Abstract

A terahertz microscope has been used to excite and observe the resonant modes of a single split ring resonator in the reactive and radiative near-field zones. The two lowest resonant modes of an isolated split ring resonator with their corresponding radiation patterns are reported; they showed good agreement to simulations. The passage from the reactive to radiative near-field zone is also discussed. Further, our result introduced a novel technique to perform terahertz time-domain spectroscopy of samples a few tens of micrometers in size by measuring the in-plane radiative near-field zone.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305(5685), 788–792 (2004).
    [CrossRef] [PubMed]
  2. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  3. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
    [CrossRef] [PubMed]
  4. J. B. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
    [CrossRef]
  5. J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic and electric excitations in split ring resonators,” Opt. Express15(26), 17881–17890 (2007).
    [CrossRef] [PubMed]
  6. R. R. A. Syms, E. Shamonina, V. Kalinin, and L. Solymar, “A theory of metamaterials based on periodically loaded transmission lines: Interaction between magnetoinductive and electromagnetic waves,” J. Appl. Phys.97(6), 064909 (2005).
    [CrossRef]
  7. V. G. Veselago, “Waves in metamaterials: their role in modern physics,” Phys.-Usp.54(11), 1161–1165 (2011).
    [CrossRef]
  8. M. L. Povinelli, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Toward photonic-crystal metamaterials: Creating magnetic emitters in photonic crystals,” Appl. Phys. Lett.82(7), 1069–1071 (2003).
    [CrossRef]
  9. D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B7(10), 2006–2015 (1990).
    [CrossRef]
  10. A. K. Azad, J. Dai, and W. Zhang, “Transmission properties of terahertz pulses through subwavelength double split-ring resonators,” Opt. Lett.31(5), 634–636 (2006).
    [CrossRef] [PubMed]
  11. H. Tao, W. J. Padilla, X. Zhang, and R. D. Averitt, “Recent progress in electromagnetic material devices for terahertz applications,” IEEE J. Sel. Top. Quantum Electron.17(1), 92–101 (2011).
    [CrossRef]
  12. A. J. L. Adam, “Review of near-field terahertz measurement methods and their applications,” J. Infrared Millimeter Waves32(8-9), 976–1019 (2011).
    [CrossRef]
  13. G. Acuna, S. F. Heucke, F. Kuchler, H.-T. Chen, A. J. Taylor, and R. Kersting, “Surface plasmons in terahertz metamaterials,” Opt. Express16(23), 18745–18751 (2008).
    [CrossRef] [PubMed]
  14. A. Bitzer, H. Merbold, A. Thoman, T. Feurer, H. Helm, and M. Walther, “Terahertz near-field imaging of electric and magnetic resonances of a planar metamaterial,” Opt. Express17(5), 3826–3834 (2009).
    [CrossRef] [PubMed]
  15. J. Wallauer, A. Bitzer, S. Waselikowski, and M. Walther, “Near-field signature of electromagnetic coupling in metamaterial arrays: a terahertz microscopy study,” Opt. Express19(18), 17283–17292 (2011).
    [CrossRef] [PubMed]
  16. H. Merbold, A. Bitzer, F. Enderli, and T. Feurer, “Spatiotemporal visualization of THz near-fields in metamaterial Arrays,” J. Infrared, Millimeter Terahertz Waves32(5), 570–579 (2011).
    [CrossRef]
  17. “IEEE standards definitions of terms for antennas,” IEEE Std 145–1993, 10.1109/IEEESTD.1993.119664 (1993).
    [CrossRef]
  18. S. Laybros, P. F. Combes, and H. J. Mametsa, “The “very-near-field” region of equiphase radiating apertures,” IEEE Ant. Prop. Mag.47(4), 50–66 (2005).
    [CrossRef]
  19. F. Blanchard, A. Doi, T. Tanaka, H. Hirori, H. Tanaka, Y. Kadoya, and K. Tanaka, “Real-time terahertz near-field microscope,” Opt. Express19(9), 8277–8284 (2011).
    [CrossRef] [PubMed]
  20. A. Doi, F. Blanchard, T. Tanaka, and K. Tanaka, “Improving spatial resolution of real-time terahertz near-field microscope,” J. Infrared, Millimeter, Terahertz Waves32(8-9), 1043–1051 (2011).
    [CrossRef]
  21. H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett.98(9), 091106 (2011).
    [CrossRef]
  22. E. D. Palik, Handbook of Optical constants of solids (Academic Press handbook series, 1985).
  23. M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics3(3), 152–156 (2009).
    [CrossRef]
  24. M. A. bin A. Wahab, A. H. Awang and R. S. S. A. Kadir, “An investigation of square split-ring resonator as antenna operating at terahertz frequency,” Asia-Pacific Conference on Appl. Elec. proceeding (2007).
  25. M. Skorobogatiy and J. Yand, Photonic Crystal Guiding (Cambridge University Press, 2009).
  26. C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, “On the reinterpretation of resonances in split-ring-resonators at normal incidence,” Opt. Express14(19), 8827–8836 (2006).
    [CrossRef] [PubMed]
  27. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge university press, 2006), chap. 8.

2011 (8)

H. Tao, W. J. Padilla, X. Zhang, and R. D. Averitt, “Recent progress in electromagnetic material devices for terahertz applications,” IEEE J. Sel. Top. Quantum Electron.17(1), 92–101 (2011).
[CrossRef]

A. J. L. Adam, “Review of near-field terahertz measurement methods and their applications,” J. Infrared Millimeter Waves32(8-9), 976–1019 (2011).
[CrossRef]

A. Doi, F. Blanchard, T. Tanaka, and K. Tanaka, “Improving spatial resolution of real-time terahertz near-field microscope,” J. Infrared, Millimeter, Terahertz Waves32(8-9), 1043–1051 (2011).
[CrossRef]

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett.98(9), 091106 (2011).
[CrossRef]

V. G. Veselago, “Waves in metamaterials: their role in modern physics,” Phys.-Usp.54(11), 1161–1165 (2011).
[CrossRef]

H. Merbold, A. Bitzer, F. Enderli, and T. Feurer, “Spatiotemporal visualization of THz near-fields in metamaterial Arrays,” J. Infrared, Millimeter Terahertz Waves32(5), 570–579 (2011).
[CrossRef]

F. Blanchard, A. Doi, T. Tanaka, H. Hirori, H. Tanaka, Y. Kadoya, and K. Tanaka, “Real-time terahertz near-field microscope,” Opt. Express19(9), 8277–8284 (2011).
[CrossRef] [PubMed]

J. Wallauer, A. Bitzer, S. Waselikowski, and M. Walther, “Near-field signature of electromagnetic coupling in metamaterial arrays: a terahertz microscopy study,” Opt. Express19(18), 17283–17292 (2011).
[CrossRef] [PubMed]

2009 (2)

A. Bitzer, H. Merbold, A. Thoman, T. Feurer, H. Helm, and M. Walther, “Terahertz near-field imaging of electric and magnetic resonances of a planar metamaterial,” Opt. Express17(5), 3826–3834 (2009).
[CrossRef] [PubMed]

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics3(3), 152–156 (2009).
[CrossRef]

2008 (1)

2007 (1)

2006 (3)

2005 (2)

R. R. A. Syms, E. Shamonina, V. Kalinin, and L. Solymar, “A theory of metamaterials based on periodically loaded transmission lines: Interaction between magnetoinductive and electromagnetic waves,” J. Appl. Phys.97(6), 064909 (2005).
[CrossRef]

S. Laybros, P. F. Combes, and H. J. Mametsa, “The “very-near-field” region of equiphase radiating apertures,” IEEE Ant. Prop. Mag.47(4), 50–66 (2005).
[CrossRef]

2004 (1)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305(5685), 788–792 (2004).
[CrossRef] [PubMed]

2003 (1)

M. L. Povinelli, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Toward photonic-crystal metamaterials: Creating magnetic emitters in photonic crystals,” Appl. Phys. Lett.82(7), 1069–1071 (2003).
[CrossRef]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

1999 (1)

J. B. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
[CrossRef]

1990 (1)

Acuna, G.

Adam, A. J. L.

A. J. L. Adam, “Review of near-field terahertz measurement methods and their applications,” J. Infrared Millimeter Waves32(8-9), 976–1019 (2011).
[CrossRef]

Averitt, R. D.

H. Tao, W. J. Padilla, X. Zhang, and R. D. Averitt, “Recent progress in electromagnetic material devices for terahertz applications,” IEEE J. Sel. Top. Quantum Electron.17(1), 92–101 (2011).
[CrossRef]

Azad, A. K.

Bitzer, A.

Blanchard, F.

F. Blanchard, A. Doi, T. Tanaka, H. Hirori, H. Tanaka, Y. Kadoya, and K. Tanaka, “Real-time terahertz near-field microscope,” Opt. Express19(9), 8277–8284 (2011).
[CrossRef] [PubMed]

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett.98(9), 091106 (2011).
[CrossRef]

A. Doi, F. Blanchard, T. Tanaka, and K. Tanaka, “Improving spatial resolution of real-time terahertz near-field microscope,” J. Infrared, Millimeter, Terahertz Waves32(8-9), 1043–1051 (2011).
[CrossRef]

Chen, H.-T.

Choi, S. S.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics3(3), 152–156 (2009).
[CrossRef]

Combes, P. F.

S. Laybros, P. F. Combes, and H. J. Mametsa, “The “very-near-field” region of equiphase radiating apertures,” IEEE Ant. Prop. Mag.47(4), 50–66 (2005).
[CrossRef]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Dai, J.

Doi, A.

A. Doi, F. Blanchard, T. Tanaka, and K. Tanaka, “Improving spatial resolution of real-time terahertz near-field microscope,” J. Infrared, Millimeter, Terahertz Waves32(8-9), 1043–1051 (2011).
[CrossRef]

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett.98(9), 091106 (2011).
[CrossRef]

F. Blanchard, A. Doi, T. Tanaka, H. Hirori, H. Tanaka, Y. Kadoya, and K. Tanaka, “Real-time terahertz near-field microscope,” Opt. Express19(9), 8277–8284 (2011).
[CrossRef] [PubMed]

Enderli, F.

H. Merbold, A. Bitzer, F. Enderli, and T. Feurer, “Spatiotemporal visualization of THz near-fields in metamaterial Arrays,” J. Infrared, Millimeter Terahertz Waves32(5), 570–579 (2011).
[CrossRef]

Etrich, C.

Fattinger, C.

Feurer, T.

H. Merbold, A. Bitzer, F. Enderli, and T. Feurer, “Spatiotemporal visualization of THz near-fields in metamaterial Arrays,” J. Infrared, Millimeter Terahertz Waves32(5), 570–579 (2011).
[CrossRef]

A. Bitzer, H. Merbold, A. Thoman, T. Feurer, H. Helm, and M. Walther, “Terahertz near-field imaging of electric and magnetic resonances of a planar metamaterial,” Opt. Express17(5), 3826–3834 (2009).
[CrossRef] [PubMed]

Giessen, H.

Grischkowsky, D.

Helm, H.

Heucke, S. F.

Hirori, H.

F. Blanchard, A. Doi, T. Tanaka, H. Hirori, H. Tanaka, Y. Kadoya, and K. Tanaka, “Real-time terahertz near-field microscope,” Opt. Express19(9), 8277–8284 (2011).
[CrossRef] [PubMed]

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett.98(9), 091106 (2011).
[CrossRef]

Holden, A.

J. B. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
[CrossRef]

Joannopoulos, J. D.

M. L. Povinelli, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Toward photonic-crystal metamaterials: Creating magnetic emitters in photonic crystals,” Appl. Phys. Lett.82(7), 1069–1071 (2003).
[CrossRef]

Johnson, S. G.

M. L. Povinelli, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Toward photonic-crystal metamaterials: Creating magnetic emitters in photonic crystals,” Appl. Phys. Lett.82(7), 1069–1071 (2003).
[CrossRef]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Kadoya, Y.

Kalinin, V.

R. R. A. Syms, E. Shamonina, V. Kalinin, and L. Solymar, “A theory of metamaterials based on periodically loaded transmission lines: Interaction between magnetoinductive and electromagnetic waves,” J. Appl. Phys.97(6), 064909 (2005).
[CrossRef]

Kang, J. H.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics3(3), 152–156 (2009).
[CrossRef]

Keiding, S.

Kersting, R.

Kim, D. S.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics3(3), 152–156 (2009).
[CrossRef]

Koo, S. M.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics3(3), 152–156 (2009).
[CrossRef]

Koschny, T.

Kuchler, F.

Kuhl, J.

Laybros, S.

S. Laybros, P. F. Combes, and H. J. Mametsa, “The “very-near-field” region of equiphase radiating apertures,” IEEE Ant. Prop. Mag.47(4), 50–66 (2005).
[CrossRef]

Lederer, F.

Mametsa, H. J.

S. Laybros, P. F. Combes, and H. J. Mametsa, “The “very-near-field” region of equiphase radiating apertures,” IEEE Ant. Prop. Mag.47(4), 50–66 (2005).
[CrossRef]

Merbold, H.

H. Merbold, A. Bitzer, F. Enderli, and T. Feurer, “Spatiotemporal visualization of THz near-fields in metamaterial Arrays,” J. Infrared, Millimeter Terahertz Waves32(5), 570–579 (2011).
[CrossRef]

A. Bitzer, H. Merbold, A. Thoman, T. Feurer, H. Helm, and M. Walther, “Terahertz near-field imaging of electric and magnetic resonances of a planar metamaterial,” Opt. Express17(5), 3826–3834 (2009).
[CrossRef] [PubMed]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Padilla, W. J.

H. Tao, W. J. Padilla, X. Zhang, and R. D. Averitt, “Recent progress in electromagnetic material devices for terahertz applications,” IEEE J. Sel. Top. Quantum Electron.17(1), 92–101 (2011).
[CrossRef]

Park, D. J.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics3(3), 152–156 (2009).
[CrossRef]

Park, G. S.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics3(3), 152–156 (2009).
[CrossRef]

Park, H. R.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics3(3), 152–156 (2009).
[CrossRef]

Park, N. K.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics3(3), 152–156 (2009).
[CrossRef]

Park, Q. H.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics3(3), 152–156 (2009).
[CrossRef]

Pendry, J. B.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305(5685), 788–792 (2004).
[CrossRef] [PubMed]

M. L. Povinelli, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Toward photonic-crystal metamaterials: Creating magnetic emitters in photonic crystals,” Appl. Phys. Lett.82(7), 1069–1071 (2003).
[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

J. B. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
[CrossRef]

Planken, P. C. M.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics3(3), 152–156 (2009).
[CrossRef]

Povinelli, M. L.

M. L. Povinelli, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Toward photonic-crystal metamaterials: Creating magnetic emitters in photonic crystals,” Appl. Phys. Lett.82(7), 1069–1071 (2003).
[CrossRef]

Robbins, D.

J. B. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
[CrossRef]

Rockstuhl, C.

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Seo, M. A.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics3(3), 152–156 (2009).
[CrossRef]

Shamonina, E.

R. R. A. Syms, E. Shamonina, V. Kalinin, and L. Solymar, “A theory of metamaterials based on periodically loaded transmission lines: Interaction between magnetoinductive and electromagnetic waves,” J. Appl. Phys.97(6), 064909 (2005).
[CrossRef]

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305(5685), 788–792 (2004).
[CrossRef] [PubMed]

Solymar, L.

R. R. A. Syms, E. Shamonina, V. Kalinin, and L. Solymar, “A theory of metamaterials based on periodically loaded transmission lines: Interaction between magnetoinductive and electromagnetic waves,” J. Appl. Phys.97(6), 064909 (2005).
[CrossRef]

Soukoulis, C. M.

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Stewart, W.

J. B. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
[CrossRef]

Suwal, O. K.

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics3(3), 152–156 (2009).
[CrossRef]

Syms, R. R. A.

R. R. A. Syms, E. Shamonina, V. Kalinin, and L. Solymar, “A theory of metamaterials based on periodically loaded transmission lines: Interaction between magnetoinductive and electromagnetic waves,” J. Appl. Phys.97(6), 064909 (2005).
[CrossRef]

Tanaka, H.

Tanaka, K.

F. Blanchard, A. Doi, T. Tanaka, H. Hirori, H. Tanaka, Y. Kadoya, and K. Tanaka, “Real-time terahertz near-field microscope,” Opt. Express19(9), 8277–8284 (2011).
[CrossRef] [PubMed]

A. Doi, F. Blanchard, T. Tanaka, and K. Tanaka, “Improving spatial resolution of real-time terahertz near-field microscope,” J. Infrared, Millimeter, Terahertz Waves32(8-9), 1043–1051 (2011).
[CrossRef]

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett.98(9), 091106 (2011).
[CrossRef]

Tanaka, T.

A. Doi, F. Blanchard, T. Tanaka, and K. Tanaka, “Improving spatial resolution of real-time terahertz near-field microscope,” J. Infrared, Millimeter, Terahertz Waves32(8-9), 1043–1051 (2011).
[CrossRef]

F. Blanchard, A. Doi, T. Tanaka, H. Hirori, H. Tanaka, Y. Kadoya, and K. Tanaka, “Real-time terahertz near-field microscope,” Opt. Express19(9), 8277–8284 (2011).
[CrossRef] [PubMed]

Tao, H.

H. Tao, W. J. Padilla, X. Zhang, and R. D. Averitt, “Recent progress in electromagnetic material devices for terahertz applications,” IEEE J. Sel. Top. Quantum Electron.17(1), 92–101 (2011).
[CrossRef]

Taylor, A. J.

Thoman, A.

van Exter, M.

Veselago, V. G.

V. G. Veselago, “Waves in metamaterials: their role in modern physics,” Phys.-Usp.54(11), 1161–1165 (2011).
[CrossRef]

Wallauer, J.

Walther, M.

Waselikowski, S.

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305(5685), 788–792 (2004).
[CrossRef] [PubMed]

Zentgraf, T.

Zhang, W.

Zhang, X.

H. Tao, W. J. Padilla, X. Zhang, and R. D. Averitt, “Recent progress in electromagnetic material devices for terahertz applications,” IEEE J. Sel. Top. Quantum Electron.17(1), 92–101 (2011).
[CrossRef]

Zhou, J.

Appl. Phys. Lett. (2)

M. L. Povinelli, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, “Toward photonic-crystal metamaterials: Creating magnetic emitters in photonic crystals,” Appl. Phys. Lett.82(7), 1069–1071 (2003).
[CrossRef]

H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Appl. Phys. Lett.98(9), 091106 (2011).
[CrossRef]

IEEE Ant. Prop. Mag. (1)

S. Laybros, P. F. Combes, and H. J. Mametsa, “The “very-near-field” region of equiphase radiating apertures,” IEEE Ant. Prop. Mag.47(4), 50–66 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Tao, W. J. Padilla, X. Zhang, and R. D. Averitt, “Recent progress in electromagnetic material devices for terahertz applications,” IEEE J. Sel. Top. Quantum Electron.17(1), 92–101 (2011).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

J. B. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999).
[CrossRef]

J. Appl. Phys. (1)

R. R. A. Syms, E. Shamonina, V. Kalinin, and L. Solymar, “A theory of metamaterials based on periodically loaded transmission lines: Interaction between magnetoinductive and electromagnetic waves,” J. Appl. Phys.97(6), 064909 (2005).
[CrossRef]

J. Infrared Millimeter Waves (1)

A. J. L. Adam, “Review of near-field terahertz measurement methods and their applications,” J. Infrared Millimeter Waves32(8-9), 976–1019 (2011).
[CrossRef]

J. Infrared, Millimeter Terahertz Waves (1)

H. Merbold, A. Bitzer, F. Enderli, and T. Feurer, “Spatiotemporal visualization of THz near-fields in metamaterial Arrays,” J. Infrared, Millimeter Terahertz Waves32(5), 570–579 (2011).
[CrossRef]

J. Infrared, Millimeter, Terahertz Waves (1)

A. Doi, F. Blanchard, T. Tanaka, and K. Tanaka, “Improving spatial resolution of real-time terahertz near-field microscope,” J. Infrared, Millimeter, Terahertz Waves32(8-9), 1043–1051 (2011).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, N. K. Park, Q. H. Park, and D. S. Kim, “Terahertz field enhancement by metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics3(3), 152–156 (2009).
[CrossRef]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Phys.-Usp. (1)

V. G. Veselago, “Waves in metamaterials: their role in modern physics,” Phys.-Usp.54(11), 1161–1165 (2011).
[CrossRef]

Science (2)

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305(5685), 788–792 (2004).
[CrossRef] [PubMed]

Other (5)

“IEEE standards definitions of terms for antennas,” IEEE Std 145–1993, 10.1109/IEEESTD.1993.119664 (1993).
[CrossRef]

M. A. bin A. Wahab, A. H. Awang and R. S. S. A. Kadir, “An investigation of square split-ring resonator as antenna operating at terahertz frequency,” Asia-Pacific Conference on Appl. Elec. proceeding (2007).

M. Skorobogatiy and J. Yand, Photonic Crystal Guiding (Cambridge University Press, 2009).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge university press, 2006), chap. 8.

E. D. Palik, Handbook of Optical constants of solids (Academic Press handbook series, 1985).

Supplementary Material (4)

» Media 1: AVI (3067 KB)     
» Media 2: AVI (7935 KB)     
» Media 3: AVI (638 KB)     
» Media 4: AVI (477 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Visible image of three squares (a) SRRs; the SRR dimensions are d = 4 μm, w = 9 μm, and l = 50 μm, 60 μm and 70 μm for SRRs (1), (2) and (3), respectively; (b) schematic of the excitation and detection of radiated THz waves.

Fig. 2
Fig. 2

(a) Sketch illustrating measurement positions of laterally radiated Ex fields; (b) to (f) series of snapshots obtained for sample (1); (g) to (i) series of snapshots simulated for sample (1). Experimental (Media 1) and simulated (Media 2) movies are available online. The image distortion observed in the experiment is attributed to birefringence of LN crystal [19].

Fig. 3
Fig. 3

Measured resonant fields at gap positions: (a) our samples with reference THz pulse excitation; (b) normalized Fourier transforms of THz pulses presented in (a); Figs. (c) and (d) are simulated data corresponding to (a) and (b).

Fig. 4
Fig. 4

Measured Fourier spectra of time-domain spectroscopy of the radiated field for Δy positions (a) and Δx positions (b) on the EO crystal. Simulated Fourier spectra of time-domain spectroscopy of the radiated field for Δy positions (c) and Δx positions (d) on the EO crystal.

Fig. 5
Fig. 5

Real part of measured Ex (a) and simulated Ex (b), Ey (c), and Ez (d) electric field distributions for first two resonant modes. The THz field excitation polarization was kept parallel to the gap for all data.

Fig. 6
Fig. 6

(a) Experimental and (b) simulated THz pulses laterally propagating in y direction when compared to the exciting THz pulse.

Fig. 7
Fig. 7

Magnitude of (a) measured (a) (Media 3) and (b) simulated (b) (Media 4) electric field distributions for two first two resonant modes for |Ex|;, simulated electric field distribution for (c) |Ey| (c) and (d) |Ez| field components (c).

Metrics