Abstract

A waveband-splitting method is proposed for open-loop liquid crystal adaptive optics systems (LC AOSs). The proposed method extends the working waveband, splits energy flexibly, and improves detection capability. Simulated analysis is performed for a waveband in the range of 350 nm to 950 nm. The results show that the optimal energy split is 7:3 for the wavefront sensor (WFS) and for the imaging camera with the waveband split into 350 nm to 700 nm and 700 nm to 950 nm, respectively. A validation experiment is conducted by measuring the signal-to-noise ratio (SNR) of the WFS and the imaging camera. The results indicate that for the waveband-splitting method, the SNR of WFS is approximately equal to that of the imaging camera with a variation in the intensity. On the other hand, the SNR of the WFS is significantly different from that of the imaging camera for the polarized beam splitter energy splitting scheme. Therefore, the waveband-splitting method is more suitable for an open-loop LC AOS. An adaptive correction experiment is also performed on a 1.2-meter telescope. A star with a visual magnitude of 4.45 is observed and corrected and an angular resolution ability of 0.31″ is achieved. A double star with a combined visual magnitude of 4.3 is observed as well, and its two components are resolved after correction. The results indicate that the proposed method can significantly improve the detection capability of an open-loop LC AOS.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Restaino, D. Dayton, S. Browne, J. Gonglewski, J. Baker, S. Rogers, S. McDermott, J. Gallegos, and M. Shilko, “On the use of dual frequency nematic material for adaptive optics systems: first results of a closed-loop experiment,” Opt. Express 6(1), 2–6 (2000).
    [Crossref] [PubMed]
  2. G. D. Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt. 36(7), 1517–1520 (1997).
    [Crossref] [PubMed]
  3. Z. Cao, Q. Mu, L. Hu, D. Li, Y. Liu, L. Jin, and L. Xuan, “Correction of horizontal turbulence with nematic liquid crystal wavefront corrector,” Opt. Express 16(10), 7006–7013 (2008).
    [Crossref] [PubMed]
  4. D. Gu, B. Winker, B. Wen, D. Taber, A. Brackley, A. Wirth, M. Albanese, and F. Landers, “Wavefront control with a spatial light modulator containing dual frequency liquid crystal,” Proc. SPIE 5553, 68–82 (2004).
    [Crossref]
  5. D. C. Burns, I. Underwood, J. Gourlay, A. O’Hara, and D. G. Vass, “A 256×256 SRAM-XOR pixel ferroelectric liquid crystal over silicon spatial light modulator,” Opt. Commun. 119(5-6), 623–632 (1995).
    [Crossref]
  6. J. E. Stockley, G. D. Sharp, S. A. Serati, and K. M. Johnson, “Analog optical phase modulator based on chiral smectic and polymer cholesteric liquid crystals,” Opt. Lett. 20(23), 2441–2443 (1995).
    [Crossref] [PubMed]
  7. Q. Mu, Z. Cao, L. Hu, Y. Liu, Z. Peng, and L. Xuan, “Novel spectral range expansion method for liquid crystal adaptive optics,” Opt. Express 18(21), 21687–21696 (2010).
    [Crossref] [PubMed]
  8. G. D. Love, “Liquid-crystal phase modulator for unpolarized light,” Appl. Opt. 32(13), 2222–2223 (1993).
    [Crossref] [PubMed]
  9. G. D. Love, S. R. Restaino, R. C. Carreras, G. C. Loos, R. V. Morrison, T. Baur, and G. Kopp, “Polarization insensitive 127-segment liquid crystal wavefront corrector,” OSA summer topical meeting on adaptive optics., 288–290 (1996).
  10. Q. Mu, Z. Cao, D. Li, L. Hu, and L. Xuan, “Open-loop correction of horizontal turbulence: system design and result,” Appl. Opt. 47(23), 4297–4301 (2008).
    [Crossref] [PubMed]
  11. S. M. Ammons, L. Johnson, E. A. Laag, R. Kupke, and D. T. Gavel, “Laboratory demonstrations of multi-object adaptive optics in the visible on a 10-meter telescope,” Proc. SPIE 7015, 70150C, 70150C-10 (2008).
    [Crossref]
  12. F. Assémat, E. Gendron, and F. Hammer, “The FALCON concept: multi-object adaptive optics and atmospheric tomography for integral field spectroscopy – principles and performance on an 8-m telescope,” Mon. Not. R. Astron. Soc. 376(1), 287–312 (2007).
    [Crossref]
  13. M. Hart, “Recent advances in astronomical adaptive optics,” Appl. Opt. 49(16), D17–D29 (2010).
    [Crossref] [PubMed]
  14. C. Blain, R. Conan, C. Bradley, O. Guyon, D. Gamroth, and R. Nash, “Real-time open-loop control of a 1024 actuator MEMS deformable mirror,” Proc. SPIE 7736, 77364L, 77364L-10 (2010).
    [Crossref]
  15. C. R. Vogel and Q. Yang, “Modeling, simulation, and open-loop control of a continuous facesheet MEMS deformable mirror,” J. Opt. Soc. Am. A 23(5), 1074–1081 (2006).
    [Crossref] [PubMed]
  16. Q. Mu, Z. Cao, L. Hu, Y. Liu, Z. Peng, L. Yao, and L. Xuan, “Open loop adaptive optics testbed on 2.16 meter telescope with liquid crystal corrector,” Opt. Commun. 285(6), 896–899 (2012).
    [Crossref]
  17. Z. Cao, Q. Mu, L. Hu, Y. Liu, and L. Xuan, “improve the loop frequency of liquid crystal adaptive optics by concurrent control technique,” Opt. Commun. 283(6), 946–950 (2010).
    [Crossref]
  18. C. Li, M. Xia, Q. Mu, B. Jiang, L. Xuan, and Z. Cao, “High-precision open-loop adaptive optics system based on LC-SLM,” Opt. Express 17(13), 10774–10781 (2009).
    [Crossref] [PubMed]
  19. C. Liu, L. Hu, Q. Mu, Z. Cao, and L. Xuan, “Open-loop control of liquid-crystal spatial light modulators for vertical atmospheric turbulence wavefront correction,” Appl. Opt. 50(1), 82–89 (2011).
    [Crossref] [PubMed]
  20. F. Roddier, Adaptive Optics in Astronomy (Cambridge University Press, 1999) 13–15.
  21. C. Rao, W. Jiang, Y. Zhang, N. Ling, X. Zhang, H. Xian, K. Wei, Z. Liao, L. Zhou, C. Guan, M. Li, D. Chen, A. Zhang, W. Ma, and X. Gao, “Progress on the 127-element adaptive optical system for 1.8m telescope,” Proc. SPIE 7015, 70155Y-1–70159Y-9 (2010).
  22. Z. Cao, Q. Mu, L. Hu, Y. Liu, Z. Peng, and L. Xuan, “Reflective liquid crystal wavefront corrector used with tilt incidence,” Appl. Opt. 47(11), 1785–1789 (2008).
    [Crossref] [PubMed]
  23. D. W. Tyler and A. E. Prochko, “Adaptive optics design for the advanced electro-optical system (AEOS),” Final Report 32 (1994).

2012 (1)

Q. Mu, Z. Cao, L. Hu, Y. Liu, Z. Peng, L. Yao, and L. Xuan, “Open loop adaptive optics testbed on 2.16 meter telescope with liquid crystal corrector,” Opt. Commun. 285(6), 896–899 (2012).
[Crossref]

2011 (1)

2010 (5)

Z. Cao, Q. Mu, L. Hu, Y. Liu, and L. Xuan, “improve the loop frequency of liquid crystal adaptive optics by concurrent control technique,” Opt. Commun. 283(6), 946–950 (2010).
[Crossref]

C. Rao, W. Jiang, Y. Zhang, N. Ling, X. Zhang, H. Xian, K. Wei, Z. Liao, L. Zhou, C. Guan, M. Li, D. Chen, A. Zhang, W. Ma, and X. Gao, “Progress on the 127-element adaptive optical system for 1.8m telescope,” Proc. SPIE 7015, 70155Y-1–70159Y-9 (2010).

C. Blain, R. Conan, C. Bradley, O. Guyon, D. Gamroth, and R. Nash, “Real-time open-loop control of a 1024 actuator MEMS deformable mirror,” Proc. SPIE 7736, 77364L, 77364L-10 (2010).
[Crossref]

M. Hart, “Recent advances in astronomical adaptive optics,” Appl. Opt. 49(16), D17–D29 (2010).
[Crossref] [PubMed]

Q. Mu, Z. Cao, L. Hu, Y. Liu, Z. Peng, and L. Xuan, “Novel spectral range expansion method for liquid crystal adaptive optics,” Opt. Express 18(21), 21687–21696 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (4)

2007 (1)

F. Assémat, E. Gendron, and F. Hammer, “The FALCON concept: multi-object adaptive optics and atmospheric tomography for integral field spectroscopy – principles and performance on an 8-m telescope,” Mon. Not. R. Astron. Soc. 376(1), 287–312 (2007).
[Crossref]

2006 (1)

2004 (1)

D. Gu, B. Winker, B. Wen, D. Taber, A. Brackley, A. Wirth, M. Albanese, and F. Landers, “Wavefront control with a spatial light modulator containing dual frequency liquid crystal,” Proc. SPIE 5553, 68–82 (2004).
[Crossref]

2000 (1)

1997 (1)

1995 (2)

D. C. Burns, I. Underwood, J. Gourlay, A. O’Hara, and D. G. Vass, “A 256×256 SRAM-XOR pixel ferroelectric liquid crystal over silicon spatial light modulator,” Opt. Commun. 119(5-6), 623–632 (1995).
[Crossref]

J. E. Stockley, G. D. Sharp, S. A. Serati, and K. M. Johnson, “Analog optical phase modulator based on chiral smectic and polymer cholesteric liquid crystals,” Opt. Lett. 20(23), 2441–2443 (1995).
[Crossref] [PubMed]

1993 (1)

Albanese, M.

D. Gu, B. Winker, B. Wen, D. Taber, A. Brackley, A. Wirth, M. Albanese, and F. Landers, “Wavefront control with a spatial light modulator containing dual frequency liquid crystal,” Proc. SPIE 5553, 68–82 (2004).
[Crossref]

Ammons, S. M.

S. M. Ammons, L. Johnson, E. A. Laag, R. Kupke, and D. T. Gavel, “Laboratory demonstrations of multi-object adaptive optics in the visible on a 10-meter telescope,” Proc. SPIE 7015, 70150C, 70150C-10 (2008).
[Crossref]

Assémat, F.

F. Assémat, E. Gendron, and F. Hammer, “The FALCON concept: multi-object adaptive optics and atmospheric tomography for integral field spectroscopy – principles and performance on an 8-m telescope,” Mon. Not. R. Astron. Soc. 376(1), 287–312 (2007).
[Crossref]

Baker, J.

Blain, C.

C. Blain, R. Conan, C. Bradley, O. Guyon, D. Gamroth, and R. Nash, “Real-time open-loop control of a 1024 actuator MEMS deformable mirror,” Proc. SPIE 7736, 77364L, 77364L-10 (2010).
[Crossref]

Brackley, A.

D. Gu, B. Winker, B. Wen, D. Taber, A. Brackley, A. Wirth, M. Albanese, and F. Landers, “Wavefront control with a spatial light modulator containing dual frequency liquid crystal,” Proc. SPIE 5553, 68–82 (2004).
[Crossref]

Bradley, C.

C. Blain, R. Conan, C. Bradley, O. Guyon, D. Gamroth, and R. Nash, “Real-time open-loop control of a 1024 actuator MEMS deformable mirror,” Proc. SPIE 7736, 77364L, 77364L-10 (2010).
[Crossref]

Browne, S.

Burns, D. C.

D. C. Burns, I. Underwood, J. Gourlay, A. O’Hara, and D. G. Vass, “A 256×256 SRAM-XOR pixel ferroelectric liquid crystal over silicon spatial light modulator,” Opt. Commun. 119(5-6), 623–632 (1995).
[Crossref]

Cao, Z.

Q. Mu, Z. Cao, L. Hu, Y. Liu, Z. Peng, L. Yao, and L. Xuan, “Open loop adaptive optics testbed on 2.16 meter telescope with liquid crystal corrector,” Opt. Commun. 285(6), 896–899 (2012).
[Crossref]

C. Liu, L. Hu, Q. Mu, Z. Cao, and L. Xuan, “Open-loop control of liquid-crystal spatial light modulators for vertical atmospheric turbulence wavefront correction,” Appl. Opt. 50(1), 82–89 (2011).
[Crossref] [PubMed]

Q. Mu, Z. Cao, L. Hu, Y. Liu, Z. Peng, and L. Xuan, “Novel spectral range expansion method for liquid crystal adaptive optics,” Opt. Express 18(21), 21687–21696 (2010).
[Crossref] [PubMed]

Z. Cao, Q. Mu, L. Hu, Y. Liu, and L. Xuan, “improve the loop frequency of liquid crystal adaptive optics by concurrent control technique,” Opt. Commun. 283(6), 946–950 (2010).
[Crossref]

C. Li, M. Xia, Q. Mu, B. Jiang, L. Xuan, and Z. Cao, “High-precision open-loop adaptive optics system based on LC-SLM,” Opt. Express 17(13), 10774–10781 (2009).
[Crossref] [PubMed]

Z. Cao, Q. Mu, L. Hu, Y. Liu, Z. Peng, and L. Xuan, “Reflective liquid crystal wavefront corrector used with tilt incidence,” Appl. Opt. 47(11), 1785–1789 (2008).
[Crossref] [PubMed]

Z. Cao, Q. Mu, L. Hu, D. Li, Y. Liu, L. Jin, and L. Xuan, “Correction of horizontal turbulence with nematic liquid crystal wavefront corrector,” Opt. Express 16(10), 7006–7013 (2008).
[Crossref] [PubMed]

Q. Mu, Z. Cao, D. Li, L. Hu, and L. Xuan, “Open-loop correction of horizontal turbulence: system design and result,” Appl. Opt. 47(23), 4297–4301 (2008).
[Crossref] [PubMed]

Chen, D.

C. Rao, W. Jiang, Y. Zhang, N. Ling, X. Zhang, H. Xian, K. Wei, Z. Liao, L. Zhou, C. Guan, M. Li, D. Chen, A. Zhang, W. Ma, and X. Gao, “Progress on the 127-element adaptive optical system for 1.8m telescope,” Proc. SPIE 7015, 70155Y-1–70159Y-9 (2010).

Conan, R.

C. Blain, R. Conan, C. Bradley, O. Guyon, D. Gamroth, and R. Nash, “Real-time open-loop control of a 1024 actuator MEMS deformable mirror,” Proc. SPIE 7736, 77364L, 77364L-10 (2010).
[Crossref]

Dayton, D.

Gallegos, J.

Gamroth, D.

C. Blain, R. Conan, C. Bradley, O. Guyon, D. Gamroth, and R. Nash, “Real-time open-loop control of a 1024 actuator MEMS deformable mirror,” Proc. SPIE 7736, 77364L, 77364L-10 (2010).
[Crossref]

Gao, X.

C. Rao, W. Jiang, Y. Zhang, N. Ling, X. Zhang, H. Xian, K. Wei, Z. Liao, L. Zhou, C. Guan, M. Li, D. Chen, A. Zhang, W. Ma, and X. Gao, “Progress on the 127-element adaptive optical system for 1.8m telescope,” Proc. SPIE 7015, 70155Y-1–70159Y-9 (2010).

Gavel, D. T.

S. M. Ammons, L. Johnson, E. A. Laag, R. Kupke, and D. T. Gavel, “Laboratory demonstrations of multi-object adaptive optics in the visible on a 10-meter telescope,” Proc. SPIE 7015, 70150C, 70150C-10 (2008).
[Crossref]

Gendron, E.

F. Assémat, E. Gendron, and F. Hammer, “The FALCON concept: multi-object adaptive optics and atmospheric tomography for integral field spectroscopy – principles and performance on an 8-m telescope,” Mon. Not. R. Astron. Soc. 376(1), 287–312 (2007).
[Crossref]

Gonglewski, J.

Gourlay, J.

D. C. Burns, I. Underwood, J. Gourlay, A. O’Hara, and D. G. Vass, “A 256×256 SRAM-XOR pixel ferroelectric liquid crystal over silicon spatial light modulator,” Opt. Commun. 119(5-6), 623–632 (1995).
[Crossref]

Gu, D.

D. Gu, B. Winker, B. Wen, D. Taber, A. Brackley, A. Wirth, M. Albanese, and F. Landers, “Wavefront control with a spatial light modulator containing dual frequency liquid crystal,” Proc. SPIE 5553, 68–82 (2004).
[Crossref]

Guan, C.

C. Rao, W. Jiang, Y. Zhang, N. Ling, X. Zhang, H. Xian, K. Wei, Z. Liao, L. Zhou, C. Guan, M. Li, D. Chen, A. Zhang, W. Ma, and X. Gao, “Progress on the 127-element adaptive optical system for 1.8m telescope,” Proc. SPIE 7015, 70155Y-1–70159Y-9 (2010).

Guyon, O.

C. Blain, R. Conan, C. Bradley, O. Guyon, D. Gamroth, and R. Nash, “Real-time open-loop control of a 1024 actuator MEMS deformable mirror,” Proc. SPIE 7736, 77364L, 77364L-10 (2010).
[Crossref]

Hammer, F.

F. Assémat, E. Gendron, and F. Hammer, “The FALCON concept: multi-object adaptive optics and atmospheric tomography for integral field spectroscopy – principles and performance on an 8-m telescope,” Mon. Not. R. Astron. Soc. 376(1), 287–312 (2007).
[Crossref]

Hart, M.

Hu, L.

Jiang, B.

Jiang, W.

C. Rao, W. Jiang, Y. Zhang, N. Ling, X. Zhang, H. Xian, K. Wei, Z. Liao, L. Zhou, C. Guan, M. Li, D. Chen, A. Zhang, W. Ma, and X. Gao, “Progress on the 127-element adaptive optical system for 1.8m telescope,” Proc. SPIE 7015, 70155Y-1–70159Y-9 (2010).

Jin, L.

Johnson, K. M.

Johnson, L.

S. M. Ammons, L. Johnson, E. A. Laag, R. Kupke, and D. T. Gavel, “Laboratory demonstrations of multi-object adaptive optics in the visible on a 10-meter telescope,” Proc. SPIE 7015, 70150C, 70150C-10 (2008).
[Crossref]

Kupke, R.

S. M. Ammons, L. Johnson, E. A. Laag, R. Kupke, and D. T. Gavel, “Laboratory demonstrations of multi-object adaptive optics in the visible on a 10-meter telescope,” Proc. SPIE 7015, 70150C, 70150C-10 (2008).
[Crossref]

Laag, E. A.

S. M. Ammons, L. Johnson, E. A. Laag, R. Kupke, and D. T. Gavel, “Laboratory demonstrations of multi-object adaptive optics in the visible on a 10-meter telescope,” Proc. SPIE 7015, 70150C, 70150C-10 (2008).
[Crossref]

Landers, F.

D. Gu, B. Winker, B. Wen, D. Taber, A. Brackley, A. Wirth, M. Albanese, and F. Landers, “Wavefront control with a spatial light modulator containing dual frequency liquid crystal,” Proc. SPIE 5553, 68–82 (2004).
[Crossref]

Li, C.

Li, D.

Li, M.

C. Rao, W. Jiang, Y. Zhang, N. Ling, X. Zhang, H. Xian, K. Wei, Z. Liao, L. Zhou, C. Guan, M. Li, D. Chen, A. Zhang, W. Ma, and X. Gao, “Progress on the 127-element adaptive optical system for 1.8m telescope,” Proc. SPIE 7015, 70155Y-1–70159Y-9 (2010).

Liao, Z.

C. Rao, W. Jiang, Y. Zhang, N. Ling, X. Zhang, H. Xian, K. Wei, Z. Liao, L. Zhou, C. Guan, M. Li, D. Chen, A. Zhang, W. Ma, and X. Gao, “Progress on the 127-element adaptive optical system for 1.8m telescope,” Proc. SPIE 7015, 70155Y-1–70159Y-9 (2010).

Ling, N.

C. Rao, W. Jiang, Y. Zhang, N. Ling, X. Zhang, H. Xian, K. Wei, Z. Liao, L. Zhou, C. Guan, M. Li, D. Chen, A. Zhang, W. Ma, and X. Gao, “Progress on the 127-element adaptive optical system for 1.8m telescope,” Proc. SPIE 7015, 70155Y-1–70159Y-9 (2010).

Liu, C.

Liu, Y.

Love, G. D.

Ma, W.

C. Rao, W. Jiang, Y. Zhang, N. Ling, X. Zhang, H. Xian, K. Wei, Z. Liao, L. Zhou, C. Guan, M. Li, D. Chen, A. Zhang, W. Ma, and X. Gao, “Progress on the 127-element adaptive optical system for 1.8m telescope,” Proc. SPIE 7015, 70155Y-1–70159Y-9 (2010).

McDermott, S.

Mu, Q.

Q. Mu, Z. Cao, L. Hu, Y. Liu, Z. Peng, L. Yao, and L. Xuan, “Open loop adaptive optics testbed on 2.16 meter telescope with liquid crystal corrector,” Opt. Commun. 285(6), 896–899 (2012).
[Crossref]

C. Liu, L. Hu, Q. Mu, Z. Cao, and L. Xuan, “Open-loop control of liquid-crystal spatial light modulators for vertical atmospheric turbulence wavefront correction,” Appl. Opt. 50(1), 82–89 (2011).
[Crossref] [PubMed]

Q. Mu, Z. Cao, L. Hu, Y. Liu, Z. Peng, and L. Xuan, “Novel spectral range expansion method for liquid crystal adaptive optics,” Opt. Express 18(21), 21687–21696 (2010).
[Crossref] [PubMed]

Z. Cao, Q. Mu, L. Hu, Y. Liu, and L. Xuan, “improve the loop frequency of liquid crystal adaptive optics by concurrent control technique,” Opt. Commun. 283(6), 946–950 (2010).
[Crossref]

C. Li, M. Xia, Q. Mu, B. Jiang, L. Xuan, and Z. Cao, “High-precision open-loop adaptive optics system based on LC-SLM,” Opt. Express 17(13), 10774–10781 (2009).
[Crossref] [PubMed]

Q. Mu, Z. Cao, D. Li, L. Hu, and L. Xuan, “Open-loop correction of horizontal turbulence: system design and result,” Appl. Opt. 47(23), 4297–4301 (2008).
[Crossref] [PubMed]

Z. Cao, Q. Mu, L. Hu, Y. Liu, Z. Peng, and L. Xuan, “Reflective liquid crystal wavefront corrector used with tilt incidence,” Appl. Opt. 47(11), 1785–1789 (2008).
[Crossref] [PubMed]

Z. Cao, Q. Mu, L. Hu, D. Li, Y. Liu, L. Jin, and L. Xuan, “Correction of horizontal turbulence with nematic liquid crystal wavefront corrector,” Opt. Express 16(10), 7006–7013 (2008).
[Crossref] [PubMed]

Nash, R.

C. Blain, R. Conan, C. Bradley, O. Guyon, D. Gamroth, and R. Nash, “Real-time open-loop control of a 1024 actuator MEMS deformable mirror,” Proc. SPIE 7736, 77364L, 77364L-10 (2010).
[Crossref]

O’Hara, A.

D. C. Burns, I. Underwood, J. Gourlay, A. O’Hara, and D. G. Vass, “A 256×256 SRAM-XOR pixel ferroelectric liquid crystal over silicon spatial light modulator,” Opt. Commun. 119(5-6), 623–632 (1995).
[Crossref]

Peng, Z.

Rao, C.

C. Rao, W. Jiang, Y. Zhang, N. Ling, X. Zhang, H. Xian, K. Wei, Z. Liao, L. Zhou, C. Guan, M. Li, D. Chen, A. Zhang, W. Ma, and X. Gao, “Progress on the 127-element adaptive optical system for 1.8m telescope,” Proc. SPIE 7015, 70155Y-1–70159Y-9 (2010).

Restaino, S.

Rogers, S.

Serati, S. A.

Sharp, G. D.

Shilko, M.

Stockley, J. E.

Taber, D.

D. Gu, B. Winker, B. Wen, D. Taber, A. Brackley, A. Wirth, M. Albanese, and F. Landers, “Wavefront control with a spatial light modulator containing dual frequency liquid crystal,” Proc. SPIE 5553, 68–82 (2004).
[Crossref]

Underwood, I.

D. C. Burns, I. Underwood, J. Gourlay, A. O’Hara, and D. G. Vass, “A 256×256 SRAM-XOR pixel ferroelectric liquid crystal over silicon spatial light modulator,” Opt. Commun. 119(5-6), 623–632 (1995).
[Crossref]

Vass, D. G.

D. C. Burns, I. Underwood, J. Gourlay, A. O’Hara, and D. G. Vass, “A 256×256 SRAM-XOR pixel ferroelectric liquid crystal over silicon spatial light modulator,” Opt. Commun. 119(5-6), 623–632 (1995).
[Crossref]

Vogel, C. R.

Wei, K.

C. Rao, W. Jiang, Y. Zhang, N. Ling, X. Zhang, H. Xian, K. Wei, Z. Liao, L. Zhou, C. Guan, M. Li, D. Chen, A. Zhang, W. Ma, and X. Gao, “Progress on the 127-element adaptive optical system for 1.8m telescope,” Proc. SPIE 7015, 70155Y-1–70159Y-9 (2010).

Wen, B.

D. Gu, B. Winker, B. Wen, D. Taber, A. Brackley, A. Wirth, M. Albanese, and F. Landers, “Wavefront control with a spatial light modulator containing dual frequency liquid crystal,” Proc. SPIE 5553, 68–82 (2004).
[Crossref]

Winker, B.

D. Gu, B. Winker, B. Wen, D. Taber, A. Brackley, A. Wirth, M. Albanese, and F. Landers, “Wavefront control with a spatial light modulator containing dual frequency liquid crystal,” Proc. SPIE 5553, 68–82 (2004).
[Crossref]

Wirth, A.

D. Gu, B. Winker, B. Wen, D. Taber, A. Brackley, A. Wirth, M. Albanese, and F. Landers, “Wavefront control with a spatial light modulator containing dual frequency liquid crystal,” Proc. SPIE 5553, 68–82 (2004).
[Crossref]

Xia, M.

Xian, H.

C. Rao, W. Jiang, Y. Zhang, N. Ling, X. Zhang, H. Xian, K. Wei, Z. Liao, L. Zhou, C. Guan, M. Li, D. Chen, A. Zhang, W. Ma, and X. Gao, “Progress on the 127-element adaptive optical system for 1.8m telescope,” Proc. SPIE 7015, 70155Y-1–70159Y-9 (2010).

Xuan, L.

Q. Mu, Z. Cao, L. Hu, Y. Liu, Z. Peng, L. Yao, and L. Xuan, “Open loop adaptive optics testbed on 2.16 meter telescope with liquid crystal corrector,” Opt. Commun. 285(6), 896–899 (2012).
[Crossref]

C. Liu, L. Hu, Q. Mu, Z. Cao, and L. Xuan, “Open-loop control of liquid-crystal spatial light modulators for vertical atmospheric turbulence wavefront correction,” Appl. Opt. 50(1), 82–89 (2011).
[Crossref] [PubMed]

Q. Mu, Z. Cao, L. Hu, Y. Liu, Z. Peng, and L. Xuan, “Novel spectral range expansion method for liquid crystal adaptive optics,” Opt. Express 18(21), 21687–21696 (2010).
[Crossref] [PubMed]

Z. Cao, Q. Mu, L. Hu, Y. Liu, and L. Xuan, “improve the loop frequency of liquid crystal adaptive optics by concurrent control technique,” Opt. Commun. 283(6), 946–950 (2010).
[Crossref]

C. Li, M. Xia, Q. Mu, B. Jiang, L. Xuan, and Z. Cao, “High-precision open-loop adaptive optics system based on LC-SLM,” Opt. Express 17(13), 10774–10781 (2009).
[Crossref] [PubMed]

Q. Mu, Z. Cao, D. Li, L. Hu, and L. Xuan, “Open-loop correction of horizontal turbulence: system design and result,” Appl. Opt. 47(23), 4297–4301 (2008).
[Crossref] [PubMed]

Z. Cao, Q. Mu, L. Hu, Y. Liu, Z. Peng, and L. Xuan, “Reflective liquid crystal wavefront corrector used with tilt incidence,” Appl. Opt. 47(11), 1785–1789 (2008).
[Crossref] [PubMed]

Z. Cao, Q. Mu, L. Hu, D. Li, Y. Liu, L. Jin, and L. Xuan, “Correction of horizontal turbulence with nematic liquid crystal wavefront corrector,” Opt. Express 16(10), 7006–7013 (2008).
[Crossref] [PubMed]

Yang, Q.

Yao, L.

Q. Mu, Z. Cao, L. Hu, Y. Liu, Z. Peng, L. Yao, and L. Xuan, “Open loop adaptive optics testbed on 2.16 meter telescope with liquid crystal corrector,” Opt. Commun. 285(6), 896–899 (2012).
[Crossref]

Zhang, A.

C. Rao, W. Jiang, Y. Zhang, N. Ling, X. Zhang, H. Xian, K. Wei, Z. Liao, L. Zhou, C. Guan, M. Li, D. Chen, A. Zhang, W. Ma, and X. Gao, “Progress on the 127-element adaptive optical system for 1.8m telescope,” Proc. SPIE 7015, 70155Y-1–70159Y-9 (2010).

Zhang, X.

C. Rao, W. Jiang, Y. Zhang, N. Ling, X. Zhang, H. Xian, K. Wei, Z. Liao, L. Zhou, C. Guan, M. Li, D. Chen, A. Zhang, W. Ma, and X. Gao, “Progress on the 127-element adaptive optical system for 1.8m telescope,” Proc. SPIE 7015, 70155Y-1–70159Y-9 (2010).

Zhang, Y.

C. Rao, W. Jiang, Y. Zhang, N. Ling, X. Zhang, H. Xian, K. Wei, Z. Liao, L. Zhou, C. Guan, M. Li, D. Chen, A. Zhang, W. Ma, and X. Gao, “Progress on the 127-element adaptive optical system for 1.8m telescope,” Proc. SPIE 7015, 70155Y-1–70159Y-9 (2010).

Zhou, L.

C. Rao, W. Jiang, Y. Zhang, N. Ling, X. Zhang, H. Xian, K. Wei, Z. Liao, L. Zhou, C. Guan, M. Li, D. Chen, A. Zhang, W. Ma, and X. Gao, “Progress on the 127-element adaptive optical system for 1.8m telescope,” Proc. SPIE 7015, 70155Y-1–70159Y-9 (2010).

Appl. Opt. (6)

J. Opt. Soc. Am. A (1)

Mon. Not. R. Astron. Soc. (1)

F. Assémat, E. Gendron, and F. Hammer, “The FALCON concept: multi-object adaptive optics and atmospheric tomography for integral field spectroscopy – principles and performance on an 8-m telescope,” Mon. Not. R. Astron. Soc. 376(1), 287–312 (2007).
[Crossref]

Opt. Commun. (3)

Q. Mu, Z. Cao, L. Hu, Y. Liu, Z. Peng, L. Yao, and L. Xuan, “Open loop adaptive optics testbed on 2.16 meter telescope with liquid crystal corrector,” Opt. Commun. 285(6), 896–899 (2012).
[Crossref]

Z. Cao, Q. Mu, L. Hu, Y. Liu, and L. Xuan, “improve the loop frequency of liquid crystal adaptive optics by concurrent control technique,” Opt. Commun. 283(6), 946–950 (2010).
[Crossref]

D. C. Burns, I. Underwood, J. Gourlay, A. O’Hara, and D. G. Vass, “A 256×256 SRAM-XOR pixel ferroelectric liquid crystal over silicon spatial light modulator,” Opt. Commun. 119(5-6), 623–632 (1995).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Proc. SPIE (4)

C. Rao, W. Jiang, Y. Zhang, N. Ling, X. Zhang, H. Xian, K. Wei, Z. Liao, L. Zhou, C. Guan, M. Li, D. Chen, A. Zhang, W. Ma, and X. Gao, “Progress on the 127-element adaptive optical system for 1.8m telescope,” Proc. SPIE 7015, 70155Y-1–70159Y-9 (2010).

D. Gu, B. Winker, B. Wen, D. Taber, A. Brackley, A. Wirth, M. Albanese, and F. Landers, “Wavefront control with a spatial light modulator containing dual frequency liquid crystal,” Proc. SPIE 5553, 68–82 (2004).
[Crossref]

S. M. Ammons, L. Johnson, E. A. Laag, R. Kupke, and D. T. Gavel, “Laboratory demonstrations of multi-object adaptive optics in the visible on a 10-meter telescope,” Proc. SPIE 7015, 70150C, 70150C-10 (2008).
[Crossref]

C. Blain, R. Conan, C. Bradley, O. Guyon, D. Gamroth, and R. Nash, “Real-time open-loop control of a 1024 actuator MEMS deformable mirror,” Proc. SPIE 7736, 77364L, 77364L-10 (2010).
[Crossref]

Other (3)

F. Roddier, Adaptive Optics in Astronomy (Cambridge University Press, 1999) 13–15.

G. D. Love, S. R. Restaino, R. C. Carreras, G. C. Loos, R. V. Morrison, T. Baur, and G. Kopp, “Polarization insensitive 127-segment liquid crystal wavefront corrector,” OSA summer topical meeting on adaptive optics., 288–290 (1996).

D. W. Tyler and A. E. Prochko, “Adaptive optics design for the advanced electro-optical system (AEOS),” Final Report 32 (1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

RWFS as a function of the exposure time of the imaging camera with TWFS = 1 ms.

Fig. 2
Fig. 2

Optical layout for open-loop LC AOS with waveband-splitting method.

Fig. 3
Fig. 3

Quantum efficiency curve of an EM CCD camera.

Fig. 4
Fig. 4

Monochromatic radiant exitance as a function of wavelength for the sun.

Fig. 5
Fig. 5

Received radiant energy of an EM CCD camera as a function of wavelength.

Fig. 6
Fig. 6

Energy-occupying ratio of the S–H WFS as a function of waveband-splitting point.

Fig. 7
Fig. 7

Optical layout for measuring the SNR. L1 to L3 are lenses.

Fig. 8
Fig. 8

SNR as a function of the normalized intensity for the PBS method, ■ represents the measured data of WFS, ● is the measured data of imaging camera, and the lines are the linear fitting curves.

Fig. 9
Fig. 9

SNR as a function of the normalized intensity for the waveband-splitting method, ■ represents the measured data of WFS, ● is the measured data of imaging camera, and the lines are the linear fitting curves.

Fig. 10
Fig. 10

Images of the star SAO 9366: (a) before correction; (b) after correction.

Fig. 11
Fig. 11

Normalized intensity as a function of the pixel number: ●, before correction; ■, after correction.

Fig. 12
Fig. 12

Images of the double star Diadem: (a) before correction; (b) after correction.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

L= 1.22λ r 0 f,
E CCD = E/2 π L 2 μ 2 .
E CCD = E 8π ( r 0 D ) 2 .
E WFS = E/2 ( D/ r 0 ) 2 π a 2 a 2 = E 2π ( r 0 D ) 2 .
R WFS E WFS t WFS = R CCD E CCD t CCD ,
R WFS = t CCD 4 t WFS + t CCD .
E rec = E rad ×QE,
E whole = w min w max E rec (w)dw,
E WFS = w min w split E rec (w)dw,
R WFS = E split E whole = w min w split E rec (w)dw w min w max E rec (w)dw .
σ temp 2 = ( f G f 3dB ) 5 3 ,
σ= σ WFS 2 + σ WFC 2 + σ temp 2 ,
θ=1.22 λ D S ,

Metrics