J. Yu, R. Feng, and W. She, “Low-power all-optical switch based on the bend effect of a nm fiber taper driven by outgoing light,” Opt. Express 17(6), 4640–4645 (2009).
[Crossref]
[PubMed]
B. Weintraub, Y. Wei, and Z. L. Wang, “Optical fiber/nanowire hybrid structures for efficient three-dimensional dye-sensitized solar cells,” Angew. Chem. Int. Ed. Engl. 48(47), 8981–8985 (2009).
[Crossref]
[PubMed]
F. Fang, J. Futter, A. Markwitz, and J. Kennedy, “UV and humidity sensing properties of ZnO nanorods prepared by the arc discharge method,” Nanotechnology 20(24), 245502 (2009).
[Crossref]
[PubMed]
X. W. Sun, J. Z. Huang, J. X. Wang, and Z. Xu, “A ZnO nanorod inorganic/organic heterostructure light-emitting diode emitting at 342 nm,” Nano Lett. 8(4), 1219–1223 (2008).
[Crossref]
[PubMed]
L. Liao, H. B. Lu, J. C. Li, H. He, D. F. Wang, D. J. Fu, C. Liu, and W. F. Zhang, “Size dependence of gas sensitivity of ZnO nanorods,” J. Phys. Chem. C 111(5), 1900–1903 (2007).
[Crossref]
A. Umar, B. K. Kim, J. J. Kim, and Y. B. Hahn, “Optical and electrical properties of ZnO nanowires grown on aluminium foil by non-catalytic thermal evaporation,” Nanotechnology 18(17), 175606 (2007).
[Crossref]
T. Voss, G. T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, and F. Marlow, “High-order waveguide modes in ZnO nanowires,” Nano Lett. 7(12), 3675–3680 (2007).
[Crossref]
[PubMed]
J. H. Lee, I. C. Leu, Y. W. Chung, and M. H. Hon, “Fabrication of ordered ZnO hierarchical structures controlled via surface charge in the electrophoretic deposition process,” Nanotechnology 17(17), 4445–4450 (2006).
[Crossref]
T. Y. Liu, H. C. Liao, C. C. Lin, S. H. Hu, and S. Y. Chen, “Biofunctional ZnO nanorod arrays grown on flexible substrates,” Langmuir 22(13), 5804–5809 (2006).
[Crossref]
[PubMed]
H. T. Wang, B. S. Kang, F. Ren, L. C. Tien, P. W. Sadik, D. P. Norton, S. J. Pearton, and J. Lin, “Hydrogen-selective sensing at room temperature with ZnO Nanorods,” Appl. Phys. Lett. 86(24), 243503 (2005).
[Crossref]
M. Wei, D. Zhi, and J. L. MacManus-Driscoll, “Self-catalysed growth of zinc oxide nanowires,” Nanotechnology 16(8), 1364–1368 (2005).
[Crossref]
S. H. Jo, D. Banerjee, and Z. F. Ren, “Field emission of zinc oxide nanowires grown on carbon cloth,” Appl. Phys. Lett. 85(8), 1407–1409 (2004).
[Crossref]
Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett. 84(18), 3654–3656 (2004).
[Crossref]
H. T. Ng, J. Han, T. Yamada, P. Nguyen, Y. P. Chen, and M. Meyyappan, “Single crystal nanowire vertical surround-gate field-effect transistor,” Nano Lett. 4(7), 1247–1252 (2004).
[Crossref]
L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
[Crossref]
[PubMed]
Z. Hu, G. Oskam, and P. C. Searson, “Influence of solvent on the growth of ZnO nanoparticles,” J. Colloid Interface Sci. 263(2), 454–460 (2003).
[Crossref]
[PubMed]
L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions,” Adv. Mater. (Deerfield Beach Fla.) 15(5), 464–466 (2003).
[Crossref]
J. J. Wu and S. C. Liu, “Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition,” Adv. Mater. (Deerfield Beach Fla.) 14(3), 215–218 (2002).
[Crossref]
M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic growth of zinc oxide nanowires by vapor transport,” Adv. Mater. (Deerfield Beach Fla.) 13(2), 113–116 (2001).
[Crossref]
Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, “Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach,” Appl. Phys. Lett. 78(4), 407–409 (2001).
[Crossref]
M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref]
[PubMed]
S. H. Jo, D. Banerjee, and Z. F. Ren, “Field emission of zinc oxide nanowires grown on carbon cloth,” Appl. Phys. Lett. 85(8), 1407–1409 (2004).
[Crossref]
T. Y. Liu, H. C. Liao, C. C. Lin, S. H. Hu, and S. Y. Chen, “Biofunctional ZnO nanorod arrays grown on flexible substrates,” Langmuir 22(13), 5804–5809 (2006).
[Crossref]
[PubMed]
Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett. 84(18), 3654–3656 (2004).
[Crossref]
H. T. Ng, J. Han, T. Yamada, P. Nguyen, Y. P. Chen, and M. Meyyappan, “Single crystal nanowire vertical surround-gate field-effect transistor,” Nano Lett. 4(7), 1247–1252 (2004).
[Crossref]
J. H. Lee, I. C. Leu, Y. W. Chung, and M. H. Hon, “Fabrication of ordered ZnO hierarchical structures controlled via surface charge in the electrophoretic deposition process,” Nanotechnology 17(17), 4445–4450 (2006).
[Crossref]
F. Fang, J. Futter, A. Markwitz, and J. Kennedy, “UV and humidity sensing properties of ZnO nanorods prepared by the arc discharge method,” Nanotechnology 20(24), 245502 (2009).
[Crossref]
[PubMed]
Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, “Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach,” Appl. Phys. Lett. 78(4), 407–409 (2001).
[Crossref]
M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic growth of zinc oxide nanowires by vapor transport,” Adv. Mater. (Deerfield Beach Fla.) 13(2), 113–116 (2001).
[Crossref]
M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref]
[PubMed]
Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, “Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach,” Appl. Phys. Lett. 78(4), 407–409 (2001).
[Crossref]
L. Liao, H. B. Lu, J. C. Li, H. He, D. F. Wang, D. J. Fu, C. Liu, and W. F. Zhang, “Size dependence of gas sensitivity of ZnO nanorods,” J. Phys. Chem. C 111(5), 1900–1903 (2007).
[Crossref]
F. Fang, J. Futter, A. Markwitz, and J. Kennedy, “UV and humidity sensing properties of ZnO nanorods prepared by the arc discharge method,” Nanotechnology 20(24), 245502 (2009).
[Crossref]
[PubMed]
A. Umar, B. K. Kim, J. J. Kim, and Y. B. Hahn, “Optical and electrical properties of ZnO nanowires grown on aluminium foil by non-catalytic thermal evaporation,” Nanotechnology 18(17), 175606 (2007).
[Crossref]
H. T. Ng, J. Han, T. Yamada, P. Nguyen, Y. P. Chen, and M. Meyyappan, “Single crystal nanowire vertical surround-gate field-effect transistor,” Nano Lett. 4(7), 1247–1252 (2004).
[Crossref]
L. Liao, H. B. Lu, J. C. Li, H. He, D. F. Wang, D. J. Fu, C. Liu, and W. F. Zhang, “Size dependence of gas sensitivity of ZnO nanorods,” J. Phys. Chem. C 111(5), 1900–1903 (2007).
[Crossref]
Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett. 84(18), 3654–3656 (2004).
[Crossref]
J. H. Lee, I. C. Leu, Y. W. Chung, and M. H. Hon, “Fabrication of ordered ZnO hierarchical structures controlled via surface charge in the electrophoretic deposition process,” Nanotechnology 17(17), 4445–4450 (2006).
[Crossref]
T. Y. Liu, H. C. Liao, C. C. Lin, S. H. Hu, and S. Y. Chen, “Biofunctional ZnO nanorod arrays grown on flexible substrates,” Langmuir 22(13), 5804–5809 (2006).
[Crossref]
[PubMed]
Z. Hu, G. Oskam, and P. C. Searson, “Influence of solvent on the growth of ZnO nanoparticles,” J. Colloid Interface Sci. 263(2), 454–460 (2003).
[Crossref]
[PubMed]
X. W. Sun, J. Z. Huang, J. X. Wang, and Z. Xu, “A ZnO nanorod inorganic/organic heterostructure light-emitting diode emitting at 342 nm,” Nano Lett. 8(4), 1219–1223 (2008).
[Crossref]
[PubMed]
M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref]
[PubMed]
M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic growth of zinc oxide nanowires by vapor transport,” Adv. Mater. (Deerfield Beach Fla.) 13(2), 113–116 (2001).
[Crossref]
S. H. Jo, D. Banerjee, and Z. F. Ren, “Field emission of zinc oxide nanowires grown on carbon cloth,” Appl. Phys. Lett. 85(8), 1407–1409 (2004).
[Crossref]
H. T. Wang, B. S. Kang, F. Ren, L. C. Tien, P. W. Sadik, D. P. Norton, S. J. Pearton, and J. Lin, “Hydrogen-selective sensing at room temperature with ZnO Nanorods,” Appl. Phys. Lett. 86(24), 243503 (2005).
[Crossref]
F. Fang, J. Futter, A. Markwitz, and J. Kennedy, “UV and humidity sensing properties of ZnO nanorods prepared by the arc discharge method,” Nanotechnology 20(24), 245502 (2009).
[Crossref]
[PubMed]
A. Umar, B. K. Kim, J. J. Kim, and Y. B. Hahn, “Optical and electrical properties of ZnO nanowires grown on aluminium foil by non-catalytic thermal evaporation,” Nanotechnology 18(17), 175606 (2007).
[Crossref]
A. Umar, B. K. Kim, J. J. Kim, and Y. B. Hahn, “Optical and electrical properties of ZnO nanowires grown on aluminium foil by non-catalytic thermal evaporation,” Nanotechnology 18(17), 175606 (2007).
[Crossref]
M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref]
[PubMed]
Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, “Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach,” Appl. Phys. Lett. 78(4), 407–409 (2001).
[Crossref]
T. Voss, G. T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, and F. Marlow, “High-order waveguide modes in ZnO nanowires,” Nano Lett. 7(12), 3675–3680 (2007).
[Crossref]
[PubMed]
J. H. Lee, I. C. Leu, Y. W. Chung, and M. H. Hon, “Fabrication of ordered ZnO hierarchical structures controlled via surface charge in the electrophoretic deposition process,” Nanotechnology 17(17), 4445–4450 (2006).
[Crossref]
J. H. Lee, I. C. Leu, Y. W. Chung, and M. H. Hon, “Fabrication of ordered ZnO hierarchical structures controlled via surface charge in the electrophoretic deposition process,” Nanotechnology 17(17), 4445–4450 (2006).
[Crossref]
L. Liao, H. B. Lu, J. C. Li, H. He, D. F. Wang, D. J. Fu, C. Liu, and W. F. Zhang, “Size dependence of gas sensitivity of ZnO nanorods,” J. Phys. Chem. C 111(5), 1900–1903 (2007).
[Crossref]
Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett. 84(18), 3654–3656 (2004).
[Crossref]
Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett. 84(18), 3654–3656 (2004).
[Crossref]
T. Y. Liu, H. C. Liao, C. C. Lin, S. H. Hu, and S. Y. Chen, “Biofunctional ZnO nanorod arrays grown on flexible substrates,” Langmuir 22(13), 5804–5809 (2006).
[Crossref]
[PubMed]
L. Liao, H. B. Lu, J. C. Li, H. He, D. F. Wang, D. J. Fu, C. Liu, and W. F. Zhang, “Size dependence of gas sensitivity of ZnO nanorods,” J. Phys. Chem. C 111(5), 1900–1903 (2007).
[Crossref]
T. Y. Liu, H. C. Liao, C. C. Lin, S. H. Hu, and S. Y. Chen, “Biofunctional ZnO nanorod arrays grown on flexible substrates,” Langmuir 22(13), 5804–5809 (2006).
[Crossref]
[PubMed]
Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett. 84(18), 3654–3656 (2004).
[Crossref]
H. T. Wang, B. S. Kang, F. Ren, L. C. Tien, P. W. Sadik, D. P. Norton, S. J. Pearton, and J. Lin, “Hydrogen-selective sensing at room temperature with ZnO Nanorods,” Appl. Phys. Lett. 86(24), 243503 (2005).
[Crossref]
L. Liao, H. B. Lu, J. C. Li, H. He, D. F. Wang, D. J. Fu, C. Liu, and W. F. Zhang, “Size dependence of gas sensitivity of ZnO nanorods,” J. Phys. Chem. C 111(5), 1900–1903 (2007).
[Crossref]
J. J. Wu and S. C. Liu, “Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition,” Adv. Mater. (Deerfield Beach Fla.) 14(3), 215–218 (2002).
[Crossref]
T. Y. Liu, H. C. Liao, C. C. Lin, S. H. Hu, and S. Y. Chen, “Biofunctional ZnO nanorod arrays grown on flexible substrates,” Langmuir 22(13), 5804–5809 (2006).
[Crossref]
[PubMed]
L. Liao, H. B. Lu, J. C. Li, H. He, D. F. Wang, D. J. Fu, C. Liu, and W. F. Zhang, “Size dependence of gas sensitivity of ZnO nanorods,” J. Phys. Chem. C 111(5), 1900–1903 (2007).
[Crossref]
M. Wei, D. Zhi, and J. L. MacManus-Driscoll, “Self-catalysed growth of zinc oxide nanowires,” Nanotechnology 16(8), 1364–1368 (2005).
[Crossref]
M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref]
[PubMed]
F. Fang, J. Futter, A. Markwitz, and J. Kennedy, “UV and humidity sensing properties of ZnO nanorods prepared by the arc discharge method,” Nanotechnology 20(24), 245502 (2009).
[Crossref]
[PubMed]
T. Voss, G. T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, and F. Marlow, “High-order waveguide modes in ZnO nanowires,” Nano Lett. 7(12), 3675–3680 (2007).
[Crossref]
[PubMed]
T. Voss, G. T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, and F. Marlow, “High-order waveguide modes in ZnO nanowires,” Nano Lett. 7(12), 3675–3680 (2007).
[Crossref]
[PubMed]
L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
[Crossref]
[PubMed]
H. T. Ng, J. Han, T. Yamada, P. Nguyen, Y. P. Chen, and M. Meyyappan, “Single crystal nanowire vertical surround-gate field-effect transistor,” Nano Lett. 4(7), 1247–1252 (2004).
[Crossref]
T. Voss, G. T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, and F. Marlow, “High-order waveguide modes in ZnO nanowires,” Nano Lett. 7(12), 3675–3680 (2007).
[Crossref]
[PubMed]
H. T. Ng, J. Han, T. Yamada, P. Nguyen, Y. P. Chen, and M. Meyyappan, “Single crystal nanowire vertical surround-gate field-effect transistor,” Nano Lett. 4(7), 1247–1252 (2004).
[Crossref]
H. T. Ng, J. Han, T. Yamada, P. Nguyen, Y. P. Chen, and M. Meyyappan, “Single crystal nanowire vertical surround-gate field-effect transistor,” Nano Lett. 4(7), 1247–1252 (2004).
[Crossref]
H. T. Wang, B. S. Kang, F. Ren, L. C. Tien, P. W. Sadik, D. P. Norton, S. J. Pearton, and J. Lin, “Hydrogen-selective sensing at room temperature with ZnO Nanorods,” Appl. Phys. Lett. 86(24), 243503 (2005).
[Crossref]
Z. Hu, G. Oskam, and P. C. Searson, “Influence of solvent on the growth of ZnO nanoparticles,” J. Colloid Interface Sci. 263(2), 454–460 (2003).
[Crossref]
[PubMed]
H. T. Wang, B. S. Kang, F. Ren, L. C. Tien, P. W. Sadik, D. P. Norton, S. J. Pearton, and J. Lin, “Hydrogen-selective sensing at room temperature with ZnO Nanorods,” Appl. Phys. Lett. 86(24), 243503 (2005).
[Crossref]
H. T. Wang, B. S. Kang, F. Ren, L. C. Tien, P. W. Sadik, D. P. Norton, S. J. Pearton, and J. Lin, “Hydrogen-selective sensing at room temperature with ZnO Nanorods,” Appl. Phys. Lett. 86(24), 243503 (2005).
[Crossref]
S. H. Jo, D. Banerjee, and Z. F. Ren, “Field emission of zinc oxide nanowires grown on carbon cloth,” Appl. Phys. Lett. 85(8), 1407–1409 (2004).
[Crossref]
T. Voss, G. T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, and F. Marlow, “High-order waveguide modes in ZnO nanowires,” Nano Lett. 7(12), 3675–3680 (2007).
[Crossref]
[PubMed]
M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref]
[PubMed]
H. T. Wang, B. S. Kang, F. Ren, L. C. Tien, P. W. Sadik, D. P. Norton, S. J. Pearton, and J. Lin, “Hydrogen-selective sensing at room temperature with ZnO Nanorods,” Appl. Phys. Lett. 86(24), 243503 (2005).
[Crossref]
Z. Hu, G. Oskam, and P. C. Searson, “Influence of solvent on the growth of ZnO nanoparticles,” J. Colloid Interface Sci. 263(2), 454–460 (2003).
[Crossref]
[PubMed]
X. W. Sun, J. Z. Huang, J. X. Wang, and Z. Xu, “A ZnO nanorod inorganic/organic heterostructure light-emitting diode emitting at 342 nm,” Nano Lett. 8(4), 1219–1223 (2008).
[Crossref]
[PubMed]
T. Voss, G. T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, and F. Marlow, “High-order waveguide modes in ZnO nanowires,” Nano Lett. 7(12), 3675–3680 (2007).
[Crossref]
[PubMed]
H. T. Wang, B. S. Kang, F. Ren, L. C. Tien, P. W. Sadik, D. P. Norton, S. J. Pearton, and J. Lin, “Hydrogen-selective sensing at room temperature with ZnO Nanorods,” Appl. Phys. Lett. 86(24), 243503 (2005).
[Crossref]
M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic growth of zinc oxide nanowires by vapor transport,” Adv. Mater. (Deerfield Beach Fla.) 13(2), 113–116 (2001).
[Crossref]
A. Umar, B. K. Kim, J. J. Kim, and Y. B. Hahn, “Optical and electrical properties of ZnO nanowires grown on aluminium foil by non-catalytic thermal evaporation,” Nanotechnology 18(17), 175606 (2007).
[Crossref]
L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions,” Adv. Mater. (Deerfield Beach Fla.) 15(5), 464–466 (2003).
[Crossref]
T. Voss, G. T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, and F. Marlow, “High-order waveguide modes in ZnO nanowires,” Nano Lett. 7(12), 3675–3680 (2007).
[Crossref]
[PubMed]
Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett. 84(18), 3654–3656 (2004).
[Crossref]
L. Liao, H. B. Lu, J. C. Li, H. He, D. F. Wang, D. J. Fu, C. Liu, and W. F. Zhang, “Size dependence of gas sensitivity of ZnO nanorods,” J. Phys. Chem. C 111(5), 1900–1903 (2007).
[Crossref]
H. T. Wang, B. S. Kang, F. Ren, L. C. Tien, P. W. Sadik, D. P. Norton, S. J. Pearton, and J. Lin, “Hydrogen-selective sensing at room temperature with ZnO Nanorods,” Appl. Phys. Lett. 86(24), 243503 (2005).
[Crossref]
X. W. Sun, J. Z. Huang, J. X. Wang, and Z. Xu, “A ZnO nanorod inorganic/organic heterostructure light-emitting diode emitting at 342 nm,” Nano Lett. 8(4), 1219–1223 (2008).
[Crossref]
[PubMed]
Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett. 84(18), 3654–3656 (2004).
[Crossref]
B. Weintraub, Y. Wei, and Z. L. Wang, “Optical fiber/nanowire hybrid structures for efficient three-dimensional dye-sensitized solar cells,” Angew. Chem. Int. Ed. Engl. 48(47), 8981–8985 (2009).
[Crossref]
[PubMed]
M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic growth of zinc oxide nanowires by vapor transport,” Adv. Mater. (Deerfield Beach Fla.) 13(2), 113–116 (2001).
[Crossref]
M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref]
[PubMed]
M. Wei, D. Zhi, and J. L. MacManus-Driscoll, “Self-catalysed growth of zinc oxide nanowires,” Nanotechnology 16(8), 1364–1368 (2005).
[Crossref]
B. Weintraub, Y. Wei, and Z. L. Wang, “Optical fiber/nanowire hybrid structures for efficient three-dimensional dye-sensitized solar cells,” Angew. Chem. Int. Ed. Engl. 48(47), 8981–8985 (2009).
[Crossref]
[PubMed]
B. Weintraub, Y. Wei, and Z. L. Wang, “Optical fiber/nanowire hybrid structures for efficient three-dimensional dye-sensitized solar cells,” Angew. Chem. Int. Ed. Engl. 48(47), 8981–8985 (2009).
[Crossref]
[PubMed]
J. J. Wu and S. C. Liu, “Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition,” Adv. Mater. (Deerfield Beach Fla.) 14(3), 215–218 (2002).
[Crossref]
M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref]
[PubMed]
M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic growth of zinc oxide nanowires by vapor transport,” Adv. Mater. (Deerfield Beach Fla.) 13(2), 113–116 (2001).
[Crossref]
X. W. Sun, J. Z. Huang, J. X. Wang, and Z. Xu, “A ZnO nanorod inorganic/organic heterostructure light-emitting diode emitting at 342 nm,” Nano Lett. 8(4), 1219–1223 (2008).
[Crossref]
[PubMed]
H. T. Ng, J. Han, T. Yamada, P. Nguyen, Y. P. Chen, and M. Meyyappan, “Single crystal nanowire vertical surround-gate field-effect transistor,” Nano Lett. 4(7), 1247–1252 (2004).
[Crossref]
M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref]
[PubMed]
M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref]
[PubMed]
M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic growth of zinc oxide nanowires by vapor transport,” Adv. Mater. (Deerfield Beach Fla.) 13(2), 113–116 (2001).
[Crossref]
Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, “Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach,” Appl. Phys. Lett. 78(4), 407–409 (2001).
[Crossref]
Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, “Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach,” Appl. Phys. Lett. 78(4), 407–409 (2001).
[Crossref]
L. Liao, H. B. Lu, J. C. Li, H. He, D. F. Wang, D. J. Fu, C. Liu, and W. F. Zhang, “Size dependence of gas sensitivity of ZnO nanorods,” J. Phys. Chem. C 111(5), 1900–1903 (2007).
[Crossref]
M. Wei, D. Zhi, and J. L. MacManus-Driscoll, “Self-catalysed growth of zinc oxide nanowires,” Nanotechnology 16(8), 1364–1368 (2005).
[Crossref]
M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic growth of zinc oxide nanowires by vapor transport,” Adv. Mater. (Deerfield Beach Fla.) 13(2), 113–116 (2001).
[Crossref]
J. J. Wu and S. C. Liu, “Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition,” Adv. Mater. (Deerfield Beach Fla.) 14(3), 215–218 (2002).
[Crossref]
L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions,” Adv. Mater. (Deerfield Beach Fla.) 15(5), 464–466 (2003).
[Crossref]
B. Weintraub, Y. Wei, and Z. L. Wang, “Optical fiber/nanowire hybrid structures for efficient three-dimensional dye-sensitized solar cells,” Angew. Chem. Int. Ed. Engl. 48(47), 8981–8985 (2009).
[Crossref]
[PubMed]
Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett. 84(18), 3654–3656 (2004).
[Crossref]
H. T. Wang, B. S. Kang, F. Ren, L. C. Tien, P. W. Sadik, D. P. Norton, S. J. Pearton, and J. Lin, “Hydrogen-selective sensing at room temperature with ZnO Nanorods,” Appl. Phys. Lett. 86(24), 243503 (2005).
[Crossref]
Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, “Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach,” Appl. Phys. Lett. 78(4), 407–409 (2001).
[Crossref]
S. H. Jo, D. Banerjee, and Z. F. Ren, “Field emission of zinc oxide nanowires grown on carbon cloth,” Appl. Phys. Lett. 85(8), 1407–1409 (2004).
[Crossref]
Z. Hu, G. Oskam, and P. C. Searson, “Influence of solvent on the growth of ZnO nanoparticles,” J. Colloid Interface Sci. 263(2), 454–460 (2003).
[Crossref]
[PubMed]
L. Liao, H. B. Lu, J. C. Li, H. He, D. F. Wang, D. J. Fu, C. Liu, and W. F. Zhang, “Size dependence of gas sensitivity of ZnO nanorods,” J. Phys. Chem. C 111(5), 1900–1903 (2007).
[Crossref]
T. Y. Liu, H. C. Liao, C. C. Lin, S. H. Hu, and S. Y. Chen, “Biofunctional ZnO nanorod arrays grown on flexible substrates,” Langmuir 22(13), 5804–5809 (2006).
[Crossref]
[PubMed]
T. Voss, G. T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, and F. Marlow, “High-order waveguide modes in ZnO nanowires,” Nano Lett. 7(12), 3675–3680 (2007).
[Crossref]
[PubMed]
H. T. Ng, J. Han, T. Yamada, P. Nguyen, Y. P. Chen, and M. Meyyappan, “Single crystal nanowire vertical surround-gate field-effect transistor,” Nano Lett. 4(7), 1247–1252 (2004).
[Crossref]
X. W. Sun, J. Z. Huang, J. X. Wang, and Z. Xu, “A ZnO nanorod inorganic/organic heterostructure light-emitting diode emitting at 342 nm,” Nano Lett. 8(4), 1219–1223 (2008).
[Crossref]
[PubMed]
F. Fang, J. Futter, A. Markwitz, and J. Kennedy, “UV and humidity sensing properties of ZnO nanorods prepared by the arc discharge method,” Nanotechnology 20(24), 245502 (2009).
[Crossref]
[PubMed]
A. Umar, B. K. Kim, J. J. Kim, and Y. B. Hahn, “Optical and electrical properties of ZnO nanowires grown on aluminium foil by non-catalytic thermal evaporation,” Nanotechnology 18(17), 175606 (2007).
[Crossref]
J. H. Lee, I. C. Leu, Y. W. Chung, and M. H. Hon, “Fabrication of ordered ZnO hierarchical structures controlled via surface charge in the electrophoretic deposition process,” Nanotechnology 17(17), 4445–4450 (2006).
[Crossref]
M. Wei, D. Zhi, and J. L. MacManus-Driscoll, “Self-catalysed growth of zinc oxide nanowires,” Nanotechnology 16(8), 1364–1368 (2005).
[Crossref]
L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
[Crossref]
[PubMed]
J. Yu, R. Feng, and W. She, “Low-power all-optical switch based on the bend effect of a nm fiber taper driven by outgoing light,” Opt. Express 17(6), 4640–4645 (2009).
[Crossref]
[PubMed]
M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[Crossref]
[PubMed]