Abstract

Optical parametric amplification (OPA) of arbitrarily polarized light is proposed in a multi-section periodically poled Lithium Niobate (PPLN). External electric field is applied on selected sections to induce the polarization rotation of involved lights, thus the quasi-phase matched optical parametric processes exhibit polarization insensitivity under suitable voltage. In addition to the amplified signal wave, an idler wave with the same polarization is generated simultaneously. As an example, a ~10 times OPA showing polarization independency is simulated. Applications of this technology are also discussed.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” J. Quantum Electron. 28(11), 2631–2654 (1992).
    [CrossRef]
  2. Y. Q. Lu, Y. L. Lu, C. C. Xue, J. J. Zheng, X. F. Chen, G. P. Luo, N. B. Ming, B. H. Feng, and X. L. Zhang, “Femtosecond violet light generation by quasi-phase-matched frequency doubling in optical superlattice LiNbO3,” Appl. Phys. Lett. 69(21), 3155 (1996).
    [CrossRef]
  3. Y. Sheng, D. Ma, M. Ren, W. Chai, Z. Li, K. Koynov, and W. Krolikowski, “Broadband second harmonic generation in one-dimensional randomized nonlinear photonic crystal,” Appl. Phys. Lett. 99(3), 031108 (2011).
    [CrossRef]
  4. Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000).
    [CrossRef]
  5. X. Chen, J. Shi, Y. Chen, Y. Zhu, Y. Xia, and Y. Chen, “Electro-optic Solc-type wavelength filter in periodically poled lithium niobate,” Opt. Lett. 28(21), 2115–2117 (2003).
    [CrossRef] [PubMed]
  6. E. Rabia and A. Arie, “Duty cycle dependence of a periodically poled LiNbO3-based electro-optic Solc filter,” Appl. Opt. 45(3), 540–545 (2006).
    [CrossRef] [PubMed]
  7. Y. Q. Lu, Y. Y. Zhu, Y. F. Chen, S. N. Zhu, N. B. Ming, and Y. J. Feng, “Optical properties of an ionic-type phononic crystal,” Science 284(5421), 1822–1824 (1999).
    [CrossRef] [PubMed]
  8. Z. Y. Yu, F. Xu, F. Leng, X. S. Qian, X. F. Chen, and Y. Q. Lu, “Acousto-optic tunable second harmonic generation in periodically poled LiNbO3.,” Opt. Express 17(14), 11965–11971 (2009).
    [CrossRef] [PubMed]
  9. Q. Wang, F. Xu, Z. Y. Yu, X. S. Qian, X. K. Hu, Y. Q. Lu, and H. T. Wang, “A bidirectional tunable optical diode based on periodically poled LiNbO3.,” Opt. Express 18(7), 7340–7346 (2010).
    [CrossRef] [PubMed]
  10. Y. H. Chen, J. W. Chang, C. H. Lin, W. K. Chang, N. Hsu, Y. Y. Lai, Q. H. Tseng, R. Geiss, T. Pertsch, and S. S. Yang, “Spectral narrowing and manipulation in an optical parametric oscillator using periodically poled lithium niobate electro-optic polarization-mode converters,” Opt. Lett. 36(12), 2345–2347 (2011).
    [CrossRef] [PubMed]
  11. Yariv and P. Yeh, Optical Waves in Crystals (John Wiley and Sons, New York, 1984), Chap. 12.
  12. X. L. Wang, J. Ding, W. J. Ni, C. S. Guo, and H. T. Wang, “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett. 32(24), 3549–3551 (2007).
    [CrossRef] [PubMed]

2011

2010

2009

2007

2006

2003

2000

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000).
[CrossRef]

1999

Y. Q. Lu, Y. Y. Zhu, Y. F. Chen, S. N. Zhu, N. B. Ming, and Y. J. Feng, “Optical properties of an ionic-type phononic crystal,” Science 284(5421), 1822–1824 (1999).
[CrossRef] [PubMed]

1996

Y. Q. Lu, Y. L. Lu, C. C. Xue, J. J. Zheng, X. F. Chen, G. P. Luo, N. B. Ming, B. H. Feng, and X. L. Zhang, “Femtosecond violet light generation by quasi-phase-matched frequency doubling in optical superlattice LiNbO3,” Appl. Phys. Lett. 69(21), 3155 (1996).
[CrossRef]

1992

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

Arie, A.

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

Chai, W.

Y. Sheng, D. Ma, M. Ren, W. Chai, Z. Li, K. Koynov, and W. Krolikowski, “Broadband second harmonic generation in one-dimensional randomized nonlinear photonic crystal,” Appl. Phys. Lett. 99(3), 031108 (2011).
[CrossRef]

Chang, J. W.

Chang, W. K.

Chen, X.

Chen, X. F.

Z. Y. Yu, F. Xu, F. Leng, X. S. Qian, X. F. Chen, and Y. Q. Lu, “Acousto-optic tunable second harmonic generation in periodically poled LiNbO3.,” Opt. Express 17(14), 11965–11971 (2009).
[CrossRef] [PubMed]

Y. Q. Lu, Y. L. Lu, C. C. Xue, J. J. Zheng, X. F. Chen, G. P. Luo, N. B. Ming, B. H. Feng, and X. L. Zhang, “Femtosecond violet light generation by quasi-phase-matched frequency doubling in optical superlattice LiNbO3,” Appl. Phys. Lett. 69(21), 3155 (1996).
[CrossRef]

Chen, Y.

Chen, Y. F.

Y. Q. Lu, Y. Y. Zhu, Y. F. Chen, S. N. Zhu, N. B. Ming, and Y. J. Feng, “Optical properties of an ionic-type phononic crystal,” Science 284(5421), 1822–1824 (1999).
[CrossRef] [PubMed]

Chen, Y. H.

Ding, J.

Fejer, M. M.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

Feng, B. H.

Y. Q. Lu, Y. L. Lu, C. C. Xue, J. J. Zheng, X. F. Chen, G. P. Luo, N. B. Ming, B. H. Feng, and X. L. Zhang, “Femtosecond violet light generation by quasi-phase-matched frequency doubling in optical superlattice LiNbO3,” Appl. Phys. Lett. 69(21), 3155 (1996).
[CrossRef]

Feng, Y. J.

Y. Q. Lu, Y. Y. Zhu, Y. F. Chen, S. N. Zhu, N. B. Ming, and Y. J. Feng, “Optical properties of an ionic-type phononic crystal,” Science 284(5421), 1822–1824 (1999).
[CrossRef] [PubMed]

Geiss, R.

Guo, C. S.

Hsu, N.

Hu, X. K.

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

Koynov, K.

Y. Sheng, D. Ma, M. Ren, W. Chai, Z. Li, K. Koynov, and W. Krolikowski, “Broadband second harmonic generation in one-dimensional randomized nonlinear photonic crystal,” Appl. Phys. Lett. 99(3), 031108 (2011).
[CrossRef]

Krolikowski, W.

Y. Sheng, D. Ma, M. Ren, W. Chai, Z. Li, K. Koynov, and W. Krolikowski, “Broadband second harmonic generation in one-dimensional randomized nonlinear photonic crystal,” Appl. Phys. Lett. 99(3), 031108 (2011).
[CrossRef]

Lai, Y. Y.

Leng, F.

Li, Z.

Y. Sheng, D. Ma, M. Ren, W. Chai, Z. Li, K. Koynov, and W. Krolikowski, “Broadband second harmonic generation in one-dimensional randomized nonlinear photonic crystal,” Appl. Phys. Lett. 99(3), 031108 (2011).
[CrossRef]

Lin, C. H.

Lu, Y. L.

Y. Q. Lu, Y. L. Lu, C. C. Xue, J. J. Zheng, X. F. Chen, G. P. Luo, N. B. Ming, B. H. Feng, and X. L. Zhang, “Femtosecond violet light generation by quasi-phase-matched frequency doubling in optical superlattice LiNbO3,” Appl. Phys. Lett. 69(21), 3155 (1996).
[CrossRef]

Lu, Y. Q.

Q. Wang, F. Xu, Z. Y. Yu, X. S. Qian, X. K. Hu, Y. Q. Lu, and H. T. Wang, “A bidirectional tunable optical diode based on periodically poled LiNbO3.,” Opt. Express 18(7), 7340–7346 (2010).
[CrossRef] [PubMed]

Z. Y. Yu, F. Xu, F. Leng, X. S. Qian, X. F. Chen, and Y. Q. Lu, “Acousto-optic tunable second harmonic generation in periodically poled LiNbO3.,” Opt. Express 17(14), 11965–11971 (2009).
[CrossRef] [PubMed]

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000).
[CrossRef]

Y. Q. Lu, Y. Y. Zhu, Y. F. Chen, S. N. Zhu, N. B. Ming, and Y. J. Feng, “Optical properties of an ionic-type phononic crystal,” Science 284(5421), 1822–1824 (1999).
[CrossRef] [PubMed]

Y. Q. Lu, Y. L. Lu, C. C. Xue, J. J. Zheng, X. F. Chen, G. P. Luo, N. B. Ming, B. H. Feng, and X. L. Zhang, “Femtosecond violet light generation by quasi-phase-matched frequency doubling in optical superlattice LiNbO3,” Appl. Phys. Lett. 69(21), 3155 (1996).
[CrossRef]

Luo, G. P.

Y. Q. Lu, Y. L. Lu, C. C. Xue, J. J. Zheng, X. F. Chen, G. P. Luo, N. B. Ming, B. H. Feng, and X. L. Zhang, “Femtosecond violet light generation by quasi-phase-matched frequency doubling in optical superlattice LiNbO3,” Appl. Phys. Lett. 69(21), 3155 (1996).
[CrossRef]

Ma, D.

Y. Sheng, D. Ma, M. Ren, W. Chai, Z. Li, K. Koynov, and W. Krolikowski, “Broadband second harmonic generation in one-dimensional randomized nonlinear photonic crystal,” Appl. Phys. Lett. 99(3), 031108 (2011).
[CrossRef]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

Ming, N. B.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000).
[CrossRef]

Y. Q. Lu, Y. Y. Zhu, Y. F. Chen, S. N. Zhu, N. B. Ming, and Y. J. Feng, “Optical properties of an ionic-type phononic crystal,” Science 284(5421), 1822–1824 (1999).
[CrossRef] [PubMed]

Y. Q. Lu, Y. L. Lu, C. C. Xue, J. J. Zheng, X. F. Chen, G. P. Luo, N. B. Ming, B. H. Feng, and X. L. Zhang, “Femtosecond violet light generation by quasi-phase-matched frequency doubling in optical superlattice LiNbO3,” Appl. Phys. Lett. 69(21), 3155 (1996).
[CrossRef]

Ni, W. J.

Pertsch, T.

Qian, X. S.

Rabia, E.

Ren, M.

Y. Sheng, D. Ma, M. Ren, W. Chai, Z. Li, K. Koynov, and W. Krolikowski, “Broadband second harmonic generation in one-dimensional randomized nonlinear photonic crystal,” Appl. Phys. Lett. 99(3), 031108 (2011).
[CrossRef]

Sheng, Y.

Y. Sheng, D. Ma, M. Ren, W. Chai, Z. Li, K. Koynov, and W. Krolikowski, “Broadband second harmonic generation in one-dimensional randomized nonlinear photonic crystal,” Appl. Phys. Lett. 99(3), 031108 (2011).
[CrossRef]

Shi, J.

Tseng, Q. H.

Wan, Z. L.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000).
[CrossRef]

Wang, H. T.

Wang, Q.

Q. Wang, F. Xu, Z. Y. Yu, X. S. Qian, X. K. Hu, Y. Q. Lu, and H. T. Wang, “A bidirectional tunable optical diode based on periodically poled LiNbO3.,” Opt. Express 18(7), 7340–7346 (2010).
[CrossRef] [PubMed]

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000).
[CrossRef]

Wang, X. L.

Xi, Y. X.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000).
[CrossRef]

Xia, Y.

Xu, F.

Xue, C. C.

Y. Q. Lu, Y. L. Lu, C. C. Xue, J. J. Zheng, X. F. Chen, G. P. Luo, N. B. Ming, B. H. Feng, and X. L. Zhang, “Femtosecond violet light generation by quasi-phase-matched frequency doubling in optical superlattice LiNbO3,” Appl. Phys. Lett. 69(21), 3155 (1996).
[CrossRef]

Yang, S. S.

Yu, Z. Y.

Zhang, X. L.

Y. Q. Lu, Y. L. Lu, C. C. Xue, J. J. Zheng, X. F. Chen, G. P. Luo, N. B. Ming, B. H. Feng, and X. L. Zhang, “Femtosecond violet light generation by quasi-phase-matched frequency doubling in optical superlattice LiNbO3,” Appl. Phys. Lett. 69(21), 3155 (1996).
[CrossRef]

Zheng, J. J.

Y. Q. Lu, Y. L. Lu, C. C. Xue, J. J. Zheng, X. F. Chen, G. P. Luo, N. B. Ming, B. H. Feng, and X. L. Zhang, “Femtosecond violet light generation by quasi-phase-matched frequency doubling in optical superlattice LiNbO3,” Appl. Phys. Lett. 69(21), 3155 (1996).
[CrossRef]

Zhu, S. N.

Y. Q. Lu, Y. Y. Zhu, Y. F. Chen, S. N. Zhu, N. B. Ming, and Y. J. Feng, “Optical properties of an ionic-type phononic crystal,” Science 284(5421), 1822–1824 (1999).
[CrossRef] [PubMed]

Zhu, Y.

Zhu, Y. Y.

Y. Q. Lu, Y. Y. Zhu, Y. F. Chen, S. N. Zhu, N. B. Ming, and Y. J. Feng, “Optical properties of an ionic-type phononic crystal,” Science 284(5421), 1822–1824 (1999).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

Y. Q. Lu, Y. L. Lu, C. C. Xue, J. J. Zheng, X. F. Chen, G. P. Luo, N. B. Ming, B. H. Feng, and X. L. Zhang, “Femtosecond violet light generation by quasi-phase-matched frequency doubling in optical superlattice LiNbO3,” Appl. Phys. Lett. 69(21), 3155 (1996).
[CrossRef]

Y. Sheng, D. Ma, M. Ren, W. Chai, Z. Li, K. Koynov, and W. Krolikowski, “Broadband second harmonic generation in one-dimensional randomized nonlinear photonic crystal,” Appl. Phys. Lett. 99(3), 031108 (2011).
[CrossRef]

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Ming, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77(23), 3719–3721 (2000).
[CrossRef]

J. Quantum Electron.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” J. Quantum Electron. 28(11), 2631–2654 (1992).
[CrossRef]

Opt. Express

Opt. Lett.

Science

Y. Q. Lu, Y. Y. Zhu, Y. F. Chen, S. N. Zhu, N. B. Ming, and Y. J. Feng, “Optical properties of an ionic-type phononic crystal,” Science 284(5421), 1822–1824 (1999).
[CrossRef] [PubMed]

Other

Yariv and P. Yeh, Optical Waves in Crystals (John Wiley and Sons, New York, 1984), Chap. 12.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of a four-section PPLN. External electric fields are applied along the y-axis at the second and the third sections, representing EO1 and EO2 in the figure.

Fig. 2
Fig. 2

The light intensity at different positions inside the four-section PPLN when the signal wave is y-polarized (a) or z-polarized (b). Solid, dotted, dash-dotted and dashed curves represent y-polarized signal wave, z-polarized signal wave, y-polarized idler wave and z-polarized idler wave, respectively.

Fig. 3
Fig. 3

The amplification factor at arbitrary polarization states. About 0.2% fluctuation is observed.

Fig. 4
Fig. 4

(a) The PPLN OPA’s amplification factor at different signal wave intensities. (b) Polarization induced amplification fluctuation as a function of the signal wave intensity.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

{ d E sy dx =i ω s n sy c ε 23 (s) (x) E sz e iΔ k 1 x , d E sz dx =i ω s n sz c [ ε 23 (s) (x) E sy e iΔ k 1 x + d 33 (x) E pz E iz * e iΔ k 2 x ], d E iy dx =i ω i n iy c ε 23 (i) (x) E iz e iΔ k 3 x , d E iz dx =i ω i n iz c [ ε 23 (i) (x) E iy e iΔ k 3 x + d 33 (x) E sz * E pz e iΔ k 2 x ], d E pz dx =i ω p n pz c d 33 (x) E sz E iz e iΔ k 2 x ,
{ d A sy dx =i K 1 A sz e iΔ k 1 x , d A sz dx =i K 1 * A sy e iΔ k 1 x i K 2 A pz A iz * e iΔ k 2 x , d A iy dx =i K 3 A iz e iΔ k 3 x , d A iz dx =i K 3 * A iye e iΔ k 3 x i K 2 * A sz * A pz e iΔ k 2 x , d A pz dx =i K 2 A sz A iz e iΔ k 2 x ,

Metrics