhesive) was 0.13 at room temperature. It decreased to 0.03 at 7 K, probably due to temperature-induced deformation of the UV adhesive. This reduction in transmittance does not essentially affect the present fiber–microsphere coupling experiment.
  34. Note that the microspheres fabricated from the silica fibers (S630-HP, Thorlabs) usually show Q factor of ∼ 107 due to impurities doped in the silica fibers. By using high-purity and low-OH silica for the starting material, we confirmed that the microspheres have Q factor of greater than 108. Note also that the cryogenic experiments do not affect the Q-factor of the microsphere as we already experimentally confirmed previously [24].
  35. H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Polarization-discriminated spectra of a fiber-microsphere system,” Appl. Phys. Lett.89, 121107 (2006).
    [CrossRef]
  36. K. Totsuka and M. Tomita, “Slow and fast light in a microsphere-optical fiber system,” J. Opt. Soc. Am. B23, 2194–2199 (2006).
    [CrossRef]
  37. The taper-microsphere distance was calibrated by the data of room-temperature coupling experiments using a 330-nm-diameter tapered fiber and a 125-μm-diameter microsphere with the quality factor of Q = 1.0 × 107.
  38. Equation (3) in Ref. [27] reads Δϕ = arctan(S3/S2) − argAX + argAY, where AX and AY are a orthogonal set of complex amplitudes of the input electric field. In the present experiment we input diagonal polarization light, which gives argAX = argAY = 1/2.
  39. B. Little, J. Laine, and H. Haus, “Analytic theory of coupling from tapered fibers and half-blocks into microsphere resonators,” J. Lightw. Technol.17, 704–715 (1999).
    [CrossRef]
  40. A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Resonant frequency control of a microspherical cavity by temperature adjustment,” Jpn. J. Appl. Phys.43, 6138–6141 (2004).
    [CrossRef]
  41. O. Arcizet, R. Riviére, A. Schliesser, G. Antetsberger, and T. J. Kippenberg, “Cryogenic Properties of Optomechanical Silica Microcavities,” Phys. Rev. A80, 021803 (2009).
    [CrossRef]
  42. Y. Park and H. Wang, “Regenerative pulsation in silica microspheres,” Opt. Lett.32, 3104–3106 (2007).
    [CrossRef] [PubMed]
  43. G. K. White, “Thermal expansion of vitreous silica at low temperatures,” Phys. Rev. Lett.34, 204–205 (1975).
    [CrossRef]
  44. G. K. White, “Thermal expansion of reference materials: copper, silica and silicon,” J. Phys. D: Appl. Phys.6, 2070–2078 (1973).
    [CrossRef]

2012 (2)

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T.J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature (London)482, 63–67 (2012).
[CrossRef]

A.H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett.108, 033602 (2012).
[CrossRef] [PubMed]

2011 (8)

M. Fujiwara, K. Toubaru, T. Noda, H. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett.11, 4362–4365 (2011).
[CrossRef] [PubMed]

O. Benson, “Assembly of hybrid photonic architectures from nanophotonic constituents,” Nature (London)480, 193–199 (2011).
[CrossRef]

O. Arcizet, V. Jacques, A. Siria, P. Poncharal, P. Vincent, and S. Seidelin, “A single nitrogen-vacancy defect coupled to a nanomechanical oscillator,” Nat. Physics7, 879–883 (2011).
[CrossRef]

M. Pototschnig, Y. Chassagneux, J. Hwang, G. Zumofen, A. Renn, and V. Sandoghdar, “Controlling the phase of a light beam with a single molecule,” Phys. Rev. Lett.107, 63001 (2011).
[CrossRef]

A. Faraon, P.E. Barclay, C. Santori, K.M.C. Fu, and R.G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics5, 301–305 (2011).
[CrossRef]

Y. C. Liu, Y. F. Xiao, B. B. Li, X. F. Jiang, Y. Li, and Q. Gong, “Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: Photon transport benefitting from Rayleigh scattering,” Phys. Rev. A84, 011805 (2011).
[CrossRef]

A. Tanaka, T. Asai, K. Toubaru, H. Takashima, M. Fujiwara, R. Okamoto, and S. Takeuchi, “Phase shift spectra of a fiber-microsphere system at the single photon level,” Opt. Express19, 2278–2285 (2011).
[CrossRef] [PubMed]

M. Fujiwara, K. Toubaru, and S. Takeuchi, “Optical transmittance degradation in tapered fibers,” Opt. Express19, 8596–8601 (2011).
[CrossRef] [PubMed]

2010 (5)

H. Takashima, T. Asai, K. Toubaru, M. Fujiwara, K. Sasaki, and S. Takeuchi, “Fiber-microsphere system at cryogenic temperatures toward cavity qed using diamond nv centers,” Opt. Express18, 15169–15173 (2010).
[CrossRef] [PubMed]

Y. F. Xiao, C. L. Zou, P. Xue, L. Xiao, Y. Li, C. H. Dong, Z. F. Han, and Q. Gong, “Quantum electrodynamics in a whispering-gallery microcavity coated with a polymer nanolayer,” Phys. Rev. A81, 053807 (2010).
[CrossRef]

C. Santori, P. Barclay, K. Fu, R. Beausoleil, S. Spillane, and M. Fisch, “Nanophotonics for quantum optics using nitrogen-vacancy centers in diamond,” Nanotechnology21, 274008 (2010).
[CrossRef] [PubMed]

K. Koshino, S. Ishizaka, and Y. Nakamura, “Deterministic photon-photon SWAP gate using a λ system,” Phys. Rev. A82, 010301 (2010).
[CrossRef]

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vuckovic, H. Park, and M. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett.10, 3922–3926 (2010).
[CrossRef] [PubMed]

2009 (5)

O. Arcizet, R. Riviére, A. Schliesser, G. Antetsberger, and T. J. Kippenberg, “Cryogenic Properties of Optomechanical Silica Microcavities,” Phys. Rev. A80, 021803 (2009).
[CrossRef]

P. E. Barclay, C. Santori, K.-M. Fu, R. G. Beausoleil, and O. Painter, “Coherent interference effects in a nano-assembled diamond NV center cavity-QED system,” Opt. Express17, 8081–8097 (2009).
[CrossRef] [PubMed]

M. Wallquist, K. Hammerer, P. Rabl, M. Lukin, and P. Zoller, “Hybrid quantum devices and quantum engineering,” Physica ScriptaT137, 014001 (2009).
[CrossRef]

M. Larsson, K. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica microsphere,” Nano Lett.9, 1447–1450 (2009).
[CrossRef] [PubMed]

A. Schliesser, O. Arcizet, R. Rivière, G. Anetsberger, and T. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the heisenberg uncertainty limit,” Nat. Physics5, 509–514 (2009).
[CrossRef]

2008 (2)

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Physics4, 415–419 (2008).
[CrossRef]

H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Control of spontaneous emission coupling factor β in fiber-coupled microsphere resonators,” Appl. Phys. Lett.92, 071115 (2008).
[CrossRef]

2007 (2)

H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Fiber-microsphere laser with a sub-micrometer sol-gel silica glass layer codoped with erbium, aluminum, and phosphorus,” Appl. Phys. Lett.90, 101103 (2007).
[CrossRef]

Y. Park and H. Wang, “Regenerative pulsation in silica microspheres,” Opt. Lett.32, 3104–3106 (2007).
[CrossRef] [PubMed]

2006 (4)

K. Totsuka and M. Tomita, “Slow and fast light in a microsphere-optical fiber system,” J. Opt. Soc. Am. B23, 2194–2199 (2006).
[CrossRef]

Y. Park, A. Cook, and H. Wang, “Cavity qed with diamond nanocrystals and silica microspheres,” Nano Lett.6, 2075–2079 (2006).
[CrossRef] [PubMed]

H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Polarization-discriminated spectra of a fiber-microsphere system,” Appl. Phys. Lett.89, 121107 (2006).
[CrossRef]

T. Aoki, B. Dayan, E. Wilcut, W. Bowen, A. Parkins, T. Kippenberg, K. Vahala, and H. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature (London)443, 671–674 (2006).
[CrossRef]

2005 (1)

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett.86, 261106 (2005).
[CrossRef]

2004 (2)

K. Kojima, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Efficiencies for the single-mode operation of a quantum optical nonlinear shift gate,” Phys. Rev. A70, 013810 (2004).
[CrossRef]

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Resonant frequency control of a microspherical cavity by temperature adjustment,” Jpn. J. Appl. Phys.43, 6138–6141 (2004).
[CrossRef]

2003 (1)

K. Kojima, H. Hofmann, S. Takeuchi, and K. Sasaki, “Nonlinear interaction of two photons with a one-dimensional atom: Spatiotemporal quantum coherence in the emitted field,” Phys. Rev. A68, 013803 (2003).
[CrossRef]

2002 (1)

S. Spillane, T. Kippenberg, and K. Vahala, “Ultralow-threshold raman laser using a spherical dielectric microcavity,” Nature (London)415, 621–623 (2002).
[CrossRef]

2000 (2)

M. Cai and K. Vahala, “Highly efficient optical power transfer to whispering-gallery modes by use of a symmetrical dual-coupling configuration,” Opt. Lett.25, 260–262 (2000).
[CrossRef]

M. Cai, O. Painter, and K. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett.85, 74–77 (2000).
[CrossRef] [PubMed]

1999 (1)

B. Little, J. Laine, and H. Haus, “Analytic theory of coupling from tapered fibers and half-blocks into microsphere resonators,” J. Lightw. Technol.17, 704–715 (1999).
[CrossRef]

1996 (1)

1975 (1)

G. K. White, “Thermal expansion of vitreous silica at low temperatures,” Phys. Rev. Lett.34, 204–205 (1975).
[CrossRef]

1973 (1)

G. K. White, “Thermal expansion of reference materials: copper, silica and silicon,” J. Phys. D: Appl. Phys.6, 2070–2078 (1973).
[CrossRef]

Acosta, V. M.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” arXiv:1202.0806v1 (2012).

Alegre, T. P. M.

A.H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett.108, 033602 (2012).
[CrossRef] [PubMed]

Anetsberger, G.

A. Schliesser, O. Arcizet, R. Rivière, G. Anetsberger, and T. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the heisenberg uncertainty limit,” Nat. Physics5, 509–514 (2009).
[CrossRef]

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Physics4, 415–419 (2008).
[CrossRef]

Antetsberger, G.

O. Arcizet, R. Riviére, A. Schliesser, G. Antetsberger, and T. J. Kippenberg, “Cryogenic Properties of Optomechanical Silica Microcavities,” Phys. Rev. A80, 021803 (2009).
[CrossRef]

Aoki, T.

T. Aoki, B. Dayan, E. Wilcut, W. Bowen, A. Parkins, T. Kippenberg, K. Vahala, and H. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature (London)443, 671–674 (2006).
[CrossRef]

Arcizet, O.

O. Arcizet, V. Jacques, A. Siria, P. Poncharal, P. Vincent, and S. Seidelin, “A single nitrogen-vacancy defect coupled to a nanomechanical oscillator,” Nat. Physics7, 879–883 (2011).
[CrossRef]

A. Schliesser, O. Arcizet, R. Rivière, G. Anetsberger, and T. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the heisenberg uncertainty limit,” Nat. Physics5, 509–514 (2009).
[CrossRef]

O. Arcizet, R. Riviére, A. Schliesser, G. Antetsberger, and T. J. Kippenberg, “Cryogenic Properties of Optomechanical Silica Microcavities,” Phys. Rev. A80, 021803 (2009).
[CrossRef]

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Physics4, 415–419 (2008).
[CrossRef]

Asai, T.

Barclay, P.

C. Santori, P. Barclay, K. Fu, R. Beausoleil, S. Spillane, and M. Fisch, “Nanophotonics for quantum optics using nitrogen-vacancy centers in diamond,” Nanotechnology21, 274008 (2010).
[CrossRef] [PubMed]

Barclay, P. E.

Barclay, P.E.

A. Faraon, P.E. Barclay, C. Santori, K.M.C. Fu, and R.G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics5, 301–305 (2011).
[CrossRef]

Beausoleil, R.

C. Santori, P. Barclay, K. Fu, R. Beausoleil, S. Spillane, and M. Fisch, “Nanophotonics for quantum optics using nitrogen-vacancy centers in diamond,” Nanotechnology21, 274008 (2010).
[CrossRef] [PubMed]

Beausoleil, R. G.

P. E. Barclay, C. Santori, K.-M. Fu, R. G. Beausoleil, and O. Painter, “Coherent interference effects in a nano-assembled diamond NV center cavity-QED system,” Opt. Express17, 8081–8097 (2009).
[CrossRef] [PubMed]

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” arXiv:1202.0806v1 (2012).

Beausoleil, R.G.

A. Faraon, P.E. Barclay, C. Santori, K.M.C. Fu, and R.G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics5, 301–305 (2011).
[CrossRef]

Benson, O.

O. Benson, “Assembly of hybrid photonic architectures from nanophotonic constituents,” Nature (London)480, 193–199 (2011).
[CrossRef]

Bowen, W.

T. Aoki, B. Dayan, E. Wilcut, W. Bowen, A. Parkins, T. Kippenberg, K. Vahala, and H. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature (London)443, 671–674 (2006).
[CrossRef]

Cai, M.

M. Cai and K. Vahala, “Highly efficient optical power transfer to whispering-gallery modes by use of a symmetrical dual-coupling configuration,” Opt. Lett.25, 260–262 (2000).
[CrossRef]

M. Cai, O. Painter, and K. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett.85, 74–77 (2000).
[CrossRef] [PubMed]

Chan, J.

A.H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett.108, 033602 (2012).
[CrossRef] [PubMed]

Chassagneux, Y.

M. Pototschnig, Y. Chassagneux, J. Hwang, G. Zumofen, A. Renn, and V. Sandoghdar, “Controlling the phase of a light beam with a single molecule,” Phys. Rev. Lett.107, 63001 (2011).
[CrossRef]

Chiba, A.

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett.86, 261106 (2005).
[CrossRef]

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Resonant frequency control of a microspherical cavity by temperature adjustment,” Jpn. J. Appl. Phys.43, 6138–6141 (2004).
[CrossRef]

Cook, A.

Y. Park, A. Cook, and H. Wang, “Cavity qed with diamond nanocrystals and silica microspheres,” Nano Lett.6, 2075–2079 (2006).
[CrossRef] [PubMed]

Dayan, B.

T. Aoki, B. Dayan, E. Wilcut, W. Bowen, A. Parkins, T. Kippenberg, K. Vahala, and H. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature (London)443, 671–674 (2006).
[CrossRef]

Deléglise, S.

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T.J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature (London)482, 63–67 (2012).
[CrossRef]

Dinyari, K.

M. Larsson, K. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica microsphere,” Nano Lett.9, 1447–1450 (2009).
[CrossRef] [PubMed]

Dong, C. H.

Y. F. Xiao, C. L. Zou, P. Xue, L. Xiao, Y. Li, C. H. Dong, Z. F. Han, and Q. Gong, “Quantum electrodynamics in a whispering-gallery microcavity coated with a polymer nanolayer,” Phys. Rev. A81, 053807 (2010).
[CrossRef]

Englund, D.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vuckovic, H. Park, and M. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett.10, 3922–3926 (2010).
[CrossRef] [PubMed]

Faraon, A.

A. Faraon, P.E. Barclay, C. Santori, K.M.C. Fu, and R.G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics5, 301–305 (2011).
[CrossRef]

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” arXiv:1202.0806v1 (2012).

Fisch, M.

C. Santori, P. Barclay, K. Fu, R. Beausoleil, S. Spillane, and M. Fisch, “Nanophotonics for quantum optics using nitrogen-vacancy centers in diamond,” Nanotechnology21, 274008 (2010).
[CrossRef] [PubMed]

Fu, K.

C. Santori, P. Barclay, K. Fu, R. Beausoleil, S. Spillane, and M. Fisch, “Nanophotonics for quantum optics using nitrogen-vacancy centers in diamond,” Nanotechnology21, 274008 (2010).
[CrossRef] [PubMed]

Fu, K.-M.

Fu, K.M.C.

A. Faraon, P.E. Barclay, C. Santori, K.M.C. Fu, and R.G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics5, 301–305 (2011).
[CrossRef]

Fujiwara, H.

H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Control of spontaneous emission coupling factor β in fiber-coupled microsphere resonators,” Appl. Phys. Lett.92, 071115 (2008).
[CrossRef]

H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Fiber-microsphere laser with a sub-micrometer sol-gel silica glass layer codoped with erbium, aluminum, and phosphorus,” Appl. Phys. Lett.90, 101103 (2007).
[CrossRef]

H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Polarization-discriminated spectra of a fiber-microsphere system,” Appl. Phys. Lett.89, 121107 (2006).
[CrossRef]

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett.86, 261106 (2005).
[CrossRef]

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Resonant frequency control of a microspherical cavity by temperature adjustment,” Jpn. J. Appl. Phys.43, 6138–6141 (2004).
[CrossRef]

Fujiwara, M.

Gong, Q.

Y. C. Liu, Y. F. Xiao, B. B. Li, X. F. Jiang, Y. Li, and Q. Gong, “Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: Photon transport benefitting from Rayleigh scattering,” Phys. Rev. A84, 011805 (2011).
[CrossRef]

Y. F. Xiao, C. L. Zou, P. Xue, L. Xiao, Y. Li, C. H. Dong, Z. F. Han, and Q. Gong, “Quantum electrodynamics in a whispering-gallery microcavity coated with a polymer nanolayer,” Phys. Rev. A81, 053807 (2010).
[CrossRef]

Gorodetsky, M. L.

Hammerer, K.

M. Wallquist, K. Hammerer, P. Rabl, M. Lukin, and P. Zoller, “Hybrid quantum devices and quantum engineering,” Physica ScriptaT137, 014001 (2009).
[CrossRef]

Han, Z. F.

Y. F. Xiao, C. L. Zou, P. Xue, L. Xiao, Y. Li, C. H. Dong, Z. F. Han, and Q. Gong, “Quantum electrodynamics in a whispering-gallery microcavity coated with a polymer nanolayer,” Phys. Rev. A81, 053807 (2010).
[CrossRef]

Hatami, F.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vuckovic, H. Park, and M. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett.10, 3922–3926 (2010).
[CrossRef] [PubMed]

Haus, H.

B. Little, J. Laine, and H. Haus, “Analytic theory of coupling from tapered fibers and half-blocks into microsphere resonators,” J. Lightw. Technol.17, 704–715 (1999).
[CrossRef]

Hill, J. T.

A.H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett.108, 033602 (2012).
[CrossRef] [PubMed]

Hofmann, H.

K. Kojima, H. Hofmann, S. Takeuchi, and K. Sasaki, “Nonlinear interaction of two photons with a one-dimensional atom: Spatiotemporal quantum coherence in the emitted field,” Phys. Rev. A68, 013803 (2003).
[CrossRef]

Hofmann, H. F.

K. Kojima, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Efficiencies for the single-mode operation of a quantum optical nonlinear shift gate,” Phys. Rev. A70, 013810 (2004).
[CrossRef]

Hotta, J.

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett.86, 261106 (2005).
[CrossRef]

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Resonant frequency control of a microspherical cavity by temperature adjustment,” Jpn. J. Appl. Phys.43, 6138–6141 (2004).
[CrossRef]

Huang, Z.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” arXiv:1202.0806v1 (2012).

Hwang, J.

M. Pototschnig, Y. Chassagneux, J. Hwang, G. Zumofen, A. Renn, and V. Sandoghdar, “Controlling the phase of a light beam with a single molecule,” Phys. Rev. Lett.107, 63001 (2011).
[CrossRef]

Ilchenko, V. S.

Ishizaka, S.

K. Koshino, S. Ishizaka, and Y. Nakamura, “Deterministic photon-photon SWAP gate using a λ system,” Phys. Rev. A82, 010301 (2010).
[CrossRef]

Jacques, V.

O. Arcizet, V. Jacques, A. Siria, P. Poncharal, P. Vincent, and S. Seidelin, “A single nitrogen-vacancy defect coupled to a nanomechanical oscillator,” Nat. Physics7, 879–883 (2011).
[CrossRef]

Jiang, X. F.

Y. C. Liu, Y. F. Xiao, B. B. Li, X. F. Jiang, Y. Li, and Q. Gong, “Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: Photon transport benefitting from Rayleigh scattering,” Phys. Rev. A84, 011805 (2011).
[CrossRef]

Kimble, H.

T. Aoki, B. Dayan, E. Wilcut, W. Bowen, A. Parkins, T. Kippenberg, K. Vahala, and H. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature (London)443, 671–674 (2006).
[CrossRef]

Kippenberg, T.

A. Schliesser, O. Arcizet, R. Rivière, G. Anetsberger, and T. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the heisenberg uncertainty limit,” Nat. Physics5, 509–514 (2009).
[CrossRef]

T. Aoki, B. Dayan, E. Wilcut, W. Bowen, A. Parkins, T. Kippenberg, K. Vahala, and H. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature (London)443, 671–674 (2006).
[CrossRef]

S. Spillane, T. Kippenberg, and K. Vahala, “Ultralow-threshold raman laser using a spherical dielectric microcavity,” Nature (London)415, 621–623 (2002).
[CrossRef]

Kippenberg, T. J.

O. Arcizet, R. Riviére, A. Schliesser, G. Antetsberger, and T. J. Kippenberg, “Cryogenic Properties of Optomechanical Silica Microcavities,” Phys. Rev. A80, 021803 (2009).
[CrossRef]

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Physics4, 415–419 (2008).
[CrossRef]

Kippenberg, T.J.

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T.J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature (London)482, 63–67 (2012).
[CrossRef]

Kojima, K.

K. Kojima, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Efficiencies for the single-mode operation of a quantum optical nonlinear shift gate,” Phys. Rev. A70, 013810 (2004).
[CrossRef]

K. Kojima, H. Hofmann, S. Takeuchi, and K. Sasaki, “Nonlinear interaction of two photons with a one-dimensional atom: Spatiotemporal quantum coherence in the emitted field,” Phys. Rev. A68, 013803 (2003).
[CrossRef]

Konishi, H.

H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Polarization-discriminated spectra of a fiber-microsphere system,” Appl. Phys. Lett.89, 121107 (2006).
[CrossRef]

Koshino, K.

K. Koshino, S. Ishizaka, and Y. Nakamura, “Deterministic photon-photon SWAP gate using a λ system,” Phys. Rev. A82, 010301 (2010).
[CrossRef]

Krause, A.

A.H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett.108, 033602 (2012).
[CrossRef] [PubMed]

Laine, J.

B. Little, J. Laine, and H. Haus, “Analytic theory of coupling from tapered fibers and half-blocks into microsphere resonators,” J. Lightw. Technol.17, 704–715 (1999).
[CrossRef]

Larsson, M.

M. Larsson, K. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica microsphere,” Nano Lett.9, 1447–1450 (2009).
[CrossRef] [PubMed]

Li, B. B.

Y. C. Liu, Y. F. Xiao, B. B. Li, X. F. Jiang, Y. Li, and Q. Gong, “Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: Photon transport benefitting from Rayleigh scattering,” Phys. Rev. A84, 011805 (2011).
[CrossRef]

Li, Y.

Y. C. Liu, Y. F. Xiao, B. B. Li, X. F. Jiang, Y. Li, and Q. Gong, “Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: Photon transport benefitting from Rayleigh scattering,” Phys. Rev. A84, 011805 (2011).
[CrossRef]

Y. F. Xiao, C. L. Zou, P. Xue, L. Xiao, Y. Li, C. H. Dong, Z. F. Han, and Q. Gong, “Quantum electrodynamics in a whispering-gallery microcavity coated with a polymer nanolayer,” Phys. Rev. A81, 053807 (2010).
[CrossRef]

Little, B.

B. Little, J. Laine, and H. Haus, “Analytic theory of coupling from tapered fibers and half-blocks into microsphere resonators,” J. Lightw. Technol.17, 704–715 (1999).
[CrossRef]

Liu, Y. C.

Y. C. Liu, Y. F. Xiao, B. B. Li, X. F. Jiang, Y. Li, and Q. Gong, “Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: Photon transport benefitting from Rayleigh scattering,” Phys. Rev. A84, 011805 (2011).
[CrossRef]

Lukin, M.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vuckovic, H. Park, and M. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett.10, 3922–3926 (2010).
[CrossRef] [PubMed]

M. Wallquist, K. Hammerer, P. Rabl, M. Lukin, and P. Zoller, “Hybrid quantum devices and quantum engineering,” Physica ScriptaT137, 014001 (2009).
[CrossRef]

Nakamura, Y.

K. Koshino, S. Ishizaka, and Y. Nakamura, “Deterministic photon-photon SWAP gate using a λ system,” Phys. Rev. A82, 010301 (2010).
[CrossRef]

Noda, T.

M. Fujiwara, K. Toubaru, T. Noda, H. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett.11, 4362–4365 (2011).
[CrossRef] [PubMed]

Okamoto, R.

Painter, O.

A.H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett.108, 033602 (2012).
[CrossRef] [PubMed]

P. E. Barclay, C. Santori, K.-M. Fu, R. G. Beausoleil, and O. Painter, “Coherent interference effects in a nano-assembled diamond NV center cavity-QED system,” Opt. Express17, 8081–8097 (2009).
[CrossRef] [PubMed]

M. Cai, O. Painter, and K. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett.85, 74–77 (2000).
[CrossRef] [PubMed]

Park, H.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vuckovic, H. Park, and M. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett.10, 3922–3926 (2010).
[CrossRef] [PubMed]

Park, Y.

Y. Park and H. Wang, “Regenerative pulsation in silica microspheres,” Opt. Lett.32, 3104–3106 (2007).
[CrossRef] [PubMed]

Y. Park, A. Cook, and H. Wang, “Cavity qed with diamond nanocrystals and silica microspheres,” Nano Lett.6, 2075–2079 (2006).
[CrossRef] [PubMed]

Parkins, A.

T. Aoki, B. Dayan, E. Wilcut, W. Bowen, A. Parkins, T. Kippenberg, K. Vahala, and H. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature (London)443, 671–674 (2006).
[CrossRef]

Poncharal, P.

O. Arcizet, V. Jacques, A. Siria, P. Poncharal, P. Vincent, and S. Seidelin, “A single nitrogen-vacancy defect coupled to a nanomechanical oscillator,” Nat. Physics7, 879–883 (2011).
[CrossRef]

Pototschnig, M.

M. Pototschnig, Y. Chassagneux, J. Hwang, G. Zumofen, A. Renn, and V. Sandoghdar, “Controlling the phase of a light beam with a single molecule,” Phys. Rev. Lett.107, 63001 (2011).
[CrossRef]

Rabl, P.

M. Wallquist, K. Hammerer, P. Rabl, M. Lukin, and P. Zoller, “Hybrid quantum devices and quantum engineering,” Physica ScriptaT137, 014001 (2009).
[CrossRef]

Renn, A.

M. Pototschnig, Y. Chassagneux, J. Hwang, G. Zumofen, A. Renn, and V. Sandoghdar, “Controlling the phase of a light beam with a single molecule,” Phys. Rev. Lett.107, 63001 (2011).
[CrossRef]

Riviére, R.

O. Arcizet, R. Riviére, A. Schliesser, G. Antetsberger, and T. J. Kippenberg, “Cryogenic Properties of Optomechanical Silica Microcavities,” Phys. Rev. A80, 021803 (2009).
[CrossRef]

Rivière, R.

A. Schliesser, O. Arcizet, R. Rivière, G. Anetsberger, and T. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the heisenberg uncertainty limit,” Nat. Physics5, 509–514 (2009).
[CrossRef]

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Physics4, 415–419 (2008).
[CrossRef]

Rivoire, K.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vuckovic, H. Park, and M. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett.10, 3922–3926 (2010).
[CrossRef] [PubMed]

Safavi-Naeini, A.H.

A.H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett.108, 033602 (2012).
[CrossRef] [PubMed]

Sandoghdar, V.

M. Pototschnig, Y. Chassagneux, J. Hwang, G. Zumofen, A. Renn, and V. Sandoghdar, “Controlling the phase of a light beam with a single molecule,” Phys. Rev. Lett.107, 63001 (2011).
[CrossRef]

Santori, C.

A. Faraon, P.E. Barclay, C. Santori, K.M.C. Fu, and R.G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics5, 301–305 (2011).
[CrossRef]

C. Santori, P. Barclay, K. Fu, R. Beausoleil, S. Spillane, and M. Fisch, “Nanophotonics for quantum optics using nitrogen-vacancy centers in diamond,” Nanotechnology21, 274008 (2010).
[CrossRef] [PubMed]

P. E. Barclay, C. Santori, K.-M. Fu, R. G. Beausoleil, and O. Painter, “Coherent interference effects in a nano-assembled diamond NV center cavity-QED system,” Opt. Express17, 8081–8097 (2009).
[CrossRef] [PubMed]

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” arXiv:1202.0806v1 (2012).

Sasaki, K.

H. Takashima, T. Asai, K. Toubaru, M. Fujiwara, K. Sasaki, and S. Takeuchi, “Fiber-microsphere system at cryogenic temperatures toward cavity qed using diamond nv centers,” Opt. Express18, 15169–15173 (2010).
[CrossRef] [PubMed]

H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Control of spontaneous emission coupling factor β in fiber-coupled microsphere resonators,” Appl. Phys. Lett.92, 071115 (2008).
[CrossRef]

H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Fiber-microsphere laser with a sub-micrometer sol-gel silica glass layer codoped with erbium, aluminum, and phosphorus,” Appl. Phys. Lett.90, 101103 (2007).
[CrossRef]

H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Polarization-discriminated spectra of a fiber-microsphere system,” Appl. Phys. Lett.89, 121107 (2006).
[CrossRef]

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett.86, 261106 (2005).
[CrossRef]

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Resonant frequency control of a microspherical cavity by temperature adjustment,” Jpn. J. Appl. Phys.43, 6138–6141 (2004).
[CrossRef]

K. Kojima, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Efficiencies for the single-mode operation of a quantum optical nonlinear shift gate,” Phys. Rev. A70, 013810 (2004).
[CrossRef]

K. Kojima, H. Hofmann, S. Takeuchi, and K. Sasaki, “Nonlinear interaction of two photons with a one-dimensional atom: Spatiotemporal quantum coherence in the emitted field,” Phys. Rev. A68, 013803 (2003).
[CrossRef]

Savchenkov, A. A.

Schliesser, A.

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T.J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature (London)482, 63–67 (2012).
[CrossRef]

O. Arcizet, R. Riviére, A. Schliesser, G. Antetsberger, and T. J. Kippenberg, “Cryogenic Properties of Optomechanical Silica Microcavities,” Phys. Rev. A80, 021803 (2009).
[CrossRef]

A. Schliesser, O. Arcizet, R. Rivière, G. Anetsberger, and T. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the heisenberg uncertainty limit,” Nat. Physics5, 509–514 (2009).
[CrossRef]

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Physics4, 415–419 (2008).
[CrossRef]

Seidelin, S.

O. Arcizet, V. Jacques, A. Siria, P. Poncharal, P. Vincent, and S. Seidelin, “A single nitrogen-vacancy defect coupled to a nanomechanical oscillator,” Nat. Physics7, 879–883 (2011).
[CrossRef]

Shields, B.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vuckovic, H. Park, and M. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett.10, 3922–3926 (2010).
[CrossRef] [PubMed]

Siria, A.

O. Arcizet, V. Jacques, A. Siria, P. Poncharal, P. Vincent, and S. Seidelin, “A single nitrogen-vacancy defect coupled to a nanomechanical oscillator,” Nat. Physics7, 879–883 (2011).
[CrossRef]

Spillane, S.

C. Santori, P. Barclay, K. Fu, R. Beausoleil, S. Spillane, and M. Fisch, “Nanophotonics for quantum optics using nitrogen-vacancy centers in diamond,” Nanotechnology21, 274008 (2010).
[CrossRef] [PubMed]

S. Spillane, T. Kippenberg, and K. Vahala, “Ultralow-threshold raman laser using a spherical dielectric microcavity,” Nature (London)415, 621–623 (2002).
[CrossRef]

Takahashi, M.

H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Control of spontaneous emission coupling factor β in fiber-coupled microsphere resonators,” Appl. Phys. Lett.92, 071115 (2008).
[CrossRef]

H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Fiber-microsphere laser with a sub-micrometer sol-gel silica glass layer codoped with erbium, aluminum, and phosphorus,” Appl. Phys. Lett.90, 101103 (2007).
[CrossRef]

Takashima, H.

A. Tanaka, T. Asai, K. Toubaru, H. Takashima, M. Fujiwara, R. Okamoto, and S. Takeuchi, “Phase shift spectra of a fiber-microsphere system at the single photon level,” Opt. Express19, 2278–2285 (2011).
[CrossRef] [PubMed]

H. Takashima, T. Asai, K. Toubaru, M. Fujiwara, K. Sasaki, and S. Takeuchi, “Fiber-microsphere system at cryogenic temperatures toward cavity qed using diamond nv centers,” Opt. Express18, 15169–15173 (2010).
[CrossRef] [PubMed]

H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Control of spontaneous emission coupling factor β in fiber-coupled microsphere resonators,” Appl. Phys. Lett.92, 071115 (2008).
[CrossRef]

H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Fiber-microsphere laser with a sub-micrometer sol-gel silica glass layer codoped with erbium, aluminum, and phosphorus,” Appl. Phys. Lett.90, 101103 (2007).
[CrossRef]

Takeuchi, S.

M. Fujiwara, K. Toubaru, and S. Takeuchi, “Optical transmittance degradation in tapered fibers,” Opt. Express19, 8596–8601 (2011).
[CrossRef] [PubMed]

A. Tanaka, T. Asai, K. Toubaru, H. Takashima, M. Fujiwara, R. Okamoto, and S. Takeuchi, “Phase shift spectra of a fiber-microsphere system at the single photon level,” Opt. Express19, 2278–2285 (2011).
[CrossRef] [PubMed]

M. Fujiwara, K. Toubaru, T. Noda, H. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett.11, 4362–4365 (2011).
[CrossRef] [PubMed]

H. Takashima, T. Asai, K. Toubaru, M. Fujiwara, K. Sasaki, and S. Takeuchi, “Fiber-microsphere system at cryogenic temperatures toward cavity qed using diamond nv centers,” Opt. Express18, 15169–15173 (2010).
[CrossRef] [PubMed]

H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Control of spontaneous emission coupling factor β in fiber-coupled microsphere resonators,” Appl. Phys. Lett.92, 071115 (2008).
[CrossRef]

H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Fiber-microsphere laser with a sub-micrometer sol-gel silica glass layer codoped with erbium, aluminum, and phosphorus,” Appl. Phys. Lett.90, 101103 (2007).
[CrossRef]

H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Polarization-discriminated spectra of a fiber-microsphere system,” Appl. Phys. Lett.89, 121107 (2006).
[CrossRef]

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett.86, 261106 (2005).
[CrossRef]

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Resonant frequency control of a microspherical cavity by temperature adjustment,” Jpn. J. Appl. Phys.43, 6138–6141 (2004).
[CrossRef]

K. Kojima, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Efficiencies for the single-mode operation of a quantum optical nonlinear shift gate,” Phys. Rev. A70, 013810 (2004).
[CrossRef]

K. Kojima, H. Hofmann, S. Takeuchi, and K. Sasaki, “Nonlinear interaction of two photons with a one-dimensional atom: Spatiotemporal quantum coherence in the emitted field,” Phys. Rev. A68, 013803 (2003).
[CrossRef]

Tanaka, A.

Tomita, M.

Totsuka, K.

Toubaru, K.

Vahala, K.

T. Aoki, B. Dayan, E. Wilcut, W. Bowen, A. Parkins, T. Kippenberg, K. Vahala, and H. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature (London)443, 671–674 (2006).
[CrossRef]

S. Spillane, T. Kippenberg, and K. Vahala, “Ultralow-threshold raman laser using a spherical dielectric microcavity,” Nature (London)415, 621–623 (2002).
[CrossRef]

M. Cai, O. Painter, and K. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett.85, 74–77 (2000).
[CrossRef] [PubMed]

M. Cai and K. Vahala, “Highly efficient optical power transfer to whispering-gallery modes by use of a symmetrical dual-coupling configuration,” Opt. Lett.25, 260–262 (2000).
[CrossRef]

Verhagen, E.

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T.J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature (London)482, 63–67 (2012).
[CrossRef]

Vincent, P.

O. Arcizet, V. Jacques, A. Siria, P. Poncharal, P. Vincent, and S. Seidelin, “A single nitrogen-vacancy defect coupled to a nanomechanical oscillator,” Nat. Physics7, 879–883 (2011).
[CrossRef]

Vuckovic, J.

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vuckovic, H. Park, and M. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett.10, 3922–3926 (2010).
[CrossRef] [PubMed]

Wallquist, M.

M. Wallquist, K. Hammerer, P. Rabl, M. Lukin, and P. Zoller, “Hybrid quantum devices and quantum engineering,” Physica ScriptaT137, 014001 (2009).
[CrossRef]

Wang, H.

M. Larsson, K. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica microsphere,” Nano Lett.9, 1447–1450 (2009).
[CrossRef] [PubMed]

Y. Park and H. Wang, “Regenerative pulsation in silica microspheres,” Opt. Lett.32, 3104–3106 (2007).
[CrossRef] [PubMed]

Y. Park, A. Cook, and H. Wang, “Cavity qed with diamond nanocrystals and silica microspheres,” Nano Lett.6, 2075–2079 (2006).
[CrossRef] [PubMed]

Weis, S.

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T.J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature (London)482, 63–67 (2012).
[CrossRef]

White, G. K.

G. K. White, “Thermal expansion of vitreous silica at low temperatures,” Phys. Rev. Lett.34, 204–205 (1975).
[CrossRef]

G. K. White, “Thermal expansion of reference materials: copper, silica and silicon,” J. Phys. D: Appl. Phys.6, 2070–2078 (1973).
[CrossRef]

Wilcut, E.

T. Aoki, B. Dayan, E. Wilcut, W. Bowen, A. Parkins, T. Kippenberg, K. Vahala, and H. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature (London)443, 671–674 (2006).
[CrossRef]

Xiao, L.

Y. F. Xiao, C. L. Zou, P. Xue, L. Xiao, Y. Li, C. H. Dong, Z. F. Han, and Q. Gong, “Quantum electrodynamics in a whispering-gallery microcavity coated with a polymer nanolayer,” Phys. Rev. A81, 053807 (2010).
[CrossRef]

Xiao, Y. F.

Y. C. Liu, Y. F. Xiao, B. B. Li, X. F. Jiang, Y. Li, and Q. Gong, “Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: Photon transport benefitting from Rayleigh scattering,” Phys. Rev. A84, 011805 (2011).
[CrossRef]

Y. F. Xiao, C. L. Zou, P. Xue, L. Xiao, Y. Li, C. H. Dong, Z. F. Han, and Q. Gong, “Quantum electrodynamics in a whispering-gallery microcavity coated with a polymer nanolayer,” Phys. Rev. A81, 053807 (2010).
[CrossRef]

Xue, P.

Y. F. Xiao, C. L. Zou, P. Xue, L. Xiao, Y. Li, C. H. Dong, Z. F. Han, and Q. Gong, “Quantum electrodynamics in a whispering-gallery microcavity coated with a polymer nanolayer,” Phys. Rev. A81, 053807 (2010).
[CrossRef]

Zhao, H.

M. Fujiwara, K. Toubaru, T. Noda, H. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett.11, 4362–4365 (2011).
[CrossRef] [PubMed]

Zoller, P.

M. Wallquist, K. Hammerer, P. Rabl, M. Lukin, and P. Zoller, “Hybrid quantum devices and quantum engineering,” Physica ScriptaT137, 014001 (2009).
[CrossRef]

Zou, C. L.

Y. F. Xiao, C. L. Zou, P. Xue, L. Xiao, Y. Li, C. H. Dong, Z. F. Han, and Q. Gong, “Quantum electrodynamics in a whispering-gallery microcavity coated with a polymer nanolayer,” Phys. Rev. A81, 053807 (2010).
[CrossRef]

Zumofen, G.

M. Pototschnig, Y. Chassagneux, J. Hwang, G. Zumofen, A. Renn, and V. Sandoghdar, “Controlling the phase of a light beam with a single molecule,” Phys. Rev. Lett.107, 63001 (2011).
[CrossRef]

Appl. Phys. Lett. (4)

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett.86, 261106 (2005).
[CrossRef]

H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Fiber-microsphere laser with a sub-micrometer sol-gel silica glass layer codoped with erbium, aluminum, and phosphorus,” Appl. Phys. Lett.90, 101103 (2007).
[CrossRef]

H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Control of spontaneous emission coupling factor β in fiber-coupled microsphere resonators,” Appl. Phys. Lett.92, 071115 (2008).
[CrossRef]

H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Polarization-discriminated spectra of a fiber-microsphere system,” Appl. Phys. Lett.89, 121107 (2006).
[CrossRef]

J. Lightw. Technol. (1)

B. Little, J. Laine, and H. Haus, “Analytic theory of coupling from tapered fibers and half-blocks into microsphere resonators,” J. Lightw. Technol.17, 704–715 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D: Appl. Phys. (1)

G. K. White, “Thermal expansion of reference materials: copper, silica and silicon,” J. Phys. D: Appl. Phys.6, 2070–2078 (1973).
[CrossRef]

Jpn. J. Appl. Phys. (1)

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Resonant frequency control of a microspherical cavity by temperature adjustment,” Jpn. J. Appl. Phys.43, 6138–6141 (2004).
[CrossRef]

Nano Lett. (4)

D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vuckovic, H. Park, and M. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett.10, 3922–3926 (2010).
[CrossRef] [PubMed]

Y. Park, A. Cook, and H. Wang, “Cavity qed with diamond nanocrystals and silica microspheres,” Nano Lett.6, 2075–2079 (2006).
[CrossRef] [PubMed]

M. Fujiwara, K. Toubaru, T. Noda, H. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett.11, 4362–4365 (2011).
[CrossRef] [PubMed]

M. Larsson, K. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica microsphere,” Nano Lett.9, 1447–1450 (2009).
[CrossRef] [PubMed]

Nanotechnology (1)

C. Santori, P. Barclay, K. Fu, R. Beausoleil, S. Spillane, and M. Fisch, “Nanophotonics for quantum optics using nitrogen-vacancy centers in diamond,” Nanotechnology21, 274008 (2010).
[CrossRef] [PubMed]

Nat. Photonics (1)

A. Faraon, P.E. Barclay, C. Santori, K.M.C. Fu, and R.G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics5, 301–305 (2011).
[CrossRef]

Nat. Physics (3)

A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Physics4, 415–419 (2008).
[CrossRef]

A. Schliesser, O. Arcizet, R. Rivière, G. Anetsberger, and T. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the heisenberg uncertainty limit,” Nat. Physics5, 509–514 (2009).
[CrossRef]

O. Arcizet, V. Jacques, A. Siria, P. Poncharal, P. Vincent, and S. Seidelin, “A single nitrogen-vacancy defect coupled to a nanomechanical oscillator,” Nat. Physics7, 879–883 (2011).
[CrossRef]

Nature (London) (4)

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T.J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature (London)482, 63–67 (2012).
[CrossRef]

O. Benson, “Assembly of hybrid photonic architectures from nanophotonic constituents,” Nature (London)480, 193–199 (2011).
[CrossRef]

S. Spillane, T. Kippenberg, and K. Vahala, “Ultralow-threshold raman laser using a spherical dielectric microcavity,” Nature (London)415, 621–623 (2002).
[CrossRef]

T. Aoki, B. Dayan, E. Wilcut, W. Bowen, A. Parkins, T. Kippenberg, K. Vahala, and H. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature (London)443, 671–674 (2006).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. A (6)

O. Arcizet, R. Riviére, A. Schliesser, G. Antetsberger, and T. J. Kippenberg, “Cryogenic Properties of Optomechanical Silica Microcavities,” Phys. Rev. A80, 021803 (2009).
[CrossRef]

Y. C. Liu, Y. F. Xiao, B. B. Li, X. F. Jiang, Y. Li, and Q. Gong, “Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: Photon transport benefitting from Rayleigh scattering,” Phys. Rev. A84, 011805 (2011).
[CrossRef]

Y. F. Xiao, C. L. Zou, P. Xue, L. Xiao, Y. Li, C. H. Dong, Z. F. Han, and Q. Gong, “Quantum electrodynamics in a whispering-gallery microcavity coated with a polymer nanolayer,” Phys. Rev. A81, 053807 (2010).
[CrossRef]

K. Kojima, H. Hofmann, S. Takeuchi, and K. Sasaki, “Nonlinear interaction of two photons with a one-dimensional atom: Spatiotemporal quantum coherence in the emitted field,” Phys. Rev. A68, 013803 (2003).
[CrossRef]

K. Kojima, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Efficiencies for the single-mode operation of a quantum optical nonlinear shift gate,” Phys. Rev. A70, 013810 (2004).
[CrossRef]

K. Koshino, S. Ishizaka, and Y. Nakamura, “Deterministic photon-photon SWAP gate using a λ system,” Phys. Rev. A82, 010301 (2010).
[CrossRef]

Phys. Rev. Lett. (4)

A.H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett.108, 033602 (2012).
[CrossRef] [PubMed]

M. Pototschnig, Y. Chassagneux, J. Hwang, G. Zumofen, A. Renn, and V. Sandoghdar, “Controlling the phase of a light beam with a single molecule,” Phys. Rev. Lett.107, 63001 (2011).
[CrossRef]

M. Cai, O. Painter, and K. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett.85, 74–77 (2000).
[CrossRef] [PubMed]

G. K. White, “Thermal expansion of vitreous silica at low temperatures,” Phys. Rev. Lett.34, 204–205 (1975).
[CrossRef]

Physica Scripta (1)

M. Wallquist, K. Hammerer, P. Rabl, M. Lukin, and P. Zoller, “Hybrid quantum devices and quantum engineering,” Physica ScriptaT137, 014001 (2009).
[CrossRef]

Other (5)

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” arXiv:1202.0806v1 (2012).

The taper-microsphere distance was calibrated by the data of room-temperature coupling experiments using a 330-nm-diameter tapered fiber and a 125-μm-diameter microsphere with the quality factor of Q = 1.0 × 107.

Equation (3) in Ref. [27] reads Δϕ = arctan(S3/S2) − argAX + argAY, where AX and AY are a orthogonal set of complex amplitudes of the input electric field. In the present experiment we input diagonal polarization light, which gives argAX = argAY = 1/2.

The overall transmittance of the tapered fibers (including the fiber coupling loss, the fiber connection loss, and the scattering loss at the UV adhesive) was 0.13 at room temperature. It decreased to 0.03 at 7 K, probably due to temperature-induced deformation of the UV adhesive. This reduction in transmittance does not essentially affect the present fiber–microsphere coupling experiment.

Note that the microspheres fabricated from the silica fibers (S630-HP, Thorlabs) usually show Q factor of ∼ 107 due to impurities doped in the silica fibers. By using high-purity and low-OH silica for the starting material, we confirmed that the microspheres have Q factor of greater than 108. Note also that the cryogenic experiments do not affect the Q-factor of the microsphere as we already experimentally confirmed previously [24].

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagram of experimental setup. LD: laser diode; HWP: half-wave plate; Pol. Ctrl.: polarization controller; QWP: quarter-wave plate; PBS: polarizing beam splitter; PD: photodetector. The photograph shows a critically coupled fiber–microsphere system at 7 K. Both ends of the tapered fiber were spliced with single-mode fibers. The input power to the tapered fiber was ∼ 10 nW.

Fig. 2
Fig. 2

Transmittance and phase-shift spectra of the microsphere cavity resonance at 10 K measured at taper–microsphere distances D of (a, c) 390 nm and (b, d) 250 nm, respectively. Plots of the (e) transmittance minimum and (f) the linewidth of the cavity resonance dip as a function of D.

Fig. 3
Fig. 3

Cavity resonance frequency tuning by temperature change with preserving the critical coupling. (a) Frequency shift of the cavity resonance as a function of temperature. Each data plot has an experimental error of 14 MHz that comes from the frequency fluctuation of the laser. (b) Corresponding transmittance spectra at 28, 20, 14, and 8 K from top to bottom [indicated by arrows in (a)]. (c) Relative shift of 1 ν 0 d ν 0 d T, α, and 1 n eff d n eff d T as a function of temperature from 7 to 28 K, which are indicated by black rectangle, red circle, blue triangle, respectively. The data of α is taken from Ref. [43, 44]. In (b), cavity mode A has the Q factor of 7.3 × 106 and cavity mode B 1.9 × 107.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

1 ν 0 d ν 0 d T = α + 1 n eff d n eff d T .

Metrics