Abstract

OSNR monitoring is indispensable for coherent systems to ensure robust, reliable network operation and potentially enable impairment-aware routing for future dynamic optical networks. In a long-haul transmission link with chromatic dispersion (CD) and fiber nonlinearity, it is difficult to distinguish between amplifier noise and fiber nonlinearity induced distortions from received signal distributions even after various transmission impairment compensation techniques, thus resulting in grossly inaccurate OSNR estimates. Based on the received signal distributions after carrier phase estimation (CPE), we propose to characterize the nonlinearity-induced amplitude noise correlation across neighboring symbols and incorporate such information into error vector magnitude (EVM) calculation to realize fiber nonlinearity-insensitive OSNR monitoring. For a transmission link up to 1600 km and signal launched power up to 2 dBm, experimental results for 112 Gb/s polarization-multiplexed quadrature phase-shift keying (PM-QPSK) demonstrate an OSNR monitoring range of 10-24 dB with a maximum estimation error below 1 dB. For 224 Gb/s PM-16-quadrature amplitude modulation (PM-16-QAM) systems, simulation results demonstrate an OSNR monitoring range of 18-28 dB with a maximum estimation error below 1 dB. Tolerance of the proposed OSNR monitoring technique to different pulse shapes, timing phase offsets, polarization dependent loss (PDL), polarization-mode dispersion (PMD) and WDM effects are also investigated through simulations.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. C. Kilper, S. Chandrasekhar, L. Buhl, A. Agarwal, and D. Maywar, “Spectral monitoring of OSNR in high speed networks,” in European Conference and Exhibition on Optical Communication (ECOC), 2002, paper 7.4.4.
  2. J. H. Lee, D. K. Jung, C. H. Kim, and Y. C. Chung, “OSNR monitoring technique using polarization nulling method,” IEEE Photon. Technol. Lett.13(1), 88–90 (2001).
    [CrossRef]
  3. S. D. Dods and T. B. Anderson, “Optical performance monitoring technique using delay tap asynchronous waveform sampling,” in Proc. OFC’06, Anaheim, California, Mar. 2006, Paper OThP5.
  4. J. A. Jargon, X. Wu, and A. E. Willner, “Optical performance monitoring using artificial neural networks trained with eye-diagram parameters,” IEEE Photon. Technol. Lett.21(1), 54–56 (2009).
    [CrossRef]
  5. E. Ip, A. P. T. Lau, D. J. F. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express16(2), 753–791 (2008).
    [CrossRef] [PubMed]
  6. S. J. Savory, “Digital coherent optical receivers: Algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron.16(5), 1164–1179 (2010).
    [CrossRef]
  7. S. L. Woodward, L. E. Nelson, M. D. Feuer, X. Zhou, P. D. Magill, S. Foo, D. Hanson, H. Sun, M. Moyer, and M. O’Sullivan, “Characterization of real-time PMD and chromatic dispersion monitoring in a high-PMD 46-Gb/s transmission system,” IEEE Photon. Technol. Lett.20(24), 2048–2050 (2008).
    [CrossRef]
  8. F. N. Hauske, M. Kuschnerov, B. Spinnler, and B. Lankl, “Optical performance monitoring in digital coherent receivers,” J. Lightwave Technol.27(16), 3623–3631 (2009).
    [CrossRef]
  9. F. Pittalà, F. N. Hauske, Y. Ye, N. G. Gonzalez, and I. T. Monroy, “Joint PDL and in-band OSNR monitoring supported by data-aided channel estimation,” in Proc. OFC’12, Los Angeles, Mar. 2012, Paper OW4G.
  10. D. J. Ives, B. C. Thomsen, R. Maher, and S. Savory, “Estimating OSNR of equalised QPSK signals,” in Proc. European Conference and Exhibition on Optical Communication (ECOC), 2011, Paper Tu.6.A.6.
  11. R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett.24(1), 61–63 (2012).
    [CrossRef]
  12. M. Mayrock and H. Haunstein, “Optical monitoring for non-linearity identification in CO-OFDM transmission systems,” in Proc. OFC’08, San Diego, CA, Feb. 2008, Paper JThA58.
  13. E. Ip, “Nonlinear compensation using backpropagation for polarization-multiplexed transmission,” J. Lightwave Technol.28(6), 939–951 (2010).
    [CrossRef]
  14. Z. H. Dong, A. P. T. Lau, and C. Lu, “OSNR monitoring for PM-QPSK systems in presence of fiber nonlinearities for digital coherent receivers,” in Proc. Optoelectronic Communication Conference (OECC), 2012, Paper 6B3–3.
  15. J. Renaudier, G. Charlet, O. Bertran-Pardo, H. Mardoyan, P. Tran, M. Salsi, and S. Bigo, “Transmission of 100 Gb/s Coherent PDM-QPSK over 16 x 100 km of Standard Fiber with allerbium amplifiers,” Opt. Express17(7), 5112–5119 (2009).
    [CrossRef] [PubMed]
  16. A. H. Gnauck, P. J. Winzer, S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “Spectrally efficient long-haul WDM transmission using 224-Gb/s polarization-multiplexed 16-QAM,” J. Lightwave Technol.29(4), 373–377 (2011).
    [CrossRef]
  17. P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical modeling of nonlinear propagation in uncompensated optical transmission links,” IEEE Photon. Technol. Lett.23(11), 742–744 (2011).
    [CrossRef]
  18. F. Vacondio, O. Rival, C. Simonneau, E. Grellier, A. Bononi, L. Lorcy, J. C. Antona, and S. Bigo, “On nonlinear distortions of highly dispersive optical coherent systems,” Opt. Express20(2), 1022–1032 (2012).
    [CrossRef] [PubMed]
  19. A. Bononi, P. Serena, N. Rossi, and D. Sperti, “Which is the dominant nonlinearity in long-haul PDM-QPSK coherent transmissions?” in European Conference and Exhibition on Optical Communication (ECOC), 2010, Th.10.E.1.
  20. A. Bononi, N. Rossi, and P. Serena, “Transmission limitations due to fiber nonlinearity,” in Proc. OFC’11, Los Angeles, Mar. 2011, Paper OWO7.
  21. A. P. T. Lau, S. Rabbani, and J. M. Kahn, “On the statistics of intra-channel four-wave mixing in phase-modulated optical communication systems,” J. Lightwave Technol.26(14), 2128–2135 (2008).
    [CrossRef]
  22. 22. Optical Monitoring for DWDM Systems. ITU-T recommendation G.697, June 2004.
  23. VPIsystemsTM, “VPltransmissionMakerTM”.
  24. X. Zhou, J. Yu, and P. D. Magill, “Cascaded two-modulus algorithm for blind polarization de-multiplexing of 114-Gb/s PDM-8-QAM optical signals,” in Proc. OFC’09, San Diego, Mar. 2009, Paper OWG3.
  25. Y. L. Gao, A. P. T. Lau, S. Y. Yan, and C. Lu, “Low-complexity and phase noise tolerant carrier phase estimation for dual-polarization 16-QAM systems,” Opt. Express19(22), 21717–21729 (2011).
    [CrossRef] [PubMed]
  26. O. Vassilieva, T. Hoshida, X. Wang, J. Rasmussen, H. Miyata, and T. Naito, “Impact of polarization dependent loss and cross-phase modulation on polarization multiplexed DQPSK signals,” in Proc. OFC’08, San Diego, CA, Feb. 2008, Paper OThU6.

2012 (2)

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett.24(1), 61–63 (2012).
[CrossRef]

F. Vacondio, O. Rival, C. Simonneau, E. Grellier, A. Bononi, L. Lorcy, J. C. Antona, and S. Bigo, “On nonlinear distortions of highly dispersive optical coherent systems,” Opt. Express20(2), 1022–1032 (2012).
[CrossRef] [PubMed]

2011 (3)

2010 (2)

S. J. Savory, “Digital coherent optical receivers: Algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron.16(5), 1164–1179 (2010).
[CrossRef]

E. Ip, “Nonlinear compensation using backpropagation for polarization-multiplexed transmission,” J. Lightwave Technol.28(6), 939–951 (2010).
[CrossRef]

2009 (3)

2008 (3)

S. L. Woodward, L. E. Nelson, M. D. Feuer, X. Zhou, P. D. Magill, S. Foo, D. Hanson, H. Sun, M. Moyer, and M. O’Sullivan, “Characterization of real-time PMD and chromatic dispersion monitoring in a high-PMD 46-Gb/s transmission system,” IEEE Photon. Technol. Lett.20(24), 2048–2050 (2008).
[CrossRef]

E. Ip, A. P. T. Lau, D. J. F. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express16(2), 753–791 (2008).
[CrossRef] [PubMed]

A. P. T. Lau, S. Rabbani, and J. M. Kahn, “On the statistics of intra-channel four-wave mixing in phase-modulated optical communication systems,” J. Lightwave Technol.26(14), 2128–2135 (2008).
[CrossRef]

2001 (1)

J. H. Lee, D. K. Jung, C. H. Kim, and Y. C. Chung, “OSNR monitoring technique using polarization nulling method,” IEEE Photon. Technol. Lett.13(1), 88–90 (2001).
[CrossRef]

Antona, J. C.

Barros, D. J. F.

Becker, J.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett.24(1), 61–63 (2012).
[CrossRef]

Bertran-Pardo, O.

Bigo, S.

Bononi, A.

Bosco, G.

P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical modeling of nonlinear propagation in uncompensated optical transmission links,” IEEE Photon. Technol. Lett.23(11), 742–744 (2011).
[CrossRef]

Carena, A.

P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical modeling of nonlinear propagation in uncompensated optical transmission links,” IEEE Photon. Technol. Lett.23(11), 742–744 (2011).
[CrossRef]

Chandrasekhar, S.

Charlet, G.

Chung, Y. C.

J. H. Lee, D. K. Jung, C. H. Kim, and Y. C. Chung, “OSNR monitoring technique using polarization nulling method,” IEEE Photon. Technol. Lett.13(1), 88–90 (2001).
[CrossRef]

Curri, V.

P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical modeling of nonlinear propagation in uncompensated optical transmission links,” IEEE Photon. Technol. Lett.23(11), 742–744 (2011).
[CrossRef]

Dreschmann, M.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett.24(1), 61–63 (2012).
[CrossRef]

Feuer, M. D.

S. L. Woodward, L. E. Nelson, M. D. Feuer, X. Zhou, P. D. Magill, S. Foo, D. Hanson, H. Sun, M. Moyer, and M. O’Sullivan, “Characterization of real-time PMD and chromatic dispersion monitoring in a high-PMD 46-Gb/s transmission system,” IEEE Photon. Technol. Lett.20(24), 2048–2050 (2008).
[CrossRef]

Foo, S.

S. L. Woodward, L. E. Nelson, M. D. Feuer, X. Zhou, P. D. Magill, S. Foo, D. Hanson, H. Sun, M. Moyer, and M. O’Sullivan, “Characterization of real-time PMD and chromatic dispersion monitoring in a high-PMD 46-Gb/s transmission system,” IEEE Photon. Technol. Lett.20(24), 2048–2050 (2008).
[CrossRef]

Forghieri, F.

P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical modeling of nonlinear propagation in uncompensated optical transmission links,” IEEE Photon. Technol. Lett.23(11), 742–744 (2011).
[CrossRef]

Freude, W.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett.24(1), 61–63 (2012).
[CrossRef]

Gao, Y. L.

Gnauck, A. H.

Grellier, E.

Hanson, D.

S. L. Woodward, L. E. Nelson, M. D. Feuer, X. Zhou, P. D. Magill, S. Foo, D. Hanson, H. Sun, M. Moyer, and M. O’Sullivan, “Characterization of real-time PMD and chromatic dispersion monitoring in a high-PMD 46-Gb/s transmission system,” IEEE Photon. Technol. Lett.20(24), 2048–2050 (2008).
[CrossRef]

Hauske, F. N.

Hillerkuss, D.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett.24(1), 61–63 (2012).
[CrossRef]

Huebner, M.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett.24(1), 61–63 (2012).
[CrossRef]

Ip, E.

Jargon, J. A.

J. A. Jargon, X. Wu, and A. E. Willner, “Optical performance monitoring using artificial neural networks trained with eye-diagram parameters,” IEEE Photon. Technol. Lett.21(1), 54–56 (2009).
[CrossRef]

Josten, A.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett.24(1), 61–63 (2012).
[CrossRef]

Jung, D. K.

J. H. Lee, D. K. Jung, C. H. Kim, and Y. C. Chung, “OSNR monitoring technique using polarization nulling method,” IEEE Photon. Technol. Lett.13(1), 88–90 (2001).
[CrossRef]

Kahn, J. M.

Kim, C. H.

J. H. Lee, D. K. Jung, C. H. Kim, and Y. C. Chung, “OSNR monitoring technique using polarization nulling method,” IEEE Photon. Technol. Lett.13(1), 88–90 (2001).
[CrossRef]

Koenig, S.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett.24(1), 61–63 (2012).
[CrossRef]

Koos, C.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett.24(1), 61–63 (2012).
[CrossRef]

Kuschnerov, M.

Lankl, B.

Lau, A. P. T.

Lee, J. H.

J. H. Lee, D. K. Jung, C. H. Kim, and Y. C. Chung, “OSNR monitoring technique using polarization nulling method,” IEEE Photon. Technol. Lett.13(1), 88–90 (2001).
[CrossRef]

Leuthold, J.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett.24(1), 61–63 (2012).
[CrossRef]

Liu, X.

Lorcy, L.

Lu, C.

Magill, P. D.

S. L. Woodward, L. E. Nelson, M. D. Feuer, X. Zhou, P. D. Magill, S. Foo, D. Hanson, H. Sun, M. Moyer, and M. O’Sullivan, “Characterization of real-time PMD and chromatic dispersion monitoring in a high-PMD 46-Gb/s transmission system,” IEEE Photon. Technol. Lett.20(24), 2048–2050 (2008).
[CrossRef]

Mardoyan, H.

Meyer, J.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett.24(1), 61–63 (2012).
[CrossRef]

Moyer, M.

S. L. Woodward, L. E. Nelson, M. D. Feuer, X. Zhou, P. D. Magill, S. Foo, D. Hanson, H. Sun, M. Moyer, and M. O’Sullivan, “Characterization of real-time PMD and chromatic dispersion monitoring in a high-PMD 46-Gb/s transmission system,” IEEE Photon. Technol. Lett.20(24), 2048–2050 (2008).
[CrossRef]

Nebendahl, B.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett.24(1), 61–63 (2012).
[CrossRef]

Nelson, L. E.

S. L. Woodward, L. E. Nelson, M. D. Feuer, X. Zhou, P. D. Magill, S. Foo, D. Hanson, H. Sun, M. Moyer, and M. O’Sullivan, “Characterization of real-time PMD and chromatic dispersion monitoring in a high-PMD 46-Gb/s transmission system,” IEEE Photon. Technol. Lett.20(24), 2048–2050 (2008).
[CrossRef]

O’Sullivan, M.

S. L. Woodward, L. E. Nelson, M. D. Feuer, X. Zhou, P. D. Magill, S. Foo, D. Hanson, H. Sun, M. Moyer, and M. O’Sullivan, “Characterization of real-time PMD and chromatic dispersion monitoring in a high-PMD 46-Gb/s transmission system,” IEEE Photon. Technol. Lett.20(24), 2048–2050 (2008).
[CrossRef]

Peckham, D. W.

Poggiolini, P.

P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical modeling of nonlinear propagation in uncompensated optical transmission links,” IEEE Photon. Technol. Lett.23(11), 742–744 (2011).
[CrossRef]

Rabbani, S.

Renaudier, J.

Rival, O.

Salsi, M.

Savory, S. J.

S. J. Savory, “Digital coherent optical receivers: Algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron.16(5), 1164–1179 (2010).
[CrossRef]

Schmogrow, R.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett.24(1), 61–63 (2012).
[CrossRef]

Simonneau, C.

Spinnler, B.

Sun, H.

S. L. Woodward, L. E. Nelson, M. D. Feuer, X. Zhou, P. D. Magill, S. Foo, D. Hanson, H. Sun, M. Moyer, and M. O’Sullivan, “Characterization of real-time PMD and chromatic dispersion monitoring in a high-PMD 46-Gb/s transmission system,” IEEE Photon. Technol. Lett.20(24), 2048–2050 (2008).
[CrossRef]

Tran, P.

Vacondio, F.

Willner, A. E.

J. A. Jargon, X. Wu, and A. E. Willner, “Optical performance monitoring using artificial neural networks trained with eye-diagram parameters,” IEEE Photon. Technol. Lett.21(1), 54–56 (2009).
[CrossRef]

Winter, M.

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett.24(1), 61–63 (2012).
[CrossRef]

Winzer, P. J.

Woodward, S. L.

S. L. Woodward, L. E. Nelson, M. D. Feuer, X. Zhou, P. D. Magill, S. Foo, D. Hanson, H. Sun, M. Moyer, and M. O’Sullivan, “Characterization of real-time PMD and chromatic dispersion monitoring in a high-PMD 46-Gb/s transmission system,” IEEE Photon. Technol. Lett.20(24), 2048–2050 (2008).
[CrossRef]

Wu, X.

J. A. Jargon, X. Wu, and A. E. Willner, “Optical performance monitoring using artificial neural networks trained with eye-diagram parameters,” IEEE Photon. Technol. Lett.21(1), 54–56 (2009).
[CrossRef]

Yan, S. Y.

Zhou, X.

S. L. Woodward, L. E. Nelson, M. D. Feuer, X. Zhou, P. D. Magill, S. Foo, D. Hanson, H. Sun, M. Moyer, and M. O’Sullivan, “Characterization of real-time PMD and chromatic dispersion monitoring in a high-PMD 46-Gb/s transmission system,” IEEE Photon. Technol. Lett.20(24), 2048–2050 (2008).
[CrossRef]

Zhu, B.

IEEE J. Sel. Top. Quantum Electron. (1)

S. J. Savory, “Digital coherent optical receivers: Algorithms and subsystems,” IEEE J. Sel. Top. Quantum Electron.16(5), 1164–1179 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

S. L. Woodward, L. E. Nelson, M. D. Feuer, X. Zhou, P. D. Magill, S. Foo, D. Hanson, H. Sun, M. Moyer, and M. O’Sullivan, “Characterization of real-time PMD and chromatic dispersion monitoring in a high-PMD 46-Gb/s transmission system,” IEEE Photon. Technol. Lett.20(24), 2048–2050 (2008).
[CrossRef]

R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector magnitude as a performance measure for advanced modulation formats,” IEEE Photon. Technol. Lett.24(1), 61–63 (2012).
[CrossRef]

J. H. Lee, D. K. Jung, C. H. Kim, and Y. C. Chung, “OSNR monitoring technique using polarization nulling method,” IEEE Photon. Technol. Lett.13(1), 88–90 (2001).
[CrossRef]

J. A. Jargon, X. Wu, and A. E. Willner, “Optical performance monitoring using artificial neural networks trained with eye-diagram parameters,” IEEE Photon. Technol. Lett.21(1), 54–56 (2009).
[CrossRef]

P. Poggiolini, A. Carena, V. Curri, G. Bosco, and F. Forghieri, “Analytical modeling of nonlinear propagation in uncompensated optical transmission links,” IEEE Photon. Technol. Lett.23(11), 742–744 (2011).
[CrossRef]

J. Lightwave Technol. (4)

Opt. Express (4)

Other (12)

D. C. Kilper, S. Chandrasekhar, L. Buhl, A. Agarwal, and D. Maywar, “Spectral monitoring of OSNR in high speed networks,” in European Conference and Exhibition on Optical Communication (ECOC), 2002, paper 7.4.4.

A. Bononi, P. Serena, N. Rossi, and D. Sperti, “Which is the dominant nonlinearity in long-haul PDM-QPSK coherent transmissions?” in European Conference and Exhibition on Optical Communication (ECOC), 2010, Th.10.E.1.

A. Bononi, N. Rossi, and P. Serena, “Transmission limitations due to fiber nonlinearity,” in Proc. OFC’11, Los Angeles, Mar. 2011, Paper OWO7.

22. Optical Monitoring for DWDM Systems. ITU-T recommendation G.697, June 2004.

VPIsystemsTM, “VPltransmissionMakerTM”.

X. Zhou, J. Yu, and P. D. Magill, “Cascaded two-modulus algorithm for blind polarization de-multiplexing of 114-Gb/s PDM-8-QAM optical signals,” in Proc. OFC’09, San Diego, Mar. 2009, Paper OWG3.

O. Vassilieva, T. Hoshida, X. Wang, J. Rasmussen, H. Miyata, and T. Naito, “Impact of polarization dependent loss and cross-phase modulation on polarization multiplexed DQPSK signals,” in Proc. OFC’08, San Diego, CA, Feb. 2008, Paper OThU6.

F. Pittalà, F. N. Hauske, Y. Ye, N. G. Gonzalez, and I. T. Monroy, “Joint PDL and in-band OSNR monitoring supported by data-aided channel estimation,” in Proc. OFC’12, Los Angeles, Mar. 2012, Paper OW4G.

D. J. Ives, B. C. Thomsen, R. Maher, and S. Savory, “Estimating OSNR of equalised QPSK signals,” in Proc. European Conference and Exhibition on Optical Communication (ECOC), 2011, Paper Tu.6.A.6.

S. D. Dods and T. B. Anderson, “Optical performance monitoring technique using delay tap asynchronous waveform sampling,” in Proc. OFC’06, Anaheim, California, Mar. 2006, Paper OThP5.

M. Mayrock and H. Haunstein, “Optical monitoring for non-linearity identification in CO-OFDM transmission systems,” in Proc. OFC’08, San Diego, CA, Feb. 2008, Paper JThA58.

Z. H. Dong, A. P. T. Lau, and C. Lu, “OSNR monitoring for PM-QPSK systems in presence of fiber nonlinearities for digital coherent receivers,” in Proc. Optoelectronic Communication Conference (OECC), 2012, Paper 6B3–3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Standard signal processing blocks in a digital coherent receiver; (b) Graphical illustration of received signal and amplitude noise Δ k ; Received 16-QAM distributions with (c) −4 dBm signal launched power and 18 dB OSNR (d) 4 dBm signal launched power and 26 dB OSNR over a 800-km link. As evident from the figures, amplifier noise and fiber nonlinearity effects will induce similar distortions to the received signal distribution and therefore it is not easy to distinguish between them for accurate OSNR monitoring.

Fig. 2
Fig. 2

Autocorrelation of fiber-nonlinearity induced amplitude noise | R Δ (m) | for a (a) 112 Gb/s PM-QPSK system and (b) 224 Gb/s PM-16-QAM system with various signal launched powers and OSNR values. The transmission distance is 800 km without inline optical CD compensation and the received signals are sampled and processed by standard DSP blocks depicted in Fig. 1(a) and the amplitude noise autocorrelation are calculated accordingly from the received signal distribution after carrier phase estimation. From the figure, R Δ (1) only depends on signal launched power and is insensitive to ASE noise and hence can be used to isolate fiber nonlinearity effects from ASE noise.

Fig. 3
Fig. 3

| R Δ (1) |×ξ and nonlinear noise power P NL as a function of signal launched power in a 800-km CD uncompensated link. The optimal ξ is calibrated to be 10.2.

Fig. 4
Fig. 4

System configuration for a 112Gbit/s PM-QPSK system without inline dispersion compensation. Att: attenuator, AOM: acousto-optic modulator, BPF: band-pass filter, ECL: external cavity laser, EDFA: erbium-doped fiber amplifier, PBS: polarization beam splitter, PBC: polarizing beam combiner, PC: polarization controller, OSA: optical spectrum analyzer, SSMF: standard single-mode fiber.

Fig. 5
Fig. 5

Autocorrelation of fiber nonlinearity-induced amplitude noise experimentally obtained from a 112 Gb/s PM-QPSK system in a 800-km CD uncompensated link with standard DSP algorithms for transmission impairment compensation for various signal launched powers and OSNR values.

Fig. 6
Fig. 6

Estimated OSNR vs true OSNR experimentally obtained from a 112 Gb/s PM-QPSK system for various signal launched powers and OSNR values (a) after 400 km transmission and calibrated with ξ = 9. The maximum estimation error is 0.82 dB; (b) after 800 km transmission and calibrated with ξ = 10.5. The maximum estimation error is 0.93 dB; (c) after 1200 km transmission and calibrated with ξ = 11.5. The maximum estimation error is 0.77 dB; (d) after 1600 km transmission and calibrated with ξ = 12.5. The maximum estimation error is 1.0 dB.

Fig. 7
Fig. 7

The optimized calibration factor ξ vs. transmission distance for a 112 Gb/s PM-QPSK system for realizing nonlinearity-insensitive OSNR monitoring.

Fig. 8
Fig. 8

Estimated OSNR vs true OSNR for a 224 Gb/s PM-16-QAM system obtained from simulations for various signal launched powers and OSNR values (a) after 400km transmission and calibrated with ξ = 11.2. The maximum estimation error is 0.9 dB; (b) after 800 km transmission and calibrated with ξ = 12.3. The maximum estimation error is 1.73 dB; (c) after 1200 km transmission calibrated with ξ = 12.8. The maximum estimation error is 1.81 dB; (d) after 1600 km transmission calibrated with ξ = 13.8. The maximum estimation error is 1.98 dB. Different pulse shapes, timing phases, PDL and DGD with different SOPs are considered in the simulation and estimation results.

Fig. 9
Fig. 9

The optimized calibration factorξ vs. transmission distance for a 224 Gb/s PM-16-QAM system for realizing nonlinearity-insensitive OSNR monitoring.

Fig. 10
Fig. 10

The optimized calibration factor ξ vs. transmission distance for a 224 Gb/s PM-16-QAM WDM system for realizing nonlinearity-insensitive OSNR monitoring. The channel spacing is 50 GHz.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

r k = s k + n k
OSN R Estimated = P in P ASE = E( | s ^ k | 2 ) E( | n k | 2 )
r k = s k + n k = s k + n k + v k
OSN R Estimated = E( | s ^ k | 2 ) E( | n k | 2 ) = E( | s ^ k | 2 ) E( | n k | 2 )+ E( | v k | 2 )+E( n k v k * )+E( n k * v k ) P NL = P in P ASE + P NL
R Δ (m)=E[ Δ k Δ k+m ].
OSN R Estimated = E( | s ^ k | 2 ) E( | n k | 2 )| R Δ (1) |×ξ .

Metrics