Abstract

Thinned silica fibers were fabricated by drawing conventional single mode silica fiber through flame heated method and well-arrayed ZnO nanorods were grown on the thinned silica fibers by a hydrothermal method. The structure enables efficient light coupling between the fiber and the nanorods. With the unique property of high surface to volume ratio of one-dimensional ZnO nanorods, light coupled to nanorods array enhances the optical interaction between the device and the ambient environment. Sensitive humidity sensor was demonstrated by launching laser into ZnO nanorod-covered fibers. Theoretical and experimental results are presented.

© 2012 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Demonstration of side coupling to cladding modes through zinc oxide nanorods grown on multimode optical fiber

H. Fallah, M. Chaudhari, T. Bora, S. W. Harun, W. S. Mohammed, and J. Dutta
Opt. Lett. 38(18) 3620-3622 (2013)

Excitation of core modes through side coupling to multimode optical fiber by hydrothermal growth of ZnO nanorods for wide angle optical reception

Hoorieh Fallah, Sulaiman W. Harun, Waleed S. Mohammed, and Joydeep Dutta
J. Opt. Soc. Am. B 31(9) 2232-2238 (2014)

References

  • View by:
  • |
  • |
  • |

  1. H. T. Ng, J. Han, T. Yamada, P. Nguyen, Y. P. Chen, and M. Meyyappan, “Single crystal nanowire vertical surround-gate field-effect transistor,” Nano Lett. 4(7), 1247–1252 (2004).
    [Crossref]
  2. X. W. Sun, J. Z. Huang, J. X. Wang, and Z. Xu, “A ZnO nanorod inorganic/organic heterostructure light-emitting diode emitting at 342 nm,” Nano Lett. 8(4), 1219–1223 (2008).
    [Crossref] [PubMed]
  3. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
    [Crossref] [PubMed]
  4. T. Y. Liu, H. C. Liao, C. C. Lin, S. H. Hu, and S. Y. Chen, “Biofunctional ZnO nanorod arrays grown on flexible substrates,” Langmuir 22(13), 5804–5809 (2006).
    [Crossref] [PubMed]
  5. B. Weintraub, Y. Wei, and Z. L. Wang, “Optical fiber/nanowire hybrid structures for efficient three-dimensional dye-sensitized solar cells,” Angew. Chem. Int. Ed. Engl. 48(47), 8981–8985 (2009).
    [Crossref] [PubMed]
  6. Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett. 84(18), 3654–3656 (2004).
    [Crossref]
  7. H. T. Wang, B. S. Kang, F. Ren, L. C. Tien, P. W. Sadik, D. P. Norton, S. J. Pearton, and J. Lin, “Hydrogen-selective sensing at room temperature with ZnO Nanorods,” Appl. Phys. Lett. 86(24), 243503 (2005).
    [Crossref]
  8. L. Liao, H. B. Lu, J. C. Li, H. He, D. F. Wang, D. J. Fu, C. Liu, and W. F. Zhang, “Size dependence of gas sensitivity of ZnO nanorods,” J. Phys. Chem. C 111(5), 1900–1903 (2007).
    [Crossref]
  9. F. Fang, J. Futter, A. Markwitz, and J. Kennedy, “UV and humidity sensing properties of ZnO nanorods prepared by the arc discharge method,” Nanotechnology 20(24), 245502 (2009).
    [Crossref] [PubMed]
  10. M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic growth of zinc oxide nanowires by vapor transport,” Adv. Mater. (Deerfield Beach Fla.) 13(2), 113–116 (2001).
    [Crossref]
  11. Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, “Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach,” Appl. Phys. Lett. 78(4), 407–409 (2001).
    [Crossref]
  12. J. J. Wu and S. C. Liu, “Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition,” Adv. Mater. (Deerfield Beach Fla.) 14(3), 215–218 (2002).
    [Crossref]
  13. L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions,” Adv. Mater. (Deerfield Beach Fla.) 15(5), 464–466 (2003).
    [Crossref]
  14. J. H. Lee, I. C. Leu, Y. W. Chung, and M. H. Hon, “Fabrication of ordered ZnO hierarchical structures controlled via surface charge in the electrophoretic deposition process,” Nanotechnology 17(17), 4445–4450 (2006).
    [Crossref]
  15. M. Wei, D. Zhi, and J. L. MacManus-Driscoll, “Self-catalysed growth of zinc oxide nanowires,” Nanotechnology 16(8), 1364–1368 (2005).
    [Crossref]
  16. S. H. Jo, D. Banerjee, and Z. F. Ren, “Field emission of zinc oxide nanowires grown on carbon cloth,” Appl. Phys. Lett. 85(8), 1407–1409 (2004).
    [Crossref]
  17. A. Umar, B. K. Kim, J. J. Kim, and Y. B. Hahn, “Optical and electrical properties of ZnO nanowires grown on aluminium foil by non-catalytic thermal evaporation,” Nanotechnology 18(17), 175606 (2007).
    [Crossref]
  18. T. Voss, G. T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, and F. Marlow, “High-order waveguide modes in ZnO nanowires,” Nano Lett. 7(12), 3675–3680 (2007).
    [Crossref] [PubMed]
  19. J. Yu, R. Feng, and W. She, “Low-power all-optical switch based on the bend effect of a nm fiber taper driven by outgoing light,” Opt. Express 17(6), 4640–4645 (2009).
    [Crossref] [PubMed]
  20. Z. Hu, G. Oskam, and P. C. Searson, “Influence of solvent on the growth of ZnO nanoparticles,” J. Colloid Interface Sci. 263(2), 454–460 (2003).
    [Crossref] [PubMed]
  21. L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
    [Crossref] [PubMed]
  22. R. Aneesh and S. K. Khijwania, “Zinc oxide nanoparticle based optical fiber humidity sensor having linear response throughout a large dynamic range,” Appl. Opt. 50(27), 5310–5314 (2011).
    [Crossref] [PubMed]

2011 (1)

2009 (3)

J. Yu, R. Feng, and W. She, “Low-power all-optical switch based on the bend effect of a nm fiber taper driven by outgoing light,” Opt. Express 17(6), 4640–4645 (2009).
[Crossref] [PubMed]

B. Weintraub, Y. Wei, and Z. L. Wang, “Optical fiber/nanowire hybrid structures for efficient three-dimensional dye-sensitized solar cells,” Angew. Chem. Int. Ed. Engl. 48(47), 8981–8985 (2009).
[Crossref] [PubMed]

F. Fang, J. Futter, A. Markwitz, and J. Kennedy, “UV and humidity sensing properties of ZnO nanorods prepared by the arc discharge method,” Nanotechnology 20(24), 245502 (2009).
[Crossref] [PubMed]

2008 (1)

X. W. Sun, J. Z. Huang, J. X. Wang, and Z. Xu, “A ZnO nanorod inorganic/organic heterostructure light-emitting diode emitting at 342 nm,” Nano Lett. 8(4), 1219–1223 (2008).
[Crossref] [PubMed]

2007 (3)

L. Liao, H. B. Lu, J. C. Li, H. He, D. F. Wang, D. J. Fu, C. Liu, and W. F. Zhang, “Size dependence of gas sensitivity of ZnO nanorods,” J. Phys. Chem. C 111(5), 1900–1903 (2007).
[Crossref]

A. Umar, B. K. Kim, J. J. Kim, and Y. B. Hahn, “Optical and electrical properties of ZnO nanowires grown on aluminium foil by non-catalytic thermal evaporation,” Nanotechnology 18(17), 175606 (2007).
[Crossref]

T. Voss, G. T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, and F. Marlow, “High-order waveguide modes in ZnO nanowires,” Nano Lett. 7(12), 3675–3680 (2007).
[Crossref] [PubMed]

2006 (2)

J. H. Lee, I. C. Leu, Y. W. Chung, and M. H. Hon, “Fabrication of ordered ZnO hierarchical structures controlled via surface charge in the electrophoretic deposition process,” Nanotechnology 17(17), 4445–4450 (2006).
[Crossref]

T. Y. Liu, H. C. Liao, C. C. Lin, S. H. Hu, and S. Y. Chen, “Biofunctional ZnO nanorod arrays grown on flexible substrates,” Langmuir 22(13), 5804–5809 (2006).
[Crossref] [PubMed]

2005 (2)

H. T. Wang, B. S. Kang, F. Ren, L. C. Tien, P. W. Sadik, D. P. Norton, S. J. Pearton, and J. Lin, “Hydrogen-selective sensing at room temperature with ZnO Nanorods,” Appl. Phys. Lett. 86(24), 243503 (2005).
[Crossref]

M. Wei, D. Zhi, and J. L. MacManus-Driscoll, “Self-catalysed growth of zinc oxide nanowires,” Nanotechnology 16(8), 1364–1368 (2005).
[Crossref]

2004 (4)

S. H. Jo, D. Banerjee, and Z. F. Ren, “Field emission of zinc oxide nanowires grown on carbon cloth,” Appl. Phys. Lett. 85(8), 1407–1409 (2004).
[Crossref]

Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett. 84(18), 3654–3656 (2004).
[Crossref]

H. T. Ng, J. Han, T. Yamada, P. Nguyen, Y. P. Chen, and M. Meyyappan, “Single crystal nanowire vertical surround-gate field-effect transistor,” Nano Lett. 4(7), 1247–1252 (2004).
[Crossref]

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
[Crossref] [PubMed]

2003 (2)

Z. Hu, G. Oskam, and P. C. Searson, “Influence of solvent on the growth of ZnO nanoparticles,” J. Colloid Interface Sci. 263(2), 454–460 (2003).
[Crossref] [PubMed]

L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions,” Adv. Mater. (Deerfield Beach Fla.) 15(5), 464–466 (2003).
[Crossref]

2002 (1)

J. J. Wu and S. C. Liu, “Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition,” Adv. Mater. (Deerfield Beach Fla.) 14(3), 215–218 (2002).
[Crossref]

2001 (3)

M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic growth of zinc oxide nanowires by vapor transport,” Adv. Mater. (Deerfield Beach Fla.) 13(2), 113–116 (2001).
[Crossref]

Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, “Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach,” Appl. Phys. Lett. 78(4), 407–409 (2001).
[Crossref]

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Aneesh, R.

Banerjee, D.

S. H. Jo, D. Banerjee, and Z. F. Ren, “Field emission of zinc oxide nanowires grown on carbon cloth,” Appl. Phys. Lett. 85(8), 1407–1409 (2004).
[Crossref]

Chen, S. Y.

T. Y. Liu, H. C. Liao, C. C. Lin, S. H. Hu, and S. Y. Chen, “Biofunctional ZnO nanorod arrays grown on flexible substrates,” Langmuir 22(13), 5804–5809 (2006).
[Crossref] [PubMed]

Chen, Y. J.

Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett. 84(18), 3654–3656 (2004).
[Crossref]

Chen, Y. P.

H. T. Ng, J. Han, T. Yamada, P. Nguyen, Y. P. Chen, and M. Meyyappan, “Single crystal nanowire vertical surround-gate field-effect transistor,” Nano Lett. 4(7), 1247–1252 (2004).
[Crossref]

Chung, Y. W.

J. H. Lee, I. C. Leu, Y. W. Chung, and M. H. Hon, “Fabrication of ordered ZnO hierarchical structures controlled via surface charge in the electrophoretic deposition process,” Nanotechnology 17(17), 4445–4450 (2006).
[Crossref]

Fang, F.

F. Fang, J. Futter, A. Markwitz, and J. Kennedy, “UV and humidity sensing properties of ZnO nanorods prepared by the arc discharge method,” Nanotechnology 20(24), 245502 (2009).
[Crossref] [PubMed]

Fang, W.

Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, “Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach,” Appl. Phys. Lett. 78(4), 407–409 (2001).
[Crossref]

Feick, H.

M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic growth of zinc oxide nanowires by vapor transport,” Adv. Mater. (Deerfield Beach Fla.) 13(2), 113–116 (2001).
[Crossref]

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Feng, R.

Feng, S. Q.

Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, “Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach,” Appl. Phys. Lett. 78(4), 407–409 (2001).
[Crossref]

Fu, D. J.

L. Liao, H. B. Lu, J. C. Li, H. He, D. F. Wang, D. J. Fu, C. Liu, and W. F. Zhang, “Size dependence of gas sensitivity of ZnO nanorods,” J. Phys. Chem. C 111(5), 1900–1903 (2007).
[Crossref]

Futter, J.

F. Fang, J. Futter, A. Markwitz, and J. Kennedy, “UV and humidity sensing properties of ZnO nanorods prepared by the arc discharge method,” Nanotechnology 20(24), 245502 (2009).
[Crossref] [PubMed]

Hahn, Y. B.

A. Umar, B. K. Kim, J. J. Kim, and Y. B. Hahn, “Optical and electrical properties of ZnO nanowires grown on aluminium foil by non-catalytic thermal evaporation,” Nanotechnology 18(17), 175606 (2007).
[Crossref]

Han, J.

H. T. Ng, J. Han, T. Yamada, P. Nguyen, Y. P. Chen, and M. Meyyappan, “Single crystal nanowire vertical surround-gate field-effect transistor,” Nano Lett. 4(7), 1247–1252 (2004).
[Crossref]

He, H.

L. Liao, H. B. Lu, J. C. Li, H. He, D. F. Wang, D. J. Fu, C. Liu, and W. F. Zhang, “Size dependence of gas sensitivity of ZnO nanorods,” J. Phys. Chem. C 111(5), 1900–1903 (2007).
[Crossref]

He, X. L.

Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett. 84(18), 3654–3656 (2004).
[Crossref]

Hon, M. H.

J. H. Lee, I. C. Leu, Y. W. Chung, and M. H. Hon, “Fabrication of ordered ZnO hierarchical structures controlled via surface charge in the electrophoretic deposition process,” Nanotechnology 17(17), 4445–4450 (2006).
[Crossref]

Hu, S. H.

T. Y. Liu, H. C. Liao, C. C. Lin, S. H. Hu, and S. Y. Chen, “Biofunctional ZnO nanorod arrays grown on flexible substrates,” Langmuir 22(13), 5804–5809 (2006).
[Crossref] [PubMed]

Hu, Z.

Z. Hu, G. Oskam, and P. C. Searson, “Influence of solvent on the growth of ZnO nanoparticles,” J. Colloid Interface Sci. 263(2), 454–460 (2003).
[Crossref] [PubMed]

Huang, J. Z.

X. W. Sun, J. Z. Huang, J. X. Wang, and Z. Xu, “A ZnO nanorod inorganic/organic heterostructure light-emitting diode emitting at 342 nm,” Nano Lett. 8(4), 1219–1223 (2008).
[Crossref] [PubMed]

Huang, M. H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic growth of zinc oxide nanowires by vapor transport,” Adv. Mater. (Deerfield Beach Fla.) 13(2), 113–116 (2001).
[Crossref]

Jo, S. H.

S. H. Jo, D. Banerjee, and Z. F. Ren, “Field emission of zinc oxide nanowires grown on carbon cloth,” Appl. Phys. Lett. 85(8), 1407–1409 (2004).
[Crossref]

Kang, B. S.

H. T. Wang, B. S. Kang, F. Ren, L. C. Tien, P. W. Sadik, D. P. Norton, S. J. Pearton, and J. Lin, “Hydrogen-selective sensing at room temperature with ZnO Nanorods,” Appl. Phys. Lett. 86(24), 243503 (2005).
[Crossref]

Kennedy, J.

F. Fang, J. Futter, A. Markwitz, and J. Kennedy, “UV and humidity sensing properties of ZnO nanorods prepared by the arc discharge method,” Nanotechnology 20(24), 245502 (2009).
[Crossref] [PubMed]

Khijwania, S. K.

Kim, B. K.

A. Umar, B. K. Kim, J. J. Kim, and Y. B. Hahn, “Optical and electrical properties of ZnO nanowires grown on aluminium foil by non-catalytic thermal evaporation,” Nanotechnology 18(17), 175606 (2007).
[Crossref]

Kim, J. J.

A. Umar, B. K. Kim, J. J. Kim, and Y. B. Hahn, “Optical and electrical properties of ZnO nanowires grown on aluminium foil by non-catalytic thermal evaporation,” Nanotechnology 18(17), 175606 (2007).
[Crossref]

Kind, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Kong, Y. C.

Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, “Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach,” Appl. Phys. Lett. 78(4), 407–409 (2001).
[Crossref]

Konjhodzic, D.

T. Voss, G. T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, and F. Marlow, “High-order waveguide modes in ZnO nanowires,” Nano Lett. 7(12), 3675–3680 (2007).
[Crossref] [PubMed]

Lee, J. H.

J. H. Lee, I. C. Leu, Y. W. Chung, and M. H. Hon, “Fabrication of ordered ZnO hierarchical structures controlled via surface charge in the electrophoretic deposition process,” Nanotechnology 17(17), 4445–4450 (2006).
[Crossref]

Leu, I. C.

J. H. Lee, I. C. Leu, Y. W. Chung, and M. H. Hon, “Fabrication of ordered ZnO hierarchical structures controlled via surface charge in the electrophoretic deposition process,” Nanotechnology 17(17), 4445–4450 (2006).
[Crossref]

Li, J. C.

L. Liao, H. B. Lu, J. C. Li, H. He, D. F. Wang, D. J. Fu, C. Liu, and W. F. Zhang, “Size dependence of gas sensitivity of ZnO nanorods,” J. Phys. Chem. C 111(5), 1900–1903 (2007).
[Crossref]

Li, J. P.

Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett. 84(18), 3654–3656 (2004).
[Crossref]

Li, Q. H.

Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett. 84(18), 3654–3656 (2004).
[Crossref]

Liao, H. C.

T. Y. Liu, H. C. Liao, C. C. Lin, S. H. Hu, and S. Y. Chen, “Biofunctional ZnO nanorod arrays grown on flexible substrates,” Langmuir 22(13), 5804–5809 (2006).
[Crossref] [PubMed]

Liao, L.

L. Liao, H. B. Lu, J. C. Li, H. He, D. F. Wang, D. J. Fu, C. Liu, and W. F. Zhang, “Size dependence of gas sensitivity of ZnO nanorods,” J. Phys. Chem. C 111(5), 1900–1903 (2007).
[Crossref]

Lin, C. C.

T. Y. Liu, H. C. Liao, C. C. Lin, S. H. Hu, and S. Y. Chen, “Biofunctional ZnO nanorod arrays grown on flexible substrates,” Langmuir 22(13), 5804–5809 (2006).
[Crossref] [PubMed]

Lin, C. L.

Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett. 84(18), 3654–3656 (2004).
[Crossref]

Lin, J.

H. T. Wang, B. S. Kang, F. Ren, L. C. Tien, P. W. Sadik, D. P. Norton, S. J. Pearton, and J. Lin, “Hydrogen-selective sensing at room temperature with ZnO Nanorods,” Appl. Phys. Lett. 86(24), 243503 (2005).
[Crossref]

Liu, C.

L. Liao, H. B. Lu, J. C. Li, H. He, D. F. Wang, D. J. Fu, C. Liu, and W. F. Zhang, “Size dependence of gas sensitivity of ZnO nanorods,” J. Phys. Chem. C 111(5), 1900–1903 (2007).
[Crossref]

Liu, S. C.

J. J. Wu and S. C. Liu, “Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition,” Adv. Mater. (Deerfield Beach Fla.) 14(3), 215–218 (2002).
[Crossref]

Liu, T. Y.

T. Y. Liu, H. C. Liao, C. C. Lin, S. H. Hu, and S. Y. Chen, “Biofunctional ZnO nanorod arrays grown on flexible substrates,” Langmuir 22(13), 5804–5809 (2006).
[Crossref] [PubMed]

Lou, J.

Lu, H. B.

L. Liao, H. B. Lu, J. C. Li, H. He, D. F. Wang, D. J. Fu, C. Liu, and W. F. Zhang, “Size dependence of gas sensitivity of ZnO nanorods,” J. Phys. Chem. C 111(5), 1900–1903 (2007).
[Crossref]

MacManus-Driscoll, J. L.

M. Wei, D. Zhi, and J. L. MacManus-Driscoll, “Self-catalysed growth of zinc oxide nanowires,” Nanotechnology 16(8), 1364–1368 (2005).
[Crossref]

Mao, S.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Markwitz, A.

F. Fang, J. Futter, A. Markwitz, and J. Kennedy, “UV and humidity sensing properties of ZnO nanorods prepared by the arc discharge method,” Nanotechnology 20(24), 245502 (2009).
[Crossref] [PubMed]

Marlow, F.

T. Voss, G. T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, and F. Marlow, “High-order waveguide modes in ZnO nanowires,” Nano Lett. 7(12), 3675–3680 (2007).
[Crossref] [PubMed]

Mazur, E.

T. Voss, G. T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, and F. Marlow, “High-order waveguide modes in ZnO nanowires,” Nano Lett. 7(12), 3675–3680 (2007).
[Crossref] [PubMed]

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
[Crossref] [PubMed]

Meyyappan, M.

H. T. Ng, J. Han, T. Yamada, P. Nguyen, Y. P. Chen, and M. Meyyappan, “Single crystal nanowire vertical surround-gate field-effect transistor,” Nano Lett. 4(7), 1247–1252 (2004).
[Crossref]

Müller, S.

T. Voss, G. T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, and F. Marlow, “High-order waveguide modes in ZnO nanowires,” Nano Lett. 7(12), 3675–3680 (2007).
[Crossref] [PubMed]

Ng, H. T.

H. T. Ng, J. Han, T. Yamada, P. Nguyen, Y. P. Chen, and M. Meyyappan, “Single crystal nanowire vertical surround-gate field-effect transistor,” Nano Lett. 4(7), 1247–1252 (2004).
[Crossref]

Nguyen, P.

H. T. Ng, J. Han, T. Yamada, P. Nguyen, Y. P. Chen, and M. Meyyappan, “Single crystal nanowire vertical surround-gate field-effect transistor,” Nano Lett. 4(7), 1247–1252 (2004).
[Crossref]

Norton, D. P.

H. T. Wang, B. S. Kang, F. Ren, L. C. Tien, P. W. Sadik, D. P. Norton, S. J. Pearton, and J. Lin, “Hydrogen-selective sensing at room temperature with ZnO Nanorods,” Appl. Phys. Lett. 86(24), 243503 (2005).
[Crossref]

Oskam, G.

Z. Hu, G. Oskam, and P. C. Searson, “Influence of solvent on the growth of ZnO nanoparticles,” J. Colloid Interface Sci. 263(2), 454–460 (2003).
[Crossref] [PubMed]

Pearton, S. J.

H. T. Wang, B. S. Kang, F. Ren, L. C. Tien, P. W. Sadik, D. P. Norton, S. J. Pearton, and J. Lin, “Hydrogen-selective sensing at room temperature with ZnO Nanorods,” Appl. Phys. Lett. 86(24), 243503 (2005).
[Crossref]

Ren, F.

H. T. Wang, B. S. Kang, F. Ren, L. C. Tien, P. W. Sadik, D. P. Norton, S. J. Pearton, and J. Lin, “Hydrogen-selective sensing at room temperature with ZnO Nanorods,” Appl. Phys. Lett. 86(24), 243503 (2005).
[Crossref]

Ren, Z. F.

S. H. Jo, D. Banerjee, and Z. F. Ren, “Field emission of zinc oxide nanowires grown on carbon cloth,” Appl. Phys. Lett. 85(8), 1407–1409 (2004).
[Crossref]

Ronning, C.

T. Voss, G. T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, and F. Marlow, “High-order waveguide modes in ZnO nanowires,” Nano Lett. 7(12), 3675–3680 (2007).
[Crossref] [PubMed]

Russo, R.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Sadik, P. W.

H. T. Wang, B. S. Kang, F. Ren, L. C. Tien, P. W. Sadik, D. P. Norton, S. J. Pearton, and J. Lin, “Hydrogen-selective sensing at room temperature with ZnO Nanorods,” Appl. Phys. Lett. 86(24), 243503 (2005).
[Crossref]

Searson, P. C.

Z. Hu, G. Oskam, and P. C. Searson, “Influence of solvent on the growth of ZnO nanoparticles,” J. Colloid Interface Sci. 263(2), 454–460 (2003).
[Crossref] [PubMed]

She, W.

Sun, X. W.

X. W. Sun, J. Z. Huang, J. X. Wang, and Z. Xu, “A ZnO nanorod inorganic/organic heterostructure light-emitting diode emitting at 342 nm,” Nano Lett. 8(4), 1219–1223 (2008).
[Crossref] [PubMed]

Svacha, G. T.

T. Voss, G. T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, and F. Marlow, “High-order waveguide modes in ZnO nanowires,” Nano Lett. 7(12), 3675–3680 (2007).
[Crossref] [PubMed]

Tien, L. C.

H. T. Wang, B. S. Kang, F. Ren, L. C. Tien, P. W. Sadik, D. P. Norton, S. J. Pearton, and J. Lin, “Hydrogen-selective sensing at room temperature with ZnO Nanorods,” Appl. Phys. Lett. 86(24), 243503 (2005).
[Crossref]

Tong, L.

Tran, N.

M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic growth of zinc oxide nanowires by vapor transport,” Adv. Mater. (Deerfield Beach Fla.) 13(2), 113–116 (2001).
[Crossref]

Umar, A.

A. Umar, B. K. Kim, J. J. Kim, and Y. B. Hahn, “Optical and electrical properties of ZnO nanowires grown on aluminium foil by non-catalytic thermal evaporation,” Nanotechnology 18(17), 175606 (2007).
[Crossref]

Vayssieres, L.

L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions,” Adv. Mater. (Deerfield Beach Fla.) 15(5), 464–466 (2003).
[Crossref]

Voss, T.

T. Voss, G. T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, and F. Marlow, “High-order waveguide modes in ZnO nanowires,” Nano Lett. 7(12), 3675–3680 (2007).
[Crossref] [PubMed]

Wan, Q.

Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett. 84(18), 3654–3656 (2004).
[Crossref]

Wang, D. F.

L. Liao, H. B. Lu, J. C. Li, H. He, D. F. Wang, D. J. Fu, C. Liu, and W. F. Zhang, “Size dependence of gas sensitivity of ZnO nanorods,” J. Phys. Chem. C 111(5), 1900–1903 (2007).
[Crossref]

Wang, H. T.

H. T. Wang, B. S. Kang, F. Ren, L. C. Tien, P. W. Sadik, D. P. Norton, S. J. Pearton, and J. Lin, “Hydrogen-selective sensing at room temperature with ZnO Nanorods,” Appl. Phys. Lett. 86(24), 243503 (2005).
[Crossref]

Wang, J. X.

X. W. Sun, J. Z. Huang, J. X. Wang, and Z. Xu, “A ZnO nanorod inorganic/organic heterostructure light-emitting diode emitting at 342 nm,” Nano Lett. 8(4), 1219–1223 (2008).
[Crossref] [PubMed]

Wang, T. H.

Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett. 84(18), 3654–3656 (2004).
[Crossref]

Wang, Z. L.

B. Weintraub, Y. Wei, and Z. L. Wang, “Optical fiber/nanowire hybrid structures for efficient three-dimensional dye-sensitized solar cells,” Angew. Chem. Int. Ed. Engl. 48(47), 8981–8985 (2009).
[Crossref] [PubMed]

Weber, E.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic growth of zinc oxide nanowires by vapor transport,” Adv. Mater. (Deerfield Beach Fla.) 13(2), 113–116 (2001).
[Crossref]

Wei, M.

M. Wei, D. Zhi, and J. L. MacManus-Driscoll, “Self-catalysed growth of zinc oxide nanowires,” Nanotechnology 16(8), 1364–1368 (2005).
[Crossref]

Wei, Y.

B. Weintraub, Y. Wei, and Z. L. Wang, “Optical fiber/nanowire hybrid structures for efficient three-dimensional dye-sensitized solar cells,” Angew. Chem. Int. Ed. Engl. 48(47), 8981–8985 (2009).
[Crossref] [PubMed]

Weintraub, B.

B. Weintraub, Y. Wei, and Z. L. Wang, “Optical fiber/nanowire hybrid structures for efficient three-dimensional dye-sensitized solar cells,” Angew. Chem. Int. Ed. Engl. 48(47), 8981–8985 (2009).
[Crossref] [PubMed]

Wu, J. J.

J. J. Wu and S. C. Liu, “Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition,” Adv. Mater. (Deerfield Beach Fla.) 14(3), 215–218 (2002).
[Crossref]

Wu, Y.

M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic growth of zinc oxide nanowires by vapor transport,” Adv. Mater. (Deerfield Beach Fla.) 13(2), 113–116 (2001).
[Crossref]

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Xu, Z.

X. W. Sun, J. Z. Huang, J. X. Wang, and Z. Xu, “A ZnO nanorod inorganic/organic heterostructure light-emitting diode emitting at 342 nm,” Nano Lett. 8(4), 1219–1223 (2008).
[Crossref] [PubMed]

Yamada, T.

H. T. Ng, J. Han, T. Yamada, P. Nguyen, Y. P. Chen, and M. Meyyappan, “Single crystal nanowire vertical surround-gate field-effect transistor,” Nano Lett. 4(7), 1247–1252 (2004).
[Crossref]

Yan, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Yang, P.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic growth of zinc oxide nanowires by vapor transport,” Adv. Mater. (Deerfield Beach Fla.) 13(2), 113–116 (2001).
[Crossref]

Yu, D. P.

Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, “Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach,” Appl. Phys. Lett. 78(4), 407–409 (2001).
[Crossref]

Yu, J.

Zhang, B.

Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, “Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach,” Appl. Phys. Lett. 78(4), 407–409 (2001).
[Crossref]

Zhang, W. F.

L. Liao, H. B. Lu, J. C. Li, H. He, D. F. Wang, D. J. Fu, C. Liu, and W. F. Zhang, “Size dependence of gas sensitivity of ZnO nanorods,” J. Phys. Chem. C 111(5), 1900–1903 (2007).
[Crossref]

Zhi, D.

M. Wei, D. Zhi, and J. L. MacManus-Driscoll, “Self-catalysed growth of zinc oxide nanowires,” Nanotechnology 16(8), 1364–1368 (2005).
[Crossref]

Adv. Mater. (Deerfield Beach Fla.) (3)

M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic growth of zinc oxide nanowires by vapor transport,” Adv. Mater. (Deerfield Beach Fla.) 13(2), 113–116 (2001).
[Crossref]

J. J. Wu and S. C. Liu, “Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition,” Adv. Mater. (Deerfield Beach Fla.) 14(3), 215–218 (2002).
[Crossref]

L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions,” Adv. Mater. (Deerfield Beach Fla.) 15(5), 464–466 (2003).
[Crossref]

Angew. Chem. Int. Ed. Engl. (1)

B. Weintraub, Y. Wei, and Z. L. Wang, “Optical fiber/nanowire hybrid structures for efficient three-dimensional dye-sensitized solar cells,” Angew. Chem. Int. Ed. Engl. 48(47), 8981–8985 (2009).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett. 84(18), 3654–3656 (2004).
[Crossref]

H. T. Wang, B. S. Kang, F. Ren, L. C. Tien, P. W. Sadik, D. P. Norton, S. J. Pearton, and J. Lin, “Hydrogen-selective sensing at room temperature with ZnO Nanorods,” Appl. Phys. Lett. 86(24), 243503 (2005).
[Crossref]

Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, “Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach,” Appl. Phys. Lett. 78(4), 407–409 (2001).
[Crossref]

S. H. Jo, D. Banerjee, and Z. F. Ren, “Field emission of zinc oxide nanowires grown on carbon cloth,” Appl. Phys. Lett. 85(8), 1407–1409 (2004).
[Crossref]

J. Colloid Interface Sci. (1)

Z. Hu, G. Oskam, and P. C. Searson, “Influence of solvent on the growth of ZnO nanoparticles,” J. Colloid Interface Sci. 263(2), 454–460 (2003).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

L. Liao, H. B. Lu, J. C. Li, H. He, D. F. Wang, D. J. Fu, C. Liu, and W. F. Zhang, “Size dependence of gas sensitivity of ZnO nanorods,” J. Phys. Chem. C 111(5), 1900–1903 (2007).
[Crossref]

Langmuir (1)

T. Y. Liu, H. C. Liao, C. C. Lin, S. H. Hu, and S. Y. Chen, “Biofunctional ZnO nanorod arrays grown on flexible substrates,” Langmuir 22(13), 5804–5809 (2006).
[Crossref] [PubMed]

Nano Lett. (3)

H. T. Ng, J. Han, T. Yamada, P. Nguyen, Y. P. Chen, and M. Meyyappan, “Single crystal nanowire vertical surround-gate field-effect transistor,” Nano Lett. 4(7), 1247–1252 (2004).
[Crossref]

X. W. Sun, J. Z. Huang, J. X. Wang, and Z. Xu, “A ZnO nanorod inorganic/organic heterostructure light-emitting diode emitting at 342 nm,” Nano Lett. 8(4), 1219–1223 (2008).
[Crossref] [PubMed]

T. Voss, G. T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, and F. Marlow, “High-order waveguide modes in ZnO nanowires,” Nano Lett. 7(12), 3675–3680 (2007).
[Crossref] [PubMed]

Nanotechnology (4)

A. Umar, B. K. Kim, J. J. Kim, and Y. B. Hahn, “Optical and electrical properties of ZnO nanowires grown on aluminium foil by non-catalytic thermal evaporation,” Nanotechnology 18(17), 175606 (2007).
[Crossref]

J. H. Lee, I. C. Leu, Y. W. Chung, and M. H. Hon, “Fabrication of ordered ZnO hierarchical structures controlled via surface charge in the electrophoretic deposition process,” Nanotechnology 17(17), 4445–4450 (2006).
[Crossref]

M. Wei, D. Zhi, and J. L. MacManus-Driscoll, “Self-catalysed growth of zinc oxide nanowires,” Nanotechnology 16(8), 1364–1368 (2005).
[Crossref]

F. Fang, J. Futter, A. Markwitz, and J. Kennedy, “UV and humidity sensing properties of ZnO nanorods prepared by the arc discharge method,” Nanotechnology 20(24), 245502 (2009).
[Crossref] [PubMed]

Opt. Express (2)

Science (1)

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) SEM images of a 5-µm bare fiber; (b) A “test-tube brush”-like fiber/nanorods structures comprising 5-µm fiber covered by ZnO nanorods with approximately 2.5-µm length; (c) Higher magnification SEM image of the ZnO nanorods in the area of 3.47 × 2.55 µm2.

Fig. 2
Fig. 2

(a) Diameter distribution histogram of the ZnO nanorods showed in Fig. 1(c); (b) XRD pattern and (c) transmission spectrum of the grown ZnO nanorod array.

Fig. 3
Fig. 3

Optical microscope images of (a) 5-µm bare fiber and (b) ZnO nanorod-covered fiber with 644-nm laser light input from the left port with 100 µW coupled power. Inset: Magnified image of nanorod-covered fiber with lower coupled power of 10 µW. Numerical simulations of the electric field distribution of (c) 5-µm bare fiber and (d) ZnO nanorod-covered fiber.

Fig. 4
Fig. 4

Experimental setup of humidity sensing. Inset: Magnified image of fiber/nanorods structures.

Fig. 5
Fig. 5

Measured normalize transmission of the 5-µm-diameter bare fiber and the ZnO nanorod-covered fibers in diameters D of 5, 10, and 20 µm as a function of RH changed from 10% to 95%.

Fig. 6
Fig. 6

Numerical simulations of electric field distribution in a surrounding medium with effective refractive indices neff of (a) 1.698, (b) 1.706, (c) 1.713, and (d) 1.718.

Fig. 7
Fig. 7

Normalized transmission variations with the effective refractive index.

Fig. 8
Fig. 8

Measured normalized transmission of the 5-µm ZnO nanorod-covered fiber using 473- and 532-nm lasers (input power of 100 µW) as light sources. The insets are optical microscope images of the 5-µm ZnO nanorod-covered fiber with 473- and 532-nm lasers coupled from the left ports.

Metrics