Abstract

We report on a giant Faraday effect in an electron plasma in n-InSb probed via polarization-resolved terahertz (THz) time-domain spectroscopy. Polarization rotation angles and ellipticities reach as large as π/2 and 1, respectively, over a wide frequency range (0.3-2.5 THz) at magnetic fields of a few Tesla. The experimental results together with theoretical simulations show its promising ability to construct broadband and tunable THz polarization optics, such as a circular polarizer, half-wave plate, and polarization modulators.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1(2), 97–105 (2007).
    [CrossRef]
  2. B. S. Williams, “Terahertz quantum cascade lasers,” Nat. Photonics1(9), 517–525 (2007).
    [CrossRef]
  3. Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, “Tuning a terahertz wire laser,” Nat. Photonics3(12), 732–737 (2009).
    [CrossRef]
  4. H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics3(3), 148–151 (2009).
    [CrossRef]
  5. J. Liu, J. Dai, S. L. Chin, and X.-C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photonics4(9), 627–631 (2010).
    [CrossRef]
  6. M. C. Wanke, E. W. Young, C. D. Nordquist, M. J. Cich, A. D. Grine, C. T. Fuller, J. L. Reno, and M. Lee, “Monolithically integrated solid-state terahertz transceiver,” Nat. Photonics4(8), 565–569 (2010).
    [CrossRef]
  7. R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys.83(2), 543–586 (2011).
    [CrossRef]
  8. P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photon. Rev.5(1), 124–166 (2011).
    [CrossRef]
  9. T. Nagashima and M. Hangyo, “Measurement of complex optical constants of a highly doped Si wafer using terahertz ellipsometry,” Appl. Phys. Lett.79(24), 3917–3919 (2001).
    [CrossRef]
  10. Y. Ino, R. Shimano, Y. Svirko, and M. Kuwata-Gonokami, “Terahertz time domain magneto-optical ellipsometry in reflection geometry,” Phys. Rev. B70(15), 155101 (2004).
    [CrossRef]
  11. L. A. Nafie, “Infrared and Raman vibrational optical activity: theoretical and experimental aspects,” Annu. Rev. Phys. Chem.48(1), 357–386 (1997).
    [CrossRef] [PubMed]
  12. J. Xu, G. Ramian, P. Savvidis, A. Scopatz, S. J. Allen, K. Plaxco, J. Galan, and R. R. Birge, “Terahertz circular dichroism spectroscopy of biomolecules,” Proc. SPIE5268, 19–26 (2004).
    [CrossRef]
  13. A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, “Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies,” Opt. Express17(1), 136–149 (2009).
    [CrossRef] [PubMed]
  14. S. C. Saha, Y. Ma, J. P. Grant, A. Khalid, and D. R. S. Cumming, “Imprinted terahertz artificial dielectric quarter wave plates,” Opt. Express18(12), 12168–12175 (2010).
    [CrossRef] [PubMed]
  15. J.-B. Masson and G. Gallot, “Terahertz achromatic quarter-wave plate,” Opt. Lett.31(2), 265–267 (2006).
    [CrossRef] [PubMed]
  16. R. Shimano, H. Nishimura, and T. Sato, “Frequency tunable circular polarization control of terahertz radiation,” Jpn. J. Appl. Phys.44(21), L676–L678 (2005).
    [CrossRef]
  17. N. Amer, W. C. Hurlbut, B. J. Norton, Y.-S. Lee, and T. B. Norris, “Generation of terahertz pulses with arbitrary elliptical polarization,” Appl. Phys. Lett.87(22), 221111 (2005).
    [CrossRef]
  18. J. Dai, N. Karpowicz, and X.-C. Zhang, “Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma,” Phys. Rev. Lett.103(2), 023001 (2009).
    [CrossRef] [PubMed]
  19. Y. Hirota, R. Hattori, M. Tani, and M. Hangyo, “Polarization modulation of terahertz electromagnetic radiation by four-contact photoconductive antenna,” Opt. Express14(10), 4486–4493 (2006).
    [CrossRef] [PubMed]
  20. X. Wang, A. A. Belyanin, S. A. Crooker, D. M. Mittleman, and J. Kono, “Interference-induced terahertz transparency in a semiconductor magneto-plasma,” Nat. Phys.6(2), 126–130 (2010).
    [CrossRef]
  21. T. Arikawa, X. Wang, D. J. Hilton, J. L. Reno, W. Pan, and J. Kono, “Quantum control of a Landau-quantized two-dimensional electron gas in a GaAs quantum well using coherent terahertz pulses,” Phys. Rev. B84(24), 241307 (2011).
    [CrossRef]
  22. H. G. Roskos, M. D. Thomson, M. Kreß, and T. Löffler, “Broadband THz emission from gas plasmas induced by femtosecond optical pulses: From fundamentals to applications,” Laser Photon. Rev.1(4), 349–368 (2007).
    [CrossRef]
  23. P. C. M. Planken, H.-K. Nienhuys, H. J. Bakker, and T. Wenckebach, “Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe,” J. Opt. Soc. Am. B18(3), 313–317 (2001).
    [CrossRef]
  24. J. Furdyna, “Microwave Faraday rotation in semiconductor plasmas in the high magnetic field limit,” Solid State Commun.5(7), 539–542 (1967).
    [CrossRef]
  25. A. M. Shuvaev, G. V. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, and L. W. Molenkamp, “Giant magneto-optical Faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett.106(10), 107404 (2011).
    [CrossRef] [PubMed]
  26. E. D. Palik and J. K. Furdyna, “Infrared and microwave magnetoplasma effects in semiconductors,” Rep. Prog. Phys.33(3), 1193–1322 (1970).
    [CrossRef]
  27. B. D. McCombe and R. J. Wagner, “Intraband magneto-optical studies of semiconductors in the far infrared. I” in Advances in Electronics and Electron Physics Volume 37, L. Marton, ed. (Academic Press, 1975), 1–79.
  28. J. Shan, J. I. Dadap, and T. F. Heinz, “Circularly polarized light in the single-cycle limit: The nature of highly polychromatic radiation of defined polarization,” Opt. Express17(9), 7431–7439 (2009).
    [CrossRef] [PubMed]
  29. A. I. Akhiezer, Plasma Electrodynamics (Elsevier, 1975).
  30. E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics, Course of Theoretical Physics Volume 10 (Pergamon Press, 1981).
  31. S. Adachi, GaAs and Related Materials (World Scientific, 1994).
  32. V. F. Gantmakher and Y. B. Levinson, Carrier scattering in metals and semiconductors. Modern problems in condensed matter sciences Vol. 19. (North-Holland: Amsterdam, 1987).
  33. M. Hoffmann, J. Hebling, H. Hwang, K.-L. Yeh, and K. Nelson, “Impact ionization in InSb probed by terahertz pump-terahertz probe spectroscopy,” Phys. Rev. B79(16), 161201 (2009).
    [CrossRef]
  34. D. Molter, G. Torosyan, G. Ballon, L. Drigo, R. Beigang, and J. Léotin, “Step-scan time-domain terahertz magneto-spectroscopy,” Opt. Express20(6), 5993–6002 (2012).
    [CrossRef] [PubMed]

2012 (1)

2011 (4)

T. Arikawa, X. Wang, D. J. Hilton, J. L. Reno, W. Pan, and J. Kono, “Quantum control of a Landau-quantized two-dimensional electron gas in a GaAs quantum well using coherent terahertz pulses,” Phys. Rev. B84(24), 241307 (2011).
[CrossRef]

A. M. Shuvaev, G. V. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, and L. W. Molenkamp, “Giant magneto-optical Faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett.106(10), 107404 (2011).
[CrossRef] [PubMed]

R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys.83(2), 543–586 (2011).
[CrossRef]

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photon. Rev.5(1), 124–166 (2011).
[CrossRef]

2010 (4)

J. Liu, J. Dai, S. L. Chin, and X.-C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photonics4(9), 627–631 (2010).
[CrossRef]

M. C. Wanke, E. W. Young, C. D. Nordquist, M. J. Cich, A. D. Grine, C. T. Fuller, J. L. Reno, and M. Lee, “Monolithically integrated solid-state terahertz transceiver,” Nat. Photonics4(8), 565–569 (2010).
[CrossRef]

S. C. Saha, Y. Ma, J. P. Grant, A. Khalid, and D. R. S. Cumming, “Imprinted terahertz artificial dielectric quarter wave plates,” Opt. Express18(12), 12168–12175 (2010).
[CrossRef] [PubMed]

X. Wang, A. A. Belyanin, S. A. Crooker, D. M. Mittleman, and J. Kono, “Interference-induced terahertz transparency in a semiconductor magneto-plasma,” Nat. Phys.6(2), 126–130 (2010).
[CrossRef]

2009 (6)

J. Shan, J. I. Dadap, and T. F. Heinz, “Circularly polarized light in the single-cycle limit: The nature of highly polychromatic radiation of defined polarization,” Opt. Express17(9), 7431–7439 (2009).
[CrossRef] [PubMed]

M. Hoffmann, J. Hebling, H. Hwang, K.-L. Yeh, and K. Nelson, “Impact ionization in InSb probed by terahertz pump-terahertz probe spectroscopy,” Phys. Rev. B79(16), 161201 (2009).
[CrossRef]

J. Dai, N. Karpowicz, and X.-C. Zhang, “Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma,” Phys. Rev. Lett.103(2), 023001 (2009).
[CrossRef] [PubMed]

A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, “Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies,” Opt. Express17(1), 136–149 (2009).
[CrossRef] [PubMed]

Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, “Tuning a terahertz wire laser,” Nat. Photonics3(12), 732–737 (2009).
[CrossRef]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics3(3), 148–151 (2009).
[CrossRef]

2007 (3)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1(2), 97–105 (2007).
[CrossRef]

B. S. Williams, “Terahertz quantum cascade lasers,” Nat. Photonics1(9), 517–525 (2007).
[CrossRef]

H. G. Roskos, M. D. Thomson, M. Kreß, and T. Löffler, “Broadband THz emission from gas plasmas induced by femtosecond optical pulses: From fundamentals to applications,” Laser Photon. Rev.1(4), 349–368 (2007).
[CrossRef]

2006 (2)

2005 (2)

R. Shimano, H. Nishimura, and T. Sato, “Frequency tunable circular polarization control of terahertz radiation,” Jpn. J. Appl. Phys.44(21), L676–L678 (2005).
[CrossRef]

N. Amer, W. C. Hurlbut, B. J. Norton, Y.-S. Lee, and T. B. Norris, “Generation of terahertz pulses with arbitrary elliptical polarization,” Appl. Phys. Lett.87(22), 221111 (2005).
[CrossRef]

2004 (2)

J. Xu, G. Ramian, P. Savvidis, A. Scopatz, S. J. Allen, K. Plaxco, J. Galan, and R. R. Birge, “Terahertz circular dichroism spectroscopy of biomolecules,” Proc. SPIE5268, 19–26 (2004).
[CrossRef]

Y. Ino, R. Shimano, Y. Svirko, and M. Kuwata-Gonokami, “Terahertz time domain magneto-optical ellipsometry in reflection geometry,” Phys. Rev. B70(15), 155101 (2004).
[CrossRef]

2001 (2)

T. Nagashima and M. Hangyo, “Measurement of complex optical constants of a highly doped Si wafer using terahertz ellipsometry,” Appl. Phys. Lett.79(24), 3917–3919 (2001).
[CrossRef]

P. C. M. Planken, H.-K. Nienhuys, H. J. Bakker, and T. Wenckebach, “Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe,” J. Opt. Soc. Am. B18(3), 313–317 (2001).
[CrossRef]

1997 (1)

L. A. Nafie, “Infrared and Raman vibrational optical activity: theoretical and experimental aspects,” Annu. Rev. Phys. Chem.48(1), 357–386 (1997).
[CrossRef] [PubMed]

1970 (1)

E. D. Palik and J. K. Furdyna, “Infrared and microwave magnetoplasma effects in semiconductors,” Rep. Prog. Phys.33(3), 1193–1322 (1970).
[CrossRef]

1967 (1)

J. Furdyna, “Microwave Faraday rotation in semiconductor plasmas in the high magnetic field limit,” Solid State Commun.5(7), 539–542 (1967).
[CrossRef]

Allen, S. J.

J. Xu, G. Ramian, P. Savvidis, A. Scopatz, S. J. Allen, K. Plaxco, J. Galan, and R. R. Birge, “Terahertz circular dichroism spectroscopy of biomolecules,” Proc. SPIE5268, 19–26 (2004).
[CrossRef]

Amer, N.

N. Amer, W. C. Hurlbut, B. J. Norton, Y.-S. Lee, and T. B. Norris, “Generation of terahertz pulses with arbitrary elliptical polarization,” Appl. Phys. Lett.87(22), 221111 (2005).
[CrossRef]

Arikawa, T.

T. Arikawa, X. Wang, D. J. Hilton, J. L. Reno, W. Pan, and J. Kono, “Quantum control of a Landau-quantized two-dimensional electron gas in a GaAs quantum well using coherent terahertz pulses,” Phys. Rev. B84(24), 241307 (2011).
[CrossRef]

Astakhov, G. V.

A. M. Shuvaev, G. V. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, and L. W. Molenkamp, “Giant magneto-optical Faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett.106(10), 107404 (2011).
[CrossRef] [PubMed]

Averitt, R. D.

Azad, A. K.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics3(3), 148–151 (2009).
[CrossRef]

Bakker, H. J.

Ballon, G.

Beigang, R.

Belyanin, A. A.

X. Wang, A. A. Belyanin, S. A. Crooker, D. M. Mittleman, and J. Kono, “Interference-induced terahertz transparency in a semiconductor magneto-plasma,” Nat. Phys.6(2), 126–130 (2010).
[CrossRef]

Birge, R. R.

J. Xu, G. Ramian, P. Savvidis, A. Scopatz, S. J. Allen, K. Plaxco, J. Galan, and R. R. Birge, “Terahertz circular dichroism spectroscopy of biomolecules,” Proc. SPIE5268, 19–26 (2004).
[CrossRef]

Bonn, M.

R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys.83(2), 543–586 (2011).
[CrossRef]

Brüne, C.

A. M. Shuvaev, G. V. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, and L. W. Molenkamp, “Giant magneto-optical Faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett.106(10), 107404 (2011).
[CrossRef] [PubMed]

Buhmann, H.

A. M. Shuvaev, G. V. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, and L. W. Molenkamp, “Giant magneto-optical Faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett.106(10), 107404 (2011).
[CrossRef] [PubMed]

Chen, H.-T.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics3(3), 148–151 (2009).
[CrossRef]

Chin, S. L.

J. Liu, J. Dai, S. L. Chin, and X.-C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photonics4(9), 627–631 (2010).
[CrossRef]

Cich, M. J.

M. C. Wanke, E. W. Young, C. D. Nordquist, M. J. Cich, A. D. Grine, C. T. Fuller, J. L. Reno, and M. Lee, “Monolithically integrated solid-state terahertz transceiver,” Nat. Photonics4(8), 565–569 (2010).
[CrossRef]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics3(3), 148–151 (2009).
[CrossRef]

Cooke, D. G.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photon. Rev.5(1), 124–166 (2011).
[CrossRef]

Crooker, S. A.

X. Wang, A. A. Belyanin, S. A. Crooker, D. M. Mittleman, and J. Kono, “Interference-induced terahertz transparency in a semiconductor magneto-plasma,” Nat. Phys.6(2), 126–130 (2010).
[CrossRef]

Cumming, D. R. S.

Dadap, J. I.

Dai, J.

J. Liu, J. Dai, S. L. Chin, and X.-C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photonics4(9), 627–631 (2010).
[CrossRef]

J. Dai, N. Karpowicz, and X.-C. Zhang, “Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma,” Phys. Rev. Lett.103(2), 023001 (2009).
[CrossRef] [PubMed]

Drigo, L.

Fan, K.

Fuller, C. T.

M. C. Wanke, E. W. Young, C. D. Nordquist, M. J. Cich, A. D. Grine, C. T. Fuller, J. L. Reno, and M. Lee, “Monolithically integrated solid-state terahertz transceiver,” Nat. Photonics4(8), 565–569 (2010).
[CrossRef]

Furdyna, J.

J. Furdyna, “Microwave Faraday rotation in semiconductor plasmas in the high magnetic field limit,” Solid State Commun.5(7), 539–542 (1967).
[CrossRef]

Furdyna, J. K.

E. D. Palik and J. K. Furdyna, “Infrared and microwave magnetoplasma effects in semiconductors,” Rep. Prog. Phys.33(3), 1193–1322 (1970).
[CrossRef]

Galan, J.

J. Xu, G. Ramian, P. Savvidis, A. Scopatz, S. J. Allen, K. Plaxco, J. Galan, and R. R. Birge, “Terahertz circular dichroism spectroscopy of biomolecules,” Proc. SPIE5268, 19–26 (2004).
[CrossRef]

Gallot, G.

Grant, J. P.

Grine, A. D.

M. C. Wanke, E. W. Young, C. D. Nordquist, M. J. Cich, A. D. Grine, C. T. Fuller, J. L. Reno, and M. Lee, “Monolithically integrated solid-state terahertz transceiver,” Nat. Photonics4(8), 565–569 (2010).
[CrossRef]

Hangyo, M.

Y. Hirota, R. Hattori, M. Tani, and M. Hangyo, “Polarization modulation of terahertz electromagnetic radiation by four-contact photoconductive antenna,” Opt. Express14(10), 4486–4493 (2006).
[CrossRef] [PubMed]

T. Nagashima and M. Hangyo, “Measurement of complex optical constants of a highly doped Si wafer using terahertz ellipsometry,” Appl. Phys. Lett.79(24), 3917–3919 (2001).
[CrossRef]

Hattori, R.

Hebling, J.

M. Hoffmann, J. Hebling, H. Hwang, K.-L. Yeh, and K. Nelson, “Impact ionization in InSb probed by terahertz pump-terahertz probe spectroscopy,” Phys. Rev. B79(16), 161201 (2009).
[CrossRef]

Heinz, T. F.

R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys.83(2), 543–586 (2011).
[CrossRef]

J. Shan, J. I. Dadap, and T. F. Heinz, “Circularly polarized light in the single-cycle limit: The nature of highly polychromatic radiation of defined polarization,” Opt. Express17(9), 7431–7439 (2009).
[CrossRef] [PubMed]

Hendry, E.

R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys.83(2), 543–586 (2011).
[CrossRef]

Hilton, D. J.

T. Arikawa, X. Wang, D. J. Hilton, J. L. Reno, W. Pan, and J. Kono, “Quantum control of a Landau-quantized two-dimensional electron gas in a GaAs quantum well using coherent terahertz pulses,” Phys. Rev. B84(24), 241307 (2011).
[CrossRef]

Hirota, Y.

Hoffmann, M.

M. Hoffmann, J. Hebling, H. Hwang, K.-L. Yeh, and K. Nelson, “Impact ionization in InSb probed by terahertz pump-terahertz probe spectroscopy,” Phys. Rev. B79(16), 161201 (2009).
[CrossRef]

Hu, Q.

Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, “Tuning a terahertz wire laser,” Nat. Photonics3(12), 732–737 (2009).
[CrossRef]

Hurlbut, W. C.

N. Amer, W. C. Hurlbut, B. J. Norton, Y.-S. Lee, and T. B. Norris, “Generation of terahertz pulses with arbitrary elliptical polarization,” Appl. Phys. Lett.87(22), 221111 (2005).
[CrossRef]

Hwang, H.

M. Hoffmann, J. Hebling, H. Hwang, K.-L. Yeh, and K. Nelson, “Impact ionization in InSb probed by terahertz pump-terahertz probe spectroscopy,” Phys. Rev. B79(16), 161201 (2009).
[CrossRef]

Ino, Y.

Y. Ino, R. Shimano, Y. Svirko, and M. Kuwata-Gonokami, “Terahertz time domain magneto-optical ellipsometry in reflection geometry,” Phys. Rev. B70(15), 155101 (2004).
[CrossRef]

Jepsen, P. U.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photon. Rev.5(1), 124–166 (2011).
[CrossRef]

Karpowicz, N.

J. Dai, N. Karpowicz, and X.-C. Zhang, “Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma,” Phys. Rev. Lett.103(2), 023001 (2009).
[CrossRef] [PubMed]

Khalid, A.

Koch, M.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photon. Rev.5(1), 124–166 (2011).
[CrossRef]

Kono, J.

T. Arikawa, X. Wang, D. J. Hilton, J. L. Reno, W. Pan, and J. Kono, “Quantum control of a Landau-quantized two-dimensional electron gas in a GaAs quantum well using coherent terahertz pulses,” Phys. Rev. B84(24), 241307 (2011).
[CrossRef]

X. Wang, A. A. Belyanin, S. A. Crooker, D. M. Mittleman, and J. Kono, “Interference-induced terahertz transparency in a semiconductor magneto-plasma,” Nat. Phys.6(2), 126–130 (2010).
[CrossRef]

Kreß, M.

H. G. Roskos, M. D. Thomson, M. Kreß, and T. Löffler, “Broadband THz emission from gas plasmas induced by femtosecond optical pulses: From fundamentals to applications,” Laser Photon. Rev.1(4), 349–368 (2007).
[CrossRef]

Kumar, S.

Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, “Tuning a terahertz wire laser,” Nat. Photonics3(12), 732–737 (2009).
[CrossRef]

Kuwata-Gonokami, M.

Y. Ino, R. Shimano, Y. Svirko, and M. Kuwata-Gonokami, “Terahertz time domain magneto-optical ellipsometry in reflection geometry,” Phys. Rev. B70(15), 155101 (2004).
[CrossRef]

Lee, M.

M. C. Wanke, E. W. Young, C. D. Nordquist, M. J. Cich, A. D. Grine, C. T. Fuller, J. L. Reno, and M. Lee, “Monolithically integrated solid-state terahertz transceiver,” Nat. Photonics4(8), 565–569 (2010).
[CrossRef]

Lee, Y.-S.

N. Amer, W. C. Hurlbut, B. J. Norton, Y.-S. Lee, and T. B. Norris, “Generation of terahertz pulses with arbitrary elliptical polarization,” Appl. Phys. Lett.87(22), 221111 (2005).
[CrossRef]

Léotin, J.

Liu, J.

J. Liu, J. Dai, S. L. Chin, and X.-C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photonics4(9), 627–631 (2010).
[CrossRef]

Löffler, T.

H. G. Roskos, M. D. Thomson, M. Kreß, and T. Löffler, “Broadband THz emission from gas plasmas induced by femtosecond optical pulses: From fundamentals to applications,” Laser Photon. Rev.1(4), 349–368 (2007).
[CrossRef]

Ma, Y.

Masson, J.-B.

Mittleman, D. M.

X. Wang, A. A. Belyanin, S. A. Crooker, D. M. Mittleman, and J. Kono, “Interference-induced terahertz transparency in a semiconductor magneto-plasma,” Nat. Phys.6(2), 126–130 (2010).
[CrossRef]

Molenkamp, L. W.

A. M. Shuvaev, G. V. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, and L. W. Molenkamp, “Giant magneto-optical Faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett.106(10), 107404 (2011).
[CrossRef] [PubMed]

Molter, D.

Nafie, L. A.

L. A. Nafie, “Infrared and Raman vibrational optical activity: theoretical and experimental aspects,” Annu. Rev. Phys. Chem.48(1), 357–386 (1997).
[CrossRef] [PubMed]

Nagashima, T.

T. Nagashima and M. Hangyo, “Measurement of complex optical constants of a highly doped Si wafer using terahertz ellipsometry,” Appl. Phys. Lett.79(24), 3917–3919 (2001).
[CrossRef]

Nelson, K.

M. Hoffmann, J. Hebling, H. Hwang, K.-L. Yeh, and K. Nelson, “Impact ionization in InSb probed by terahertz pump-terahertz probe spectroscopy,” Phys. Rev. B79(16), 161201 (2009).
[CrossRef]

Nienhuys, H.-K.

Nishimura, H.

R. Shimano, H. Nishimura, and T. Sato, “Frequency tunable circular polarization control of terahertz radiation,” Jpn. J. Appl. Phys.44(21), L676–L678 (2005).
[CrossRef]

Nordquist, C. D.

M. C. Wanke, E. W. Young, C. D. Nordquist, M. J. Cich, A. D. Grine, C. T. Fuller, J. L. Reno, and M. Lee, “Monolithically integrated solid-state terahertz transceiver,” Nat. Photonics4(8), 565–569 (2010).
[CrossRef]

Norris, T. B.

N. Amer, W. C. Hurlbut, B. J. Norton, Y.-S. Lee, and T. B. Norris, “Generation of terahertz pulses with arbitrary elliptical polarization,” Appl. Phys. Lett.87(22), 221111 (2005).
[CrossRef]

Norton, B. J.

N. Amer, W. C. Hurlbut, B. J. Norton, Y.-S. Lee, and T. B. Norris, “Generation of terahertz pulses with arbitrary elliptical polarization,” Appl. Phys. Lett.87(22), 221111 (2005).
[CrossRef]

Padilla, W. J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics3(3), 148–151 (2009).
[CrossRef]

Palik, E. D.

E. D. Palik and J. K. Furdyna, “Infrared and microwave magnetoplasma effects in semiconductors,” Rep. Prog. Phys.33(3), 1193–1322 (1970).
[CrossRef]

Pan, W.

T. Arikawa, X. Wang, D. J. Hilton, J. L. Reno, W. Pan, and J. Kono, “Quantum control of a Landau-quantized two-dimensional electron gas in a GaAs quantum well using coherent terahertz pulses,” Phys. Rev. B84(24), 241307 (2011).
[CrossRef]

Pilon, D. V.

Pimenov, A.

A. M. Shuvaev, G. V. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, and L. W. Molenkamp, “Giant magneto-optical Faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett.106(10), 107404 (2011).
[CrossRef] [PubMed]

Planken, P. C. M.

Plaxco, K.

J. Xu, G. Ramian, P. Savvidis, A. Scopatz, S. J. Allen, K. Plaxco, J. Galan, and R. R. Birge, “Terahertz circular dichroism spectroscopy of biomolecules,” Proc. SPIE5268, 19–26 (2004).
[CrossRef]

Qin, Q.

Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, “Tuning a terahertz wire laser,” Nat. Photonics3(12), 732–737 (2009).
[CrossRef]

Ramian, G.

J. Xu, G. Ramian, P. Savvidis, A. Scopatz, S. J. Allen, K. Plaxco, J. Galan, and R. R. Birge, “Terahertz circular dichroism spectroscopy of biomolecules,” Proc. SPIE5268, 19–26 (2004).
[CrossRef]

Reno, J. L.

T. Arikawa, X. Wang, D. J. Hilton, J. L. Reno, W. Pan, and J. Kono, “Quantum control of a Landau-quantized two-dimensional electron gas in a GaAs quantum well using coherent terahertz pulses,” Phys. Rev. B84(24), 241307 (2011).
[CrossRef]

M. C. Wanke, E. W. Young, C. D. Nordquist, M. J. Cich, A. D. Grine, C. T. Fuller, J. L. Reno, and M. Lee, “Monolithically integrated solid-state terahertz transceiver,” Nat. Photonics4(8), 565–569 (2010).
[CrossRef]

Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, “Tuning a terahertz wire laser,” Nat. Photonics3(12), 732–737 (2009).
[CrossRef]

Roskos, H. G.

H. G. Roskos, M. D. Thomson, M. Kreß, and T. Löffler, “Broadband THz emission from gas plasmas induced by femtosecond optical pulses: From fundamentals to applications,” Laser Photon. Rev.1(4), 349–368 (2007).
[CrossRef]

Saha, S. C.

Sato, T.

R. Shimano, H. Nishimura, and T. Sato, “Frequency tunable circular polarization control of terahertz radiation,” Jpn. J. Appl. Phys.44(21), L676–L678 (2005).
[CrossRef]

Savvidis, P.

J. Xu, G. Ramian, P. Savvidis, A. Scopatz, S. J. Allen, K. Plaxco, J. Galan, and R. R. Birge, “Terahertz circular dichroism spectroscopy of biomolecules,” Proc. SPIE5268, 19–26 (2004).
[CrossRef]

Scopatz, A.

J. Xu, G. Ramian, P. Savvidis, A. Scopatz, S. J. Allen, K. Plaxco, J. Galan, and R. R. Birge, “Terahertz circular dichroism spectroscopy of biomolecules,” Proc. SPIE5268, 19–26 (2004).
[CrossRef]

Shan, J.

R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys.83(2), 543–586 (2011).
[CrossRef]

J. Shan, J. I. Dadap, and T. F. Heinz, “Circularly polarized light in the single-cycle limit: The nature of highly polychromatic radiation of defined polarization,” Opt. Express17(9), 7431–7439 (2009).
[CrossRef] [PubMed]

Shimano, R.

R. Shimano, H. Nishimura, and T. Sato, “Frequency tunable circular polarization control of terahertz radiation,” Jpn. J. Appl. Phys.44(21), L676–L678 (2005).
[CrossRef]

Y. Ino, R. Shimano, Y. Svirko, and M. Kuwata-Gonokami, “Terahertz time domain magneto-optical ellipsometry in reflection geometry,” Phys. Rev. B70(15), 155101 (2004).
[CrossRef]

Shuvaev, A. M.

A. M. Shuvaev, G. V. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, and L. W. Molenkamp, “Giant magneto-optical Faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett.106(10), 107404 (2011).
[CrossRef] [PubMed]

Strikwerda, A. C.

Svirko, Y.

Y. Ino, R. Shimano, Y. Svirko, and M. Kuwata-Gonokami, “Terahertz time domain magneto-optical ellipsometry in reflection geometry,” Phys. Rev. B70(15), 155101 (2004).
[CrossRef]

Tani, M.

Tao, H.

Taylor, A. J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics3(3), 148–151 (2009).
[CrossRef]

Thomson, M. D.

H. G. Roskos, M. D. Thomson, M. Kreß, and T. Löffler, “Broadband THz emission from gas plasmas induced by femtosecond optical pulses: From fundamentals to applications,” Laser Photon. Rev.1(4), 349–368 (2007).
[CrossRef]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1(2), 97–105 (2007).
[CrossRef]

Torosyan, G.

Ulbricht, R.

R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys.83(2), 543–586 (2011).
[CrossRef]

Wang, X.

T. Arikawa, X. Wang, D. J. Hilton, J. L. Reno, W. Pan, and J. Kono, “Quantum control of a Landau-quantized two-dimensional electron gas in a GaAs quantum well using coherent terahertz pulses,” Phys. Rev. B84(24), 241307 (2011).
[CrossRef]

X. Wang, A. A. Belyanin, S. A. Crooker, D. M. Mittleman, and J. Kono, “Interference-induced terahertz transparency in a semiconductor magneto-plasma,” Nat. Phys.6(2), 126–130 (2010).
[CrossRef]

Wanke, M. C.

M. C. Wanke, E. W. Young, C. D. Nordquist, M. J. Cich, A. D. Grine, C. T. Fuller, J. L. Reno, and M. Lee, “Monolithically integrated solid-state terahertz transceiver,” Nat. Photonics4(8), 565–569 (2010).
[CrossRef]

Wenckebach, T.

Williams, B. S.

Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, “Tuning a terahertz wire laser,” Nat. Photonics3(12), 732–737 (2009).
[CrossRef]

B. S. Williams, “Terahertz quantum cascade lasers,” Nat. Photonics1(9), 517–525 (2007).
[CrossRef]

Xu, J.

J. Xu, G. Ramian, P. Savvidis, A. Scopatz, S. J. Allen, K. Plaxco, J. Galan, and R. R. Birge, “Terahertz circular dichroism spectroscopy of biomolecules,” Proc. SPIE5268, 19–26 (2004).
[CrossRef]

Yeh, K.-L.

M. Hoffmann, J. Hebling, H. Hwang, K.-L. Yeh, and K. Nelson, “Impact ionization in InSb probed by terahertz pump-terahertz probe spectroscopy,” Phys. Rev. B79(16), 161201 (2009).
[CrossRef]

Young, E. W.

M. C. Wanke, E. W. Young, C. D. Nordquist, M. J. Cich, A. D. Grine, C. T. Fuller, J. L. Reno, and M. Lee, “Monolithically integrated solid-state terahertz transceiver,” Nat. Photonics4(8), 565–569 (2010).
[CrossRef]

Zhang, X.

Zhang, X.-C.

J. Liu, J. Dai, S. L. Chin, and X.-C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photonics4(9), 627–631 (2010).
[CrossRef]

J. Dai, N. Karpowicz, and X.-C. Zhang, “Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma,” Phys. Rev. Lett.103(2), 023001 (2009).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem. (1)

L. A. Nafie, “Infrared and Raman vibrational optical activity: theoretical and experimental aspects,” Annu. Rev. Phys. Chem.48(1), 357–386 (1997).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

T. Nagashima and M. Hangyo, “Measurement of complex optical constants of a highly doped Si wafer using terahertz ellipsometry,” Appl. Phys. Lett.79(24), 3917–3919 (2001).
[CrossRef]

N. Amer, W. C. Hurlbut, B. J. Norton, Y.-S. Lee, and T. B. Norris, “Generation of terahertz pulses with arbitrary elliptical polarization,” Appl. Phys. Lett.87(22), 221111 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

R. Shimano, H. Nishimura, and T. Sato, “Frequency tunable circular polarization control of terahertz radiation,” Jpn. J. Appl. Phys.44(21), L676–L678 (2005).
[CrossRef]

Laser Photon. Rev. (2)

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging - Modern techniques and applications,” Laser Photon. Rev.5(1), 124–166 (2011).
[CrossRef]

H. G. Roskos, M. D. Thomson, M. Kreß, and T. Löffler, “Broadband THz emission from gas plasmas induced by femtosecond optical pulses: From fundamentals to applications,” Laser Photon. Rev.1(4), 349–368 (2007).
[CrossRef]

Nat. Photonics (6)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics1(2), 97–105 (2007).
[CrossRef]

B. S. Williams, “Terahertz quantum cascade lasers,” Nat. Photonics1(9), 517–525 (2007).
[CrossRef]

Q. Qin, B. S. Williams, S. Kumar, J. L. Reno, and Q. Hu, “Tuning a terahertz wire laser,” Nat. Photonics3(12), 732–737 (2009).
[CrossRef]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics3(3), 148–151 (2009).
[CrossRef]

J. Liu, J. Dai, S. L. Chin, and X.-C. Zhang, “Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases,” Nat. Photonics4(9), 627–631 (2010).
[CrossRef]

M. C. Wanke, E. W. Young, C. D. Nordquist, M. J. Cich, A. D. Grine, C. T. Fuller, J. L. Reno, and M. Lee, “Monolithically integrated solid-state terahertz transceiver,” Nat. Photonics4(8), 565–569 (2010).
[CrossRef]

Nat. Phys. (1)

X. Wang, A. A. Belyanin, S. A. Crooker, D. M. Mittleman, and J. Kono, “Interference-induced terahertz transparency in a semiconductor magneto-plasma,” Nat. Phys.6(2), 126–130 (2010).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. B (3)

T. Arikawa, X. Wang, D. J. Hilton, J. L. Reno, W. Pan, and J. Kono, “Quantum control of a Landau-quantized two-dimensional electron gas in a GaAs quantum well using coherent terahertz pulses,” Phys. Rev. B84(24), 241307 (2011).
[CrossRef]

Y. Ino, R. Shimano, Y. Svirko, and M. Kuwata-Gonokami, “Terahertz time domain magneto-optical ellipsometry in reflection geometry,” Phys. Rev. B70(15), 155101 (2004).
[CrossRef]

M. Hoffmann, J. Hebling, H. Hwang, K.-L. Yeh, and K. Nelson, “Impact ionization in InSb probed by terahertz pump-terahertz probe spectroscopy,” Phys. Rev. B79(16), 161201 (2009).
[CrossRef]

Phys. Rev. Lett. (2)

A. M. Shuvaev, G. V. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, and L. W. Molenkamp, “Giant magneto-optical Faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett.106(10), 107404 (2011).
[CrossRef] [PubMed]

J. Dai, N. Karpowicz, and X.-C. Zhang, “Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma,” Phys. Rev. Lett.103(2), 023001 (2009).
[CrossRef] [PubMed]

Proc. SPIE (1)

J. Xu, G. Ramian, P. Savvidis, A. Scopatz, S. J. Allen, K. Plaxco, J. Galan, and R. R. Birge, “Terahertz circular dichroism spectroscopy of biomolecules,” Proc. SPIE5268, 19–26 (2004).
[CrossRef]

Rep. Prog. Phys. (1)

E. D. Palik and J. K. Furdyna, “Infrared and microwave magnetoplasma effects in semiconductors,” Rep. Prog. Phys.33(3), 1193–1322 (1970).
[CrossRef]

Rev. Mod. Phys. (1)

R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys.83(2), 543–586 (2011).
[CrossRef]

Solid State Commun. (1)

J. Furdyna, “Microwave Faraday rotation in semiconductor plasmas in the high magnetic field limit,” Solid State Commun.5(7), 539–542 (1967).
[CrossRef]

Other (5)

A. I. Akhiezer, Plasma Electrodynamics (Elsevier, 1975).

E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics, Course of Theoretical Physics Volume 10 (Pergamon Press, 1981).

S. Adachi, GaAs and Related Materials (World Scientific, 1994).

V. F. Gantmakher and Y. B. Levinson, Carrier scattering in metals and semiconductors. Modern problems in condensed matter sciences Vol. 19. (North-Holland: Amsterdam, 1987).

B. D. McCombe and R. J. Wagner, “Intraband magneto-optical studies of semiconductors in the far infrared. I” in Advances in Electronics and Electron Physics Volume 37, L. Marton, ed. (Academic Press, 1975), 1–79.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Faraday effect in n-InSb. a) Schematic of the experimental setup. WGP, wire grid polarizer. b) The x- (left) and y-components (right) of the transmitted THz pulses through the sample at selected magnetic fields B. Traces are vertically offset for clarity. The temperature of the sample was 184 K.

Fig. 2
Fig. 2

Polarization state of the transmitted THz pulses. Parametric plots of Ex and Ey. The time interval between the dots is 50 fs. The transmitted THz pulses are almost circularly polarized (counterclockwise) in the lower magnetic field regime (B ≦ 1 T). The transmitted THz pulses are elliptically polarized (counterclockwise) in the intermediate regime (1.5 T and 2.0 T). The transmitted THz pulses are becoming linearly polarized in the higher magnetic field regime (2.5 T and 3.0 T).

Fig. 3
Fig. 3

Faraday ellipticity and rotation angle. The dots show experimental data and the solid lines show fitting results with the cold magneto-plasma model. a) The magnetic field dependence of the ellipticity. The down arrows show the CR frequency at each magnetic field. b) The magnetic field dependence of the rotation angle. The data points are not shown in the frequency region where the corresponding ellipticity is one because the rotation angle cannot be defined.

Fig. 4
Fig. 4

Optical constants of n-InSb for CRA and CRI modes at 1 T. a) The complex refractive indexes for CRA and CRI modes determined by cold magneto-plasma model fitting. The dispersion in the CRA mode around 1.65 THz is due to CR. The dispersions both in the CRA and CRI modes in the low frequency region around 0.1 THz are due to the magneto-plasma resonance. b) The absorbance for CRA(CRI) modes, ACRA(CRI) = -log10[ | E ˜ CRA(CRI) / E ˜ ref | 2 ], where E ˜ ref is the complex electric-field amplitudes in the frequency-domain obtained without a sample. The broken horizontal line represents the maximum absorbance (~3) measurable with our system. The oscillations in the absorbance from 0.9 to 2.3 THz is due to noise and meaningless.

Fig. 5
Fig. 5

Theoretical plot of the ellipticity and rotation angle at 250 K. The external magnetic field is 5 T and the thickness of the crystal is 0.3 mm. The rotation angle (ellipticity) is close to p/2 (zero) from 0.3 to 2.5 THz.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

θ( ω )= arg{ E ˜ CRA ( ω ) }arg{ E ˜ CRI ( ω ) } 2
η( ω )= | E ˜ CRI ( ω ) || E ˜ CRA ( ω ) | | E ˜ CRI ( ω ) |+| E ˜ CRA ( ω ) | .
E ˜ CRA ( ω )= E ˜ x ( ω )+i E ˜ y ( ω ) 2
E ˜ CRI ( ω )= E ˜ x ( ω )i E ˜ y ( ω ) 2 ,
θ( ω )= arg{ T ˜ CRA ( ω ) }arg{ T ˜ CRI ( ω ) } 2
η( ω )= | T ˜ CRI ( ω ) || T ˜ CRA ( ω ) | | T ˜ CRI ( ω ) |+| T ˜ CRA ( ω ) | ,
T ˜ CRA(CRI) = t ˜ CRA(CRI) as t ˜ CRA(CRI) sa exp{ i( n ˜ CRA(CRI) 1 )ωd /c }
n ˜ CRA 2 = ε ˜ xx i ε ˜ xy = ε b ω e 2 ω( ω+i v e ω Ce ) ω h 2 ω( ω+i v h ω Ch ) + ε ˜ ph ,
n ˜ CRI 2 = ε ˜ xx +i ε ˜ xy = ε b ω e 2 ω( ω+i v e + ω Ce ) ω h 2 ω( ω+i v h ω Ch ) + ε ˜ ph ,

Metrics