Abstract

This paper describes an easy-to-implement three-dimensional (3-D) real-time shape measurement technique using our newly developed high-speed 3-D vision system. It employs only four projection fringes to realize full-field phase unwrapping in the presence of discontinuous or isolated objects. With our self-designed pattern generation hardware and a modified low-cost DLP projector, the four designed patterns can be generated and projected at a switching speed of 360 Hz. Using a properly synchronized high-speed camera, the high-speed fringe patterns distorted by measured objects can be acquired and processed in real-time. The resulting system can capture and display high-quality textured 3-D data at a speed of 120 frames per second, with the resolution of 640 × 480 points. The speed can be trebled if a camera with a higher frame rate is employed. We detail our shape measurement technique, including the four-pattern decoding algorithm as well as the hardware design. Some evaluation experiments have been carried out to demonstrate the validity and practicability of the proposed technique.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Chen, G. M. Brown, and M. M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng.39(1), 10–22 (2000).
    [CrossRef]
  2. S. S. Gorthi and P. Rastogi, “Fringe projection techniques: Whither we are?” Opt. Lasers Eng.48(2), 133–140 (2010).
    [CrossRef]
  3. S. Zhang, “Recent progresses on real-time 3D shape measurement using digital fringe projection techniques,” Opt. Lasers Eng.48(2), 149–158 (2010).
    [CrossRef]
  4. J. M. Huntley and H. O. Saldner, “Shape measurement by temporal phase unwrapping and spatial light modulator-based fringe projector,” in Proceedings of Sensors, Sensor Systems, and Sensor Data Processing, O. Loffeld, ed. (SPIE, 1997), pp. 185-192.
  5. T. R. Judge and P. J. Bryanston-Cross, “A review of phase unwrapping techniques in fringe analysis,” Opt. Lasers Eng.21(4), 199–239 (1994).
    [CrossRef]
  6. M. Takeda and K. Mutoh, “Fourier transform profilometry for the automatic measurement of 3-D object shapes,” Appl. Opt.22(24), 3977–3982 (1983).
    [CrossRef] [PubMed]
  7. V. Srinivasan, H. C. Liu, and M. Halioua, “Automated phase-measuring profilometry of 3-D diffuse objects,” Appl. Opt.23(18), 3105–3108 (1984).
    [CrossRef] [PubMed]
  8. Q. Zhang and X. Su, “High-speed optical measurement for the drumhead vibration,” Opt. Express13(8), 3110–3116 (2005).
    [CrossRef] [PubMed]
  9. X. Y. Su and W. J. Chen, “Fourier transform profilometry,” Opt. Lasers Eng.35(5), 263–284 (2001).
    [CrossRef]
  10. L. Guo, X. Su, and J. Li, “Improved Fourier transform profilometry for the automatic measurement of 3D object shapes,” Opt. Eng.29(12), 1439–1444 (1990).
    [CrossRef]
  11. X.-Y. Su, G. von Bally, and D. Vukicevic, “Phase-stepping grating profilometry: utilization of intensity modulation analysis in complex objects evaluation,” Opt. Commun.98(1-3), 141–150 (1993).
    [CrossRef]
  12. J. L. Li, L. G. Hassebrook, and C. Guan, “Optimized two-frequency phase-measuring-profilometry light-sensor temporal-noise sensitivity,” J. Opt. Soc. Am. A20(1), 106–115 (2003).
    [CrossRef] [PubMed]
  13. S. Zhang and P. S. Huang, “High-resolution, real-time three-dimensional shape measurement,” Opt. Eng.45(12), 123601 (2006).
    [CrossRef]
  14. S. Zhang and S. T. Yau, “High-speed three-dimensional shape measurement system using a modified two-plus-one phase-shifting algorithm,” Opt. Eng.46(11), 113603 (2007).
    [CrossRef]
  15. P. Jia, J. Kofman, and C. English, “Two-step triangular-pattern phase-shifting method for three-dimensional object-shape measurement,” Opt. Eng.083201, (2007).
  16. K. Liu, Y. Wang, D. L. Lau, Q. Hao, and L. G. Hassebrook, “Dual-frequency pattern scheme for high-speed 3-D shape measurement,” Opt. Express18(5), 5229–5244 (2010).
    [CrossRef] [PubMed]
  17. J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recognit.43(8), 2666–2680 (2010).
    [CrossRef]
  18. G. Sansoni, M. Carocci, and R. Rodella, “Three-dimensional vision based on a combination of gray-code and phase-shift light projection: Analysis and compensation of the systematic errors,” Appl. Opt.38(31), 6565–6573 (1999).
    [CrossRef] [PubMed]
  19. Y. J. Wang and S. Zhang, “Superfast multifrequency phase-shifting technique with optimal pulse width modulation,” Opt. Express19(6), 5149–5155 (2011).
    [CrossRef] [PubMed]
  20. Y. J. Wang, S. Zhang, and J. H. Oliver, “3D shape measurement technique for multiple rapidly moving objects,” Opt. Express19(9), 8539–8545 (2011).
    [CrossRef] [PubMed]
  21. P. Wissmann, R. Schmitt, and F. Forster, “Fast and accurate 3D scanning using coded phase shifting and high speed pattern projection,” in 3D Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT), 2011 International Conference, 108–115.
  22. Y. Wang, K. Liu, Q. Hao, D. L. Lau, and L. G. Hassebrook, “Period coded phase shifting strategy for real-time 3-D structured light illumination,” IEEE Trans. Image Process.20(11), 3001–3013 (2011).
    [CrossRef] [PubMed]
  23. P. S. S. Huang, C. P. Zhang, and F. P. Chiang, “High-speed 3-D shape measurement based on digital fringe projection,” Opt. Eng.42(1), 163–168 (2003).
    [CrossRef]
  24. S. Zhang, D. Van Der Weide, and J. Oliver, “Superfast phase-shifting method for 3-D shape measurement,” Opt. Express18(9), 9684–9689 (2010).
    [CrossRef] [PubMed]
  25. Y. Li, C. F. Zhao, Y. X. Qian, H. Wang, and H. Z. Jin, “High-speed and dense three-dimensional surface acquisition using defocused binary patterns for spatially isolated objects,” Opt. Express18(21), 21628–21635 (2010).
    [CrossRef] [PubMed]
  26. S. Zhang and P. S. Huang, “Phase error compensation for a 3-D shape measurement system based on the phase-shifting method,” Opt. Eng.46(6), 063601 (2007).
    [CrossRef]
  27. S. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng.45(8), 083601 (2006).
    [CrossRef] [PubMed]
  28. http://www.vesa.org/vesa-standards/

2011 (3)

2010 (6)

S. S. Gorthi and P. Rastogi, “Fringe projection techniques: Whither we are?” Opt. Lasers Eng.48(2), 133–140 (2010).
[CrossRef]

S. Zhang, “Recent progresses on real-time 3D shape measurement using digital fringe projection techniques,” Opt. Lasers Eng.48(2), 149–158 (2010).
[CrossRef]

S. Zhang, D. Van Der Weide, and J. Oliver, “Superfast phase-shifting method for 3-D shape measurement,” Opt. Express18(9), 9684–9689 (2010).
[CrossRef] [PubMed]

Y. Li, C. F. Zhao, Y. X. Qian, H. Wang, and H. Z. Jin, “High-speed and dense three-dimensional surface acquisition using defocused binary patterns for spatially isolated objects,” Opt. Express18(21), 21628–21635 (2010).
[CrossRef] [PubMed]

K. Liu, Y. Wang, D. L. Lau, Q. Hao, and L. G. Hassebrook, “Dual-frequency pattern scheme for high-speed 3-D shape measurement,” Opt. Express18(5), 5229–5244 (2010).
[CrossRef] [PubMed]

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recognit.43(8), 2666–2680 (2010).
[CrossRef]

2007 (3)

S. Zhang and P. S. Huang, “Phase error compensation for a 3-D shape measurement system based on the phase-shifting method,” Opt. Eng.46(6), 063601 (2007).
[CrossRef]

S. Zhang and S. T. Yau, “High-speed three-dimensional shape measurement system using a modified two-plus-one phase-shifting algorithm,” Opt. Eng.46(11), 113603 (2007).
[CrossRef]

P. Jia, J. Kofman, and C. English, “Two-step triangular-pattern phase-shifting method for three-dimensional object-shape measurement,” Opt. Eng.083201, (2007).

2006 (2)

S. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng.45(8), 083601 (2006).
[CrossRef] [PubMed]

S. Zhang and P. S. Huang, “High-resolution, real-time three-dimensional shape measurement,” Opt. Eng.45(12), 123601 (2006).
[CrossRef]

2005 (1)

2003 (2)

J. L. Li, L. G. Hassebrook, and C. Guan, “Optimized two-frequency phase-measuring-profilometry light-sensor temporal-noise sensitivity,” J. Opt. Soc. Am. A20(1), 106–115 (2003).
[CrossRef] [PubMed]

P. S. S. Huang, C. P. Zhang, and F. P. Chiang, “High-speed 3-D shape measurement based on digital fringe projection,” Opt. Eng.42(1), 163–168 (2003).
[CrossRef]

2001 (1)

X. Y. Su and W. J. Chen, “Fourier transform profilometry,” Opt. Lasers Eng.35(5), 263–284 (2001).
[CrossRef]

2000 (1)

F. Chen, G. M. Brown, and M. M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng.39(1), 10–22 (2000).
[CrossRef]

1999 (1)

1994 (1)

T. R. Judge and P. J. Bryanston-Cross, “A review of phase unwrapping techniques in fringe analysis,” Opt. Lasers Eng.21(4), 199–239 (1994).
[CrossRef]

1993 (1)

X.-Y. Su, G. von Bally, and D. Vukicevic, “Phase-stepping grating profilometry: utilization of intensity modulation analysis in complex objects evaluation,” Opt. Commun.98(1-3), 141–150 (1993).
[CrossRef]

1990 (1)

L. Guo, X. Su, and J. Li, “Improved Fourier transform profilometry for the automatic measurement of 3D object shapes,” Opt. Eng.29(12), 1439–1444 (1990).
[CrossRef]

1984 (1)

1983 (1)

Brown, G. M.

F. Chen, G. M. Brown, and M. M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng.39(1), 10–22 (2000).
[CrossRef]

Bryanston-Cross, P. J.

T. R. Judge and P. J. Bryanston-Cross, “A review of phase unwrapping techniques in fringe analysis,” Opt. Lasers Eng.21(4), 199–239 (1994).
[CrossRef]

Carocci, M.

Chen, F.

F. Chen, G. M. Brown, and M. M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng.39(1), 10–22 (2000).
[CrossRef]

Chen, W. J.

X. Y. Su and W. J. Chen, “Fourier transform profilometry,” Opt. Lasers Eng.35(5), 263–284 (2001).
[CrossRef]

Chiang, F. P.

P. S. S. Huang, C. P. Zhang, and F. P. Chiang, “High-speed 3-D shape measurement based on digital fringe projection,” Opt. Eng.42(1), 163–168 (2003).
[CrossRef]

English, C.

P. Jia, J. Kofman, and C. English, “Two-step triangular-pattern phase-shifting method for three-dimensional object-shape measurement,” Opt. Eng.083201, (2007).

Fernandez, S.

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recognit.43(8), 2666–2680 (2010).
[CrossRef]

Gorthi, S. S.

S. S. Gorthi and P. Rastogi, “Fringe projection techniques: Whither we are?” Opt. Lasers Eng.48(2), 133–140 (2010).
[CrossRef]

Guan, C.

Guo, L.

L. Guo, X. Su, and J. Li, “Improved Fourier transform profilometry for the automatic measurement of 3D object shapes,” Opt. Eng.29(12), 1439–1444 (1990).
[CrossRef]

Halioua, M.

Hao, Q.

Y. Wang, K. Liu, Q. Hao, D. L. Lau, and L. G. Hassebrook, “Period coded phase shifting strategy for real-time 3-D structured light illumination,” IEEE Trans. Image Process.20(11), 3001–3013 (2011).
[CrossRef] [PubMed]

K. Liu, Y. Wang, D. L. Lau, Q. Hao, and L. G. Hassebrook, “Dual-frequency pattern scheme for high-speed 3-D shape measurement,” Opt. Express18(5), 5229–5244 (2010).
[CrossRef] [PubMed]

Hassebrook, L. G.

Huang, P. S.

S. Zhang and P. S. Huang, “Phase error compensation for a 3-D shape measurement system based on the phase-shifting method,” Opt. Eng.46(6), 063601 (2007).
[CrossRef]

S. Zhang and P. S. Huang, “High-resolution, real-time three-dimensional shape measurement,” Opt. Eng.45(12), 123601 (2006).
[CrossRef]

S. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng.45(8), 083601 (2006).
[CrossRef] [PubMed]

Huang, P. S. S.

P. S. S. Huang, C. P. Zhang, and F. P. Chiang, “High-speed 3-D shape measurement based on digital fringe projection,” Opt. Eng.42(1), 163–168 (2003).
[CrossRef]

Jia, P.

P. Jia, J. Kofman, and C. English, “Two-step triangular-pattern phase-shifting method for three-dimensional object-shape measurement,” Opt. Eng.083201, (2007).

Jin, H. Z.

Judge, T. R.

T. R. Judge and P. J. Bryanston-Cross, “A review of phase unwrapping techniques in fringe analysis,” Opt. Lasers Eng.21(4), 199–239 (1994).
[CrossRef]

Kofman, J.

P. Jia, J. Kofman, and C. English, “Two-step triangular-pattern phase-shifting method for three-dimensional object-shape measurement,” Opt. Eng.083201, (2007).

Lau, D. L.

Y. Wang, K. Liu, Q. Hao, D. L. Lau, and L. G. Hassebrook, “Period coded phase shifting strategy for real-time 3-D structured light illumination,” IEEE Trans. Image Process.20(11), 3001–3013 (2011).
[CrossRef] [PubMed]

K. Liu, Y. Wang, D. L. Lau, Q. Hao, and L. G. Hassebrook, “Dual-frequency pattern scheme for high-speed 3-D shape measurement,” Opt. Express18(5), 5229–5244 (2010).
[CrossRef] [PubMed]

Li, J.

L. Guo, X. Su, and J. Li, “Improved Fourier transform profilometry for the automatic measurement of 3D object shapes,” Opt. Eng.29(12), 1439–1444 (1990).
[CrossRef]

Li, J. L.

Li, Y.

Liu, H. C.

Liu, K.

Y. Wang, K. Liu, Q. Hao, D. L. Lau, and L. G. Hassebrook, “Period coded phase shifting strategy for real-time 3-D structured light illumination,” IEEE Trans. Image Process.20(11), 3001–3013 (2011).
[CrossRef] [PubMed]

K. Liu, Y. Wang, D. L. Lau, Q. Hao, and L. G. Hassebrook, “Dual-frequency pattern scheme for high-speed 3-D shape measurement,” Opt. Express18(5), 5229–5244 (2010).
[CrossRef] [PubMed]

Llado, X.

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recognit.43(8), 2666–2680 (2010).
[CrossRef]

Mutoh, K.

Oliver, J.

Oliver, J. H.

Pribanic, T.

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recognit.43(8), 2666–2680 (2010).
[CrossRef]

Qian, Y. X.

Rastogi, P.

S. S. Gorthi and P. Rastogi, “Fringe projection techniques: Whither we are?” Opt. Lasers Eng.48(2), 133–140 (2010).
[CrossRef]

Rodella, R.

Salvi, J.

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recognit.43(8), 2666–2680 (2010).
[CrossRef]

Sansoni, G.

Song, M. M.

F. Chen, G. M. Brown, and M. M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng.39(1), 10–22 (2000).
[CrossRef]

Srinivasan, V.

Su, X.

Q. Zhang and X. Su, “High-speed optical measurement for the drumhead vibration,” Opt. Express13(8), 3110–3116 (2005).
[CrossRef] [PubMed]

L. Guo, X. Su, and J. Li, “Improved Fourier transform profilometry for the automatic measurement of 3D object shapes,” Opt. Eng.29(12), 1439–1444 (1990).
[CrossRef]

Su, X. Y.

X. Y. Su and W. J. Chen, “Fourier transform profilometry,” Opt. Lasers Eng.35(5), 263–284 (2001).
[CrossRef]

Su, X.-Y.

X.-Y. Su, G. von Bally, and D. Vukicevic, “Phase-stepping grating profilometry: utilization of intensity modulation analysis in complex objects evaluation,” Opt. Commun.98(1-3), 141–150 (1993).
[CrossRef]

Takeda, M.

Van Der Weide, D.

von Bally, G.

X.-Y. Su, G. von Bally, and D. Vukicevic, “Phase-stepping grating profilometry: utilization of intensity modulation analysis in complex objects evaluation,” Opt. Commun.98(1-3), 141–150 (1993).
[CrossRef]

Vukicevic, D.

X.-Y. Su, G. von Bally, and D. Vukicevic, “Phase-stepping grating profilometry: utilization of intensity modulation analysis in complex objects evaluation,” Opt. Commun.98(1-3), 141–150 (1993).
[CrossRef]

Wang, H.

Wang, Y.

Y. Wang, K. Liu, Q. Hao, D. L. Lau, and L. G. Hassebrook, “Period coded phase shifting strategy for real-time 3-D structured light illumination,” IEEE Trans. Image Process.20(11), 3001–3013 (2011).
[CrossRef] [PubMed]

K. Liu, Y. Wang, D. L. Lau, Q. Hao, and L. G. Hassebrook, “Dual-frequency pattern scheme for high-speed 3-D shape measurement,” Opt. Express18(5), 5229–5244 (2010).
[CrossRef] [PubMed]

Wang, Y. J.

Yau, S. T.

S. Zhang and S. T. Yau, “High-speed three-dimensional shape measurement system using a modified two-plus-one phase-shifting algorithm,” Opt. Eng.46(11), 113603 (2007).
[CrossRef]

Zhang, C. P.

P. S. S. Huang, C. P. Zhang, and F. P. Chiang, “High-speed 3-D shape measurement based on digital fringe projection,” Opt. Eng.42(1), 163–168 (2003).
[CrossRef]

Zhang, Q.

Zhang, S.

Y. J. Wang and S. Zhang, “Superfast multifrequency phase-shifting technique with optimal pulse width modulation,” Opt. Express19(6), 5149–5155 (2011).
[CrossRef] [PubMed]

Y. J. Wang, S. Zhang, and J. H. Oliver, “3D shape measurement technique for multiple rapidly moving objects,” Opt. Express19(9), 8539–8545 (2011).
[CrossRef] [PubMed]

S. Zhang, D. Van Der Weide, and J. Oliver, “Superfast phase-shifting method for 3-D shape measurement,” Opt. Express18(9), 9684–9689 (2010).
[CrossRef] [PubMed]

S. Zhang, “Recent progresses on real-time 3D shape measurement using digital fringe projection techniques,” Opt. Lasers Eng.48(2), 149–158 (2010).
[CrossRef]

S. Zhang and S. T. Yau, “High-speed three-dimensional shape measurement system using a modified two-plus-one phase-shifting algorithm,” Opt. Eng.46(11), 113603 (2007).
[CrossRef]

S. Zhang and P. S. Huang, “Phase error compensation for a 3-D shape measurement system based on the phase-shifting method,” Opt. Eng.46(6), 063601 (2007).
[CrossRef]

S. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng.45(8), 083601 (2006).
[CrossRef] [PubMed]

S. Zhang and P. S. Huang, “High-resolution, real-time three-dimensional shape measurement,” Opt. Eng.45(12), 123601 (2006).
[CrossRef]

Zhao, C. F.

Appl. Opt. (3)

IEEE Trans. Image Process. (1)

Y. Wang, K. Liu, Q. Hao, D. L. Lau, and L. G. Hassebrook, “Period coded phase shifting strategy for real-time 3-D structured light illumination,” IEEE Trans. Image Process.20(11), 3001–3013 (2011).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

X.-Y. Su, G. von Bally, and D. Vukicevic, “Phase-stepping grating profilometry: utilization of intensity modulation analysis in complex objects evaluation,” Opt. Commun.98(1-3), 141–150 (1993).
[CrossRef]

Opt. Eng. (8)

P. S. S. Huang, C. P. Zhang, and F. P. Chiang, “High-speed 3-D shape measurement based on digital fringe projection,” Opt. Eng.42(1), 163–168 (2003).
[CrossRef]

L. Guo, X. Su, and J. Li, “Improved Fourier transform profilometry for the automatic measurement of 3D object shapes,” Opt. Eng.29(12), 1439–1444 (1990).
[CrossRef]

S. Zhang and P. S. Huang, “Phase error compensation for a 3-D shape measurement system based on the phase-shifting method,” Opt. Eng.46(6), 063601 (2007).
[CrossRef]

S. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng.45(8), 083601 (2006).
[CrossRef] [PubMed]

S. Zhang and P. S. Huang, “High-resolution, real-time three-dimensional shape measurement,” Opt. Eng.45(12), 123601 (2006).
[CrossRef]

S. Zhang and S. T. Yau, “High-speed three-dimensional shape measurement system using a modified two-plus-one phase-shifting algorithm,” Opt. Eng.46(11), 113603 (2007).
[CrossRef]

P. Jia, J. Kofman, and C. English, “Two-step triangular-pattern phase-shifting method for three-dimensional object-shape measurement,” Opt. Eng.083201, (2007).

F. Chen, G. M. Brown, and M. M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng.39(1), 10–22 (2000).
[CrossRef]

Opt. Express (6)

Opt. Lasers Eng. (4)

T. R. Judge and P. J. Bryanston-Cross, “A review of phase unwrapping techniques in fringe analysis,” Opt. Lasers Eng.21(4), 199–239 (1994).
[CrossRef]

X. Y. Su and W. J. Chen, “Fourier transform profilometry,” Opt. Lasers Eng.35(5), 263–284 (2001).
[CrossRef]

S. S. Gorthi and P. Rastogi, “Fringe projection techniques: Whither we are?” Opt. Lasers Eng.48(2), 133–140 (2010).
[CrossRef]

S. Zhang, “Recent progresses on real-time 3D shape measurement using digital fringe projection techniques,” Opt. Lasers Eng.48(2), 149–158 (2010).
[CrossRef]

Pattern Recognit. (1)

J. Salvi, S. Fernandez, T. Pribanic, and X. Llado, “A state of the art in structured light patterns for surface profilometry,” Pattern Recognit.43(8), 2666–2680 (2010).
[CrossRef]

Other (3)

P. Wissmann, R. Schmitt, and F. Forster, “Fast and accurate 3D scanning using coded phase shifting and high speed pattern projection,” in 3D Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT), 2011 International Conference, 108–115.

J. M. Huntley and H. O. Saldner, “Shape measurement by temporal phase unwrapping and spatial light modulator-based fringe projector,” in Proceedings of Sensors, Sensor Systems, and Sensor Data Processing, O. Loffeld, ed. (SPIE, 1997), pp. 185-192.

http://www.vesa.org/vesa-standards/

Supplementary Material (2)

» Media 1: MOV (3384 KB)     
» Media 2: MOV (3538 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic experimental setup for phase-shifting profilometry.

Fig. 2
Fig. 2

An example of the proposed patterns and their 8-bit (F = 10, Ap = 127.5, Bp = 127.5) gray-scale intensity distributions.

Fig. 3
Fig. 3

(a) Schematic of the high-speed pattern projection mechanism. (b) Synchronization signal HSYNC and VSYNC of VGA. The values of TS, TPW, TBP, TDP, and TFP for HSYNC and VSYNC can be observed in Table 1 for an 800 × 600 resolution at 120 Hz.

Fig. 4
Fig. 4

Timing diagram of the whole system. The darker regions represent the exposure period of the camera.

Fig. 5
Fig. 5

Four fringe patterns sequentially captured at 360 Hz

Fig. 6
Fig. 6

Our real-time 3-D measurement system (a) and its key components (b).

Fig. 7
Fig. 7

The gray-scale response curve of the projector before (a) and after (b) compensation.

Fig. 8
Fig. 8

Measurement result for two isolated paper box; (a)-(d) The four images of tested objects with deformed fringe patterns. (e) Wrapped phase map; (f) Base phase map; (g) Absolute phase map; (h) The reconstructed 3-D result; (i) Albedo map; (j) Wrapped phase, base phase, and unwrapped phase for the row 365.

Fig. 9
Fig. 9

Measurement result for two isolated structures; (a) One captured fringe image. (b) Wrapped phase map; (c) Base phase map; (d) Absolute phase map; (e) Reconstructed 3-D result; (f) 3-D result with texture from another angle.

Fig. 10
Fig. 10

Measurement results of a cylinder shape object. (a) Reconstructed 3-D result; (b) Plot of one cross section (blue) and approximating points (red) about the cylinder.

Fig. 11
Fig. 11

Real-time measurement results of a moving hand (Media 1). Selected frames of measured results with depth pseudo color (a) and texture (b). The 3-D shape could be successfully reconstructed when the illumination intensities were either weak (c) or strong (d).

Fig. 12
Fig. 12

Real-time measurement results of spatially isolated objects (Media 2).

Tables (1)

Tables Icon

Table 1 VGA Timing Specifications for an 800 × 600 Resolution at 120 Hz [28]

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

I n p ( x p , y p ) = A p ( x p , y p ) + B p ( x p , y p ) cos ( 2 π f x x p + 2 π n / N ) ,
I n ( x , y ) = α ( x , y ) { A p ( x , y ) + B p ( x , y ) cos [ ϕ ( x , y ) + 2 π n / N ] + β 1 ( x , y ) } + β 2 ( x , y ) ,
I n ( x , y ) = A ( x , y ) + B ( x , y ) cos [ ϕ ( x , y ) + 2 π n / N ] ,
ϕ ( x , y ) = tan 1 n = 1 N I n ( x , y ) sin ( 2 π n / N ) n = 1 N I n ( x , y ) cos ( 2 π n / N ) .
I 1 p ( x p , y p ) = A p ( x p , y p ) + B p ( x p , y p ) sin [ π F ( 2 x p / X 1 ) ] ,
I 2 p ( x p , y p ) = A p ( x p , y p ) + B p ( x p , y p ) cos [ π F ( 2 x p / X 1 ) ] ,
I 3 p ( x p , y p ) = A p ( x p , y p ) + B p ( x p , y p ) ( 2 x p / X 1 ) ,
I 4 p ( x p , y p ) = A p ( x p , y p ) B p ( x p , y p ) ( 2 x p / X 1 ) .
I 1 ( x , y ) = α ( x , y ) [ A p ( x , y ) + B p ( x , y ) sin ϕ ( x , y ) + β 1 ( x , y ) ] + β 2 ( x , y ) ,
I 2 ( x , y ) = α ( x , y ) [ A p ( x , y ) + B p ( x , y ) cos ϕ ( x , y ) + β 1 ( x , y ) ] + β 2 ( x , y ) ,
I 3 ( x , y ) = α ( x , y ) [ A p ( x , y ) + B p ( x , y ) ϕ ( x , y ) + β 1 ( x , y ) ] + β 2 ( x , y ) ,
I 4 ( x , y ) = α ( x , y ) [ A p ( x , y ) B p ( x , y ) ϕ ( x , y ) + β 1 ( x , y ) ] + β 2 ( x , y ) .
ϕ = tan 1 2 I 1 I 3 I 4 2 I 2 I 3 I 4 ,
α = ( 2 I 1 I 3 I 4 ) 2 + ( 2 I 2 I 3 I 4 ) 2 2 B p ,
ϕ = I 3 I 4 2 α B p .
Φ = U ( ϕ , ϕ ) = π F ϕ = ϕ + 2 π M ,
Φ = ϕ + 2 π × NINT [ ( π F ϕ ϕ ) / 2 π ] ,
P c = A c M c = ( p 11 c p 12 c p 13 c p 14 c p 21 c p 22 c p 23 c p 24 c p 31 c p 32 c p 33 c p 34 c ) , and P p = A p M p = ( p 11 p p 12 p p 13 p p 14 p p 21 p p 22 p p 23 p p 24 p p 31 p p 32 p p 33 p p 34 p ) .
( x w y w z w ) = ( p 11 c p 31 c x p 12 c p 32 c x p 13 c p 33 c x p 21 c p 31 c y p 22 c p 32 c y p 23 c p 33 c y p 11 p p 31 p x p p 12 c p 31 p x p p 13 p p 33 p x p ) 1 ( p 34 c x p 14 c p 34 c y p 24 c p 34 p x p p 14 p ) .
I i n = I i + n i .
ϕ n = tan 1 ( N 1 + 2 α B p sin ϕ N 2 + 2 α B p cos ϕ ) ,
Δ ϕ = ϕ n ϕ = tan 1 ( N 1 cos ϕ N 2 sin ϕ N 1 sin ϕ + N 2 cos ϕ + 2 α B p ) .
Δ ϕ N 1 cos ϕ N 2 sin ϕ 2 α B p .
σ Δ ϕ 2 ( x , y ) 6 σ n 2 ( cos 2 ϕ + sin 2 ϕ ) ( 2 α B p ) 2 = ( 6 σ n 2 α B p ) 2 .
I n ( x , y ) = α ( x , y ) { f [ I i p ( x , y ) ] + β 1 ( x , y ) } + β 2 ( x , y ) ,
A n ( i , j ) = 1023 × A n ( i , j ) min [ A ( i , j ) ] max [ A ( i , j ) ] min [ A ( i , j ) ] ,

Metrics