Abstract

The first demonstration of a multi-watt continuous wave fluoride glass Raman fiber laser operating beyond 2.2 μm is reported. A maximum output power of 3.7 W was obtained from a nested cavity setup with a laser slope efficiency of 15% with respect to the launched pump power.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Vareille, O. Audouin, and E. Desurvire, “Numerical optimisation of power conversion efficiency in 1480nm multi-Stokes Raman fibre lasers,” Electron. Lett.34(7), 675–676 (1998).
    [CrossRef]
  2. N. S. Kim, M. Prabhu, C. Li, J. Song, and K.-I. Ueda, “1239/1484 nm cascaded phosphosilicate Raman fiber laser with CW output power of 1.36 W at 1484 nm pumped by CW Yb-doped double-clad fiber laser at 1064 nm and spectral continuum generation,” Opt. Commun.176(1-3), 219–222 (2000).
    [CrossRef]
  3. N. Kurukitkoson, H. Sugahara, S. K. Turitsyn, O. N. Egorova, A. S. Kurkov, V. M. Paramonov, and E. M. Dianov, “Optimisation of two-stage Raman converter based on phosphosilicate core fibre: modelling and experiment,” Electron. Lett.37(21), 1281–1283 (2001).
    [CrossRef]
  4. E. M. Dianov, I. A. Bufetov, V. M. Mashinsky, V. B. Neustruev, O. I. Medvedkov, A. V. Shubin, M. A. Melkumov, A. N. Gur'yanov, V. F. Khopin, and M. V. Yashkov, “Raman fibre lasers emitting at a wavelength above 2 μm,” Quantum Electron.34(8), 695–697 (2004).
    [CrossRef]
  5. B. A. Cumberland, S. V. Popov, J. R. Taylor, O. I. Medvedkov, S. A. Vasiliev, and E. M. Dianov, “2.1 microm continuous-wave Raman laser in GeO2 fiber,” Opt. Lett.32(13), 1848–1850 (2007).
    [CrossRef] [PubMed]
  6. V. Fortin, M. Bernier, J. Carrier, and R. Vallée, “Fluoride glass Raman fiber laser at 2185 nm,” Opt. Lett.36(21), 4152–4154 (2011).
    [CrossRef] [PubMed]
  7. M. Bernier, D. Faucher, R. Vallée, A. Saliminia, G. Androz, Y. Sheng, and S. L. Chin, “Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm,” Opt. Lett.32(5), 454–456 (2007).
    [CrossRef] [PubMed]
  8. M. Bernier, R. Vallée, B. Morasse, C. Desrosiers, A. Saliminia, and Y. Sheng, “Ytterbium fiber laser based on first-order fiber Bragg gratings written with 400 nm femtosecond pulses and a phase-mask,” Opt. Express17(21), 18887–18893 (2009).
    [CrossRef] [PubMed]
  9. J.-C. Bouteiller, “Spectral modeling of Raman fiber lasers,” IEEE Photon. Technol. Lett.15(12), 1698–1700 (2003).
    [CrossRef]
  10. P. Suret and S. Randoux, “Influence of spectral broadening on steady characteristics of Raman fiber lasers: from experiments to questions about validity of usual models,” Opt. Commun.237(1-3), 201–212 (2004).
    [CrossRef]
  11. D. V. Churkin, S. V. Smirnov, and E. V. Podivilov, “Statistical properties of partially coherent CW fiber lasers,” Opt. Lett.35(19), 3288–3290 (2010).
    [CrossRef] [PubMed]
  12. J. Xu, M. Prabhu, J. Lu, K.-I. Ueda, and D. Xing, “Efficient double-clad thulium-doped fiber laser with a ring cavity,” Appl. Opt.40(12), 1983–1988 (2001).
    [CrossRef] [PubMed]
  13. S. D. Jackson and T. A. King, “Theoretical modeling of Tm-doped silica fiber lasers,” J. Lightwave Technol.17(5), 948–956 (1999).
    [CrossRef]
  14. S. D. Agger and J. H. Povlsen, “Emission and absorption cross section of thulium doped silica fibers,” Opt. Express14(1), 50–57 (2006).
    [CrossRef] [PubMed]
  15. M. Rini, I. Cristiani, and V. Degiorgio, “Numerical modeling and optimization of cascaded CW Raman fiber lasers,” IEEE J. Quantum Electron.36(10), 1117–1122 (2000).
    [CrossRef]
  16. L. Zhang, F. Gan, and P. Wang, “Evaluation of refractive-index and material dispersion in fluoride glasses,” Appl. Opt.33(1), 50–56 (1994).
    [CrossRef] [PubMed]
  17. P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
    [CrossRef]
  18. B. M. Walsh and N. P. Barnes, “Comparison of Tm:ZBLAN and Tm: silica fiber lasers; spectroscopy and tunable pulsed laser operation around 1.9 μm,” Appl. Phys. B78(3-4), 325–333 (2004).
    [CrossRef]
  19. D. Faucher, M. Bernier, G. Androz, N. Caron, and R. Vallée, “20 W passively cooled single-mode all-fiber laser at 2.8 μm,” Opt. Lett.36(7), 1104–1106 (2011).
    [CrossRef] [PubMed]

2011 (2)

2010 (1)

2009 (2)

M. Bernier, R. Vallée, B. Morasse, C. Desrosiers, A. Saliminia, and Y. Sheng, “Ytterbium fiber laser based on first-order fiber Bragg gratings written with 400 nm femtosecond pulses and a phase-mask,” Opt. Express17(21), 18887–18893 (2009).
[CrossRef] [PubMed]

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

2007 (2)

2006 (1)

2004 (3)

B. M. Walsh and N. P. Barnes, “Comparison of Tm:ZBLAN and Tm: silica fiber lasers; spectroscopy and tunable pulsed laser operation around 1.9 μm,” Appl. Phys. B78(3-4), 325–333 (2004).
[CrossRef]

P. Suret and S. Randoux, “Influence of spectral broadening on steady characteristics of Raman fiber lasers: from experiments to questions about validity of usual models,” Opt. Commun.237(1-3), 201–212 (2004).
[CrossRef]

E. M. Dianov, I. A. Bufetov, V. M. Mashinsky, V. B. Neustruev, O. I. Medvedkov, A. V. Shubin, M. A. Melkumov, A. N. Gur'yanov, V. F. Khopin, and M. V. Yashkov, “Raman fibre lasers emitting at a wavelength above 2 μm,” Quantum Electron.34(8), 695–697 (2004).
[CrossRef]

2003 (1)

J.-C. Bouteiller, “Spectral modeling of Raman fiber lasers,” IEEE Photon. Technol. Lett.15(12), 1698–1700 (2003).
[CrossRef]

2001 (2)

N. Kurukitkoson, H. Sugahara, S. K. Turitsyn, O. N. Egorova, A. S. Kurkov, V. M. Paramonov, and E. M. Dianov, “Optimisation of two-stage Raman converter based on phosphosilicate core fibre: modelling and experiment,” Electron. Lett.37(21), 1281–1283 (2001).
[CrossRef]

J. Xu, M. Prabhu, J. Lu, K.-I. Ueda, and D. Xing, “Efficient double-clad thulium-doped fiber laser with a ring cavity,” Appl. Opt.40(12), 1983–1988 (2001).
[CrossRef] [PubMed]

2000 (2)

N. S. Kim, M. Prabhu, C. Li, J. Song, and K.-I. Ueda, “1239/1484 nm cascaded phosphosilicate Raman fiber laser with CW output power of 1.36 W at 1484 nm pumped by CW Yb-doped double-clad fiber laser at 1064 nm and spectral continuum generation,” Opt. Commun.176(1-3), 219–222 (2000).
[CrossRef]

M. Rini, I. Cristiani, and V. Degiorgio, “Numerical modeling and optimization of cascaded CW Raman fiber lasers,” IEEE J. Quantum Electron.36(10), 1117–1122 (2000).
[CrossRef]

1999 (1)

1998 (1)

G. Vareille, O. Audouin, and E. Desurvire, “Numerical optimisation of power conversion efficiency in 1480nm multi-Stokes Raman fibre lasers,” Electron. Lett.34(7), 675–676 (1998).
[CrossRef]

1994 (1)

Agger, S. D.

Androz, G.

Audouin, O.

G. Vareille, O. Audouin, and E. Desurvire, “Numerical optimisation of power conversion efficiency in 1480nm multi-Stokes Raman fibre lasers,” Electron. Lett.34(7), 675–676 (1998).
[CrossRef]

Barnes, N. P.

B. M. Walsh and N. P. Barnes, “Comparison of Tm:ZBLAN and Tm: silica fiber lasers; spectroscopy and tunable pulsed laser operation around 1.9 μm,” Appl. Phys. B78(3-4), 325–333 (2004).
[CrossRef]

Bernier, M.

Bouteiller, J.-C.

J.-C. Bouteiller, “Spectral modeling of Raman fiber lasers,” IEEE Photon. Technol. Lett.15(12), 1698–1700 (2003).
[CrossRef]

Bufetov, I. A.

E. M. Dianov, I. A. Bufetov, V. M. Mashinsky, V. B. Neustruev, O. I. Medvedkov, A. V. Shubin, M. A. Melkumov, A. N. Gur'yanov, V. F. Khopin, and M. V. Yashkov, “Raman fibre lasers emitting at a wavelength above 2 μm,” Quantum Electron.34(8), 695–697 (2004).
[CrossRef]

Caron, N.

Carrier, J.

Carter, A. L. G.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

Chin, S. L.

Churkin, D. V.

Cristiani, I.

M. Rini, I. Cristiani, and V. Degiorgio, “Numerical modeling and optimization of cascaded CW Raman fiber lasers,” IEEE J. Quantum Electron.36(10), 1117–1122 (2000).
[CrossRef]

Cumberland, B. A.

Degiorgio, V.

M. Rini, I. Cristiani, and V. Degiorgio, “Numerical modeling and optimization of cascaded CW Raman fiber lasers,” IEEE J. Quantum Electron.36(10), 1117–1122 (2000).
[CrossRef]

Desrosiers, C.

Desurvire, E.

G. Vareille, O. Audouin, and E. Desurvire, “Numerical optimisation of power conversion efficiency in 1480nm multi-Stokes Raman fibre lasers,” Electron. Lett.34(7), 675–676 (1998).
[CrossRef]

Dianov, E. M.

B. A. Cumberland, S. V. Popov, J. R. Taylor, O. I. Medvedkov, S. A. Vasiliev, and E. M. Dianov, “2.1 microm continuous-wave Raman laser in GeO2 fiber,” Opt. Lett.32(13), 1848–1850 (2007).
[CrossRef] [PubMed]

E. M. Dianov, I. A. Bufetov, V. M. Mashinsky, V. B. Neustruev, O. I. Medvedkov, A. V. Shubin, M. A. Melkumov, A. N. Gur'yanov, V. F. Khopin, and M. V. Yashkov, “Raman fibre lasers emitting at a wavelength above 2 μm,” Quantum Electron.34(8), 695–697 (2004).
[CrossRef]

N. Kurukitkoson, H. Sugahara, S. K. Turitsyn, O. N. Egorova, A. S. Kurkov, V. M. Paramonov, and E. M. Dianov, “Optimisation of two-stage Raman converter based on phosphosilicate core fibre: modelling and experiment,” Electron. Lett.37(21), 1281–1283 (2001).
[CrossRef]

Egorova, O. N.

N. Kurukitkoson, H. Sugahara, S. K. Turitsyn, O. N. Egorova, A. S. Kurkov, V. M. Paramonov, and E. M. Dianov, “Optimisation of two-stage Raman converter based on phosphosilicate core fibre: modelling and experiment,” Electron. Lett.37(21), 1281–1283 (2001).
[CrossRef]

Faucher, D.

Fortin, V.

Frith, G.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

Gan, F.

Gur'yanov, A. N.

E. M. Dianov, I. A. Bufetov, V. M. Mashinsky, V. B. Neustruev, O. I. Medvedkov, A. V. Shubin, M. A. Melkumov, A. N. Gur'yanov, V. F. Khopin, and M. V. Yashkov, “Raman fibre lasers emitting at a wavelength above 2 μm,” Quantum Electron.34(8), 695–697 (2004).
[CrossRef]

Jackson, S. D.

Khopin, V. F.

E. M. Dianov, I. A. Bufetov, V. M. Mashinsky, V. B. Neustruev, O. I. Medvedkov, A. V. Shubin, M. A. Melkumov, A. N. Gur'yanov, V. F. Khopin, and M. V. Yashkov, “Raman fibre lasers emitting at a wavelength above 2 μm,” Quantum Electron.34(8), 695–697 (2004).
[CrossRef]

Kim, N. S.

N. S. Kim, M. Prabhu, C. Li, J. Song, and K.-I. Ueda, “1239/1484 nm cascaded phosphosilicate Raman fiber laser with CW output power of 1.36 W at 1484 nm pumped by CW Yb-doped double-clad fiber laser at 1064 nm and spectral continuum generation,” Opt. Commun.176(1-3), 219–222 (2000).
[CrossRef]

King, T. A.

Kurkov, A. S.

N. Kurukitkoson, H. Sugahara, S. K. Turitsyn, O. N. Egorova, A. S. Kurkov, V. M. Paramonov, and E. M. Dianov, “Optimisation of two-stage Raman converter based on phosphosilicate core fibre: modelling and experiment,” Electron. Lett.37(21), 1281–1283 (2001).
[CrossRef]

Kurukitkoson, N.

N. Kurukitkoson, H. Sugahara, S. K. Turitsyn, O. N. Egorova, A. S. Kurkov, V. M. Paramonov, and E. M. Dianov, “Optimisation of two-stage Raman converter based on phosphosilicate core fibre: modelling and experiment,” Electron. Lett.37(21), 1281–1283 (2001).
[CrossRef]

Li, C.

N. S. Kim, M. Prabhu, C. Li, J. Song, and K.-I. Ueda, “1239/1484 nm cascaded phosphosilicate Raman fiber laser with CW output power of 1.36 W at 1484 nm pumped by CW Yb-doped double-clad fiber laser at 1064 nm and spectral continuum generation,” Opt. Commun.176(1-3), 219–222 (2000).
[CrossRef]

Lu, J.

Mashinsky, V. M.

E. M. Dianov, I. A. Bufetov, V. M. Mashinsky, V. B. Neustruev, O. I. Medvedkov, A. V. Shubin, M. A. Melkumov, A. N. Gur'yanov, V. F. Khopin, and M. V. Yashkov, “Raman fibre lasers emitting at a wavelength above 2 μm,” Quantum Electron.34(8), 695–697 (2004).
[CrossRef]

Medvedkov, O. I.

B. A. Cumberland, S. V. Popov, J. R. Taylor, O. I. Medvedkov, S. A. Vasiliev, and E. M. Dianov, “2.1 microm continuous-wave Raman laser in GeO2 fiber,” Opt. Lett.32(13), 1848–1850 (2007).
[CrossRef] [PubMed]

E. M. Dianov, I. A. Bufetov, V. M. Mashinsky, V. B. Neustruev, O. I. Medvedkov, A. V. Shubin, M. A. Melkumov, A. N. Gur'yanov, V. F. Khopin, and M. V. Yashkov, “Raman fibre lasers emitting at a wavelength above 2 μm,” Quantum Electron.34(8), 695–697 (2004).
[CrossRef]

Melkumov, M. A.

E. M. Dianov, I. A. Bufetov, V. M. Mashinsky, V. B. Neustruev, O. I. Medvedkov, A. V. Shubin, M. A. Melkumov, A. N. Gur'yanov, V. F. Khopin, and M. V. Yashkov, “Raman fibre lasers emitting at a wavelength above 2 μm,” Quantum Electron.34(8), 695–697 (2004).
[CrossRef]

Morasse, B.

Moulton, P. F.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

Neustruev, V. B.

E. M. Dianov, I. A. Bufetov, V. M. Mashinsky, V. B. Neustruev, O. I. Medvedkov, A. V. Shubin, M. A. Melkumov, A. N. Gur'yanov, V. F. Khopin, and M. V. Yashkov, “Raman fibre lasers emitting at a wavelength above 2 μm,” Quantum Electron.34(8), 695–697 (2004).
[CrossRef]

Paramonov, V. M.

N. Kurukitkoson, H. Sugahara, S. K. Turitsyn, O. N. Egorova, A. S. Kurkov, V. M. Paramonov, and E. M. Dianov, “Optimisation of two-stage Raman converter based on phosphosilicate core fibre: modelling and experiment,” Electron. Lett.37(21), 1281–1283 (2001).
[CrossRef]

Podivilov, E. V.

Popov, S. V.

Povlsen, J. H.

Prabhu, M.

J. Xu, M. Prabhu, J. Lu, K.-I. Ueda, and D. Xing, “Efficient double-clad thulium-doped fiber laser with a ring cavity,” Appl. Opt.40(12), 1983–1988 (2001).
[CrossRef] [PubMed]

N. S. Kim, M. Prabhu, C. Li, J. Song, and K.-I. Ueda, “1239/1484 nm cascaded phosphosilicate Raman fiber laser with CW output power of 1.36 W at 1484 nm pumped by CW Yb-doped double-clad fiber laser at 1064 nm and spectral continuum generation,” Opt. Commun.176(1-3), 219–222 (2000).
[CrossRef]

Randoux, S.

P. Suret and S. Randoux, “Influence of spectral broadening on steady characteristics of Raman fiber lasers: from experiments to questions about validity of usual models,” Opt. Commun.237(1-3), 201–212 (2004).
[CrossRef]

Rines, G. A.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

Rini, M.

M. Rini, I. Cristiani, and V. Degiorgio, “Numerical modeling and optimization of cascaded CW Raman fiber lasers,” IEEE J. Quantum Electron.36(10), 1117–1122 (2000).
[CrossRef]

Saliminia, A.

Samson, B.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

Sheng, Y.

Shubin, A. V.

E. M. Dianov, I. A. Bufetov, V. M. Mashinsky, V. B. Neustruev, O. I. Medvedkov, A. V. Shubin, M. A. Melkumov, A. N. Gur'yanov, V. F. Khopin, and M. V. Yashkov, “Raman fibre lasers emitting at a wavelength above 2 μm,” Quantum Electron.34(8), 695–697 (2004).
[CrossRef]

Slobodtchikov, E. V.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

Smirnov, S. V.

Song, J.

N. S. Kim, M. Prabhu, C. Li, J. Song, and K.-I. Ueda, “1239/1484 nm cascaded phosphosilicate Raman fiber laser with CW output power of 1.36 W at 1484 nm pumped by CW Yb-doped double-clad fiber laser at 1064 nm and spectral continuum generation,” Opt. Commun.176(1-3), 219–222 (2000).
[CrossRef]

Sugahara, H.

N. Kurukitkoson, H. Sugahara, S. K. Turitsyn, O. N. Egorova, A. S. Kurkov, V. M. Paramonov, and E. M. Dianov, “Optimisation of two-stage Raman converter based on phosphosilicate core fibre: modelling and experiment,” Electron. Lett.37(21), 1281–1283 (2001).
[CrossRef]

Suret, P.

P. Suret and S. Randoux, “Influence of spectral broadening on steady characteristics of Raman fiber lasers: from experiments to questions about validity of usual models,” Opt. Commun.237(1-3), 201–212 (2004).
[CrossRef]

Taylor, J. R.

Turitsyn, S. K.

N. Kurukitkoson, H. Sugahara, S. K. Turitsyn, O. N. Egorova, A. S. Kurkov, V. M. Paramonov, and E. M. Dianov, “Optimisation of two-stage Raman converter based on phosphosilicate core fibre: modelling and experiment,” Electron. Lett.37(21), 1281–1283 (2001).
[CrossRef]

Ueda, K.-I.

J. Xu, M. Prabhu, J. Lu, K.-I. Ueda, and D. Xing, “Efficient double-clad thulium-doped fiber laser with a ring cavity,” Appl. Opt.40(12), 1983–1988 (2001).
[CrossRef] [PubMed]

N. S. Kim, M. Prabhu, C. Li, J. Song, and K.-I. Ueda, “1239/1484 nm cascaded phosphosilicate Raman fiber laser with CW output power of 1.36 W at 1484 nm pumped by CW Yb-doped double-clad fiber laser at 1064 nm and spectral continuum generation,” Opt. Commun.176(1-3), 219–222 (2000).
[CrossRef]

Vallée, R.

Vareille, G.

G. Vareille, O. Audouin, and E. Desurvire, “Numerical optimisation of power conversion efficiency in 1480nm multi-Stokes Raman fibre lasers,” Electron. Lett.34(7), 675–676 (1998).
[CrossRef]

Vasiliev, S. A.

Wall, K. F.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

Walsh, B. M.

B. M. Walsh and N. P. Barnes, “Comparison of Tm:ZBLAN and Tm: silica fiber lasers; spectroscopy and tunable pulsed laser operation around 1.9 μm,” Appl. Phys. B78(3-4), 325–333 (2004).
[CrossRef]

Wang, P.

Xing, D.

Xu, J.

Yashkov, M. V.

E. M. Dianov, I. A. Bufetov, V. M. Mashinsky, V. B. Neustruev, O. I. Medvedkov, A. V. Shubin, M. A. Melkumov, A. N. Gur'yanov, V. F. Khopin, and M. V. Yashkov, “Raman fibre lasers emitting at a wavelength above 2 μm,” Quantum Electron.34(8), 695–697 (2004).
[CrossRef]

Zhang, L.

Appl. Opt. (2)

Appl. Phys. B (1)

B. M. Walsh and N. P. Barnes, “Comparison of Tm:ZBLAN and Tm: silica fiber lasers; spectroscopy and tunable pulsed laser operation around 1.9 μm,” Appl. Phys. B78(3-4), 325–333 (2004).
[CrossRef]

Electron. Lett. (2)

G. Vareille, O. Audouin, and E. Desurvire, “Numerical optimisation of power conversion efficiency in 1480nm multi-Stokes Raman fibre lasers,” Electron. Lett.34(7), 675–676 (1998).
[CrossRef]

N. Kurukitkoson, H. Sugahara, S. K. Turitsyn, O. N. Egorova, A. S. Kurkov, V. M. Paramonov, and E. M. Dianov, “Optimisation of two-stage Raman converter based on phosphosilicate core fibre: modelling and experiment,” Electron. Lett.37(21), 1281–1283 (2001).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Rini, I. Cristiani, and V. Degiorgio, “Numerical modeling and optimization of cascaded CW Raman fiber lasers,” IEEE J. Quantum Electron.36(10), 1117–1122 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J.-C. Bouteiller, “Spectral modeling of Raman fiber lasers,” IEEE Photon. Technol. Lett.15(12), 1698–1700 (2003).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Commun. (2)

P. Suret and S. Randoux, “Influence of spectral broadening on steady characteristics of Raman fiber lasers: from experiments to questions about validity of usual models,” Opt. Commun.237(1-3), 201–212 (2004).
[CrossRef]

N. S. Kim, M. Prabhu, C. Li, J. Song, and K.-I. Ueda, “1239/1484 nm cascaded phosphosilicate Raman fiber laser with CW output power of 1.36 W at 1484 nm pumped by CW Yb-doped double-clad fiber laser at 1064 nm and spectral continuum generation,” Opt. Commun.176(1-3), 219–222 (2000).
[CrossRef]

Opt. Express (2)

Opt. Lett. (5)

Quantum Electron. (1)

E. M. Dianov, I. A. Bufetov, V. M. Mashinsky, V. B. Neustruev, O. I. Medvedkov, A. V. Shubin, M. A. Melkumov, A. N. Gur'yanov, V. F. Khopin, and M. V. Yashkov, “Raman fibre lasers emitting at a wavelength above 2 μm,” Quantum Electron.34(8), 695–697 (2004).
[CrossRef]

Supplementary Material (6)

» Media 1: JPG (425 KB)     
» Media 2: JPG (445 KB)     
» Media 3: JPG (423 KB)     
» Media 4: JPG (656 KB)     
» Media 5: JPG (488 KB)     
» Media 6: JPG (901 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup of the nested cavity Raman fiber laser.

Fig. 2
Fig. 2

Transmission spectra of the pair of FBGs forming the Stokes cavity.

Fig. 3
Fig. 3

Output power as a function of the launched pump power.

Fig. 4
Fig. 4

Output spectra for the pump (a) and Stokes (b) wavelengths.

Fig. 5
Fig. 5

Power stability for different Stokes output powers from 0.17 W to 3.3 W.

Fig. 6
Fig. 6

(a) Calculated Stokes output power as a function of the launched pump power for different butt-coupled losses. (b) Calculated Stokes output power as a function of the S2 FBG reflectivity (black curves). The red and blue curves show the output power for a cavity with and without spectral broadening respectively.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

d N 4 dt = σ a_Q N 1 ( Q(z) h ν Q A eff_Q ) N 4 τ 4 k 4212 N 4 N 1 + k 2124 N 2 2 ,
d N 2 dt =2 k 4212 N 4 N 1 2 k 2124 N 2 2 N 2 τ 2 + β 42 N 4 τ 4 ( P(z) h ν P A eff_P )( σ e_P N 2 σ a_P N 1 ),
N 1 =N N 2 N 4 ,
dQ(z) dz = η P σ a_Q N 1 Q(z),
dP (z) ± dz =±( σ e_P N 2 σ a_P N 1 α P )P (z) ± ,
dP (z) ± dz = α P P (z) ± ν P ν S g R A eff ( S (z) + +S (z) )P (z) ±
dS (z) ± dz = α S S (z) ± ± g R A eff ( P (z) + +P (z) )S (z) ± ,
P (0) + = P intracavity P (L) = R P2 P (L) + S (0) + = R S1 S (0) S (L) = R S2 S (L) + ,

Metrics