Abstract

We demonstrate the operation of a compact and efficient continuous wave (CW) self-Raman laser utilizing a Nd:YVO4 gain crystal and BaWO4 Raman crystal, generating yellow emission at 590 nm. We investigate the competition that occurs between Stokes lines in the Nd:YVO4 and BaWO4 crystals, and within the BaWO4 crystal itself. Through careful consideration of crystal length and orientation, we are able to suppress competition between Stokes lines, and generate pure yellow emission at 590 nm with output power of 194 mW for just 3.8 W pump power.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008).
    [CrossRef]
  2. P. Dekker, H. M. Pask, D. J. Spence, and J. A. Piper, “Continuous-wave, intracavity doubled, self-Raman laser operation in Nd:GdVO4 at 586.5 nm,” Opt. Express 15(11), 7038–7046 (2007).
    [CrossRef] [PubMed]
  3. J. Xia, Y. F. Lu, X. H. Zhang, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, Z. M. Zhao, and Y. Tan, “All-solid-state CW Nd:KGd(WO4)2 self-Raman laser at 561 nm by intracavity sum-frequency mixing of fundamental and first-Stokes wavelengths,” Laser Phys. Lett. 8(1), 21–23 (2011).
    [CrossRef]
  4. Y. Lü, X. Zhang, S. Li, J. Xia, W. Cheng, and Z. Xiong, “All-solid-state cw sodium D2 resonance radiation based on intracavity frequency-doubled self-Raman laser operation in double-end diffusion-bonded Nd3+:LuVO4 crystal,” Opt. Lett. 35(17), 2964–2966 (2010).
    [CrossRef] [PubMed]
  5. Y. F. Lu, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, and Z. M. Zhao, “Efficient CW laser at 559 nm by intracavity sum-frequency mixing in a self-Raman Nd:YVO4 laser under direct 880 nm diode laser pumping,” Laser Phys. Lett. 7(11), 787–789 (2010).
    [CrossRef]
  6. A. J. Lee, D. J. Spence, J. A. Piper, and H. M. Pask, “A wavelength-versatile, continuous-wave, self-Raman solid-state laser operating in the visible,” Opt. Express 18(19), 20013–20018 (2010).
    [CrossRef] [PubMed]
  7. A. J. Lee, H. M. Pask, D. J. Spence, and J. A. Piper, “Efficient 5.3 W cw laser at 559 nm by intracavity frequency summation of fundamental and first-Stokes wavelengths in a self-Raman Nd:GdVO4 laser,” Opt. Lett. 35(5), 682–684 (2010).
    [CrossRef] [PubMed]
  8. A. J. Lee, H. M. Pask, J. A. Piper, H. Zhang, and J. Wang, “An intracavity, frequency-doubled BaWO4 Raman laser generating multi-watt continuous-wave, yellow emission,” Opt. Express 18(6), 5984–5992 (2010).
    [CrossRef] [PubMed]
  9. H. Yu, Z. Li, A. J. Lee, J. Li, H. Zhang, J. Wang, H. M. Pask, J. A. Piper, and M. Jiang, “A continuous wave SrMoO4 Raman laser,” Opt. Lett. 36(4), 579–581 (2011).
    [CrossRef] [PubMed]
  10. J. Jakutis-Neto, J. Lin, N. U. Wetter, and H. Pask, “Continuous-wave Watt-level Nd:YLF/KGW Raman laser operating at near-IR, yellow and lime-green wavelengths,” Opt. Express 20(9), 9841–9850 (2012).
    [CrossRef] [PubMed]
  11. X. Li, A. J. Lee, H. M. Pask, J. A. Piper, and Y. Huo, “Efficient, miniature, cw yellow source based on an intracavity frequency-doubled Nd:YVO₄ self-Raman laser,” Opt. Lett. 36(8), 1428–1430 (2011).
    [CrossRef] [PubMed]
  12. X. Li, H. M. Pask, A. J. Lee, Y. Huo, J. A. Piper, and D. J. Spence, “Miniature wavelength-selectable Raman laser: new insights for optimizing performance,” Opt. Express 19(25), 25623–25631 (2011).
    [CrossRef] [PubMed]
  13. W. Ge, H. Zhang, J. Wang, J. Liu, H. Li, X. Cheng, H. Xu, X. Xu, X. Hu, and M. Jiang, “The thermal and optical properties of BaWO4 single crystal,” J. Cryst. Growth 276(1-2), 208–214 (2005).
    [CrossRef]
  14. D. J. Spence, X. Li, A. J. Lee, and H. M. Pask, “Modeling of wavelength-selectable visible Raman lasers,” Opt. Commun. 285(18), 3849–3854 (2012), doi:.
    [CrossRef]
  15. J. Lin and H. Pask, “Nd:GdVO4 self-Raman laser using double-end polarised pumping at 880nm for high power infrared and visible output,” in press, DOI , Appl. Phys. B (2012).
    [CrossRef]
  16. J. Lin, H. M. Pask, D. J. Spence, C. J. Hamilton, and G. P. A. Malcolm, “Continuous-wave VECSEL Raman laser with tunable lime-yellow-orange output,” Opt. Express 20(5), 5219–5224 (2012).
    [CrossRef] [PubMed]
  17. L. S. Meng, K. S. Repasky, P. A. Roos, and J. L. Carlsten, “Widely tunable continuous-wave Raman laser in diatomic hydrogen pumped by an external-cavity diode laser,” Opt. Lett. 25(7), 472–474 (2000).
    [CrossRef] [PubMed]
  18. L. Fan, Y. X. Fan, Y. Q. Li, H. Zhang, Q. Wang, J. Wang, and H. T. Wang, “High-efficiency continuous-wave Raman conversion with a BaWO4 Raman crystal,” Opt. Lett. 34(11), 1687–1689 (2009).
    [CrossRef] [PubMed]
  19. V. N. Burakevich, V. A. Lisinetskii, A. S. Grabtchikov, A. A. Demidovich, V. A. Orlovich, and V. N. Matrosov, “Diode-pumped continuous-wave Nd:YVO4 laser with self-frequency Raman conversion,” Appl. Phys. B 86(3), 511–514 (2007).
    [CrossRef]
  20. V. A. Lisinetskii, A. S. Grabtchikov, A. A. Demidovich, V. N. Burakevich, V. A. Orlovich, and A. N. Titov, “Nd:KGW/KGW crystal: efficient medium for continuous-wave intracavity Raman generation,” Appl. Phys. B 88(4), 499–501 (2007).
    [CrossRef]
  21. Y. Sato and T. Taira, “Spectroscopic Properties of Neodymium-Doped Yttrium Orthovanadate Single Crystals with High-Resolution Measurement,” Jpn. J. Appl. Phys. 41(Part 1, No. 10), 5999–6002 (2002).
    [CrossRef]
  22. A. V. Smith, “SNLO nonlinear optics code,” AS-Photonics, Albuquerque, NM, http://www.as-photonics.com/SNLO.html
  23. D. J. Spence, P. Dekker, and H. M. Pask, “Modeling of continuous wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 756–763 (2007).
    [CrossRef]
  24. A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3) –materials for Raman lasers,” Opt. Commun. 194(1-3), 201–206 (2001).
    [CrossRef]

2012 (4)

D. J. Spence, X. Li, A. J. Lee, and H. M. Pask, “Modeling of wavelength-selectable visible Raman lasers,” Opt. Commun. 285(18), 3849–3854 (2012), doi:.
[CrossRef]

J. Lin and H. Pask, “Nd:GdVO4 self-Raman laser using double-end polarised pumping at 880nm for high power infrared and visible output,” in press, DOI , Appl. Phys. B (2012).
[CrossRef]

J. Lin, H. M. Pask, D. J. Spence, C. J. Hamilton, and G. P. A. Malcolm, “Continuous-wave VECSEL Raman laser with tunable lime-yellow-orange output,” Opt. Express 20(5), 5219–5224 (2012).
[CrossRef] [PubMed]

J. Jakutis-Neto, J. Lin, N. U. Wetter, and H. Pask, “Continuous-wave Watt-level Nd:YLF/KGW Raman laser operating at near-IR, yellow and lime-green wavelengths,” Opt. Express 20(9), 9841–9850 (2012).
[CrossRef] [PubMed]

2011 (4)

2010 (5)

2009 (1)

2008 (1)

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008).
[CrossRef]

2007 (4)

P. Dekker, H. M. Pask, D. J. Spence, and J. A. Piper, “Continuous-wave, intracavity doubled, self-Raman laser operation in Nd:GdVO4 at 586.5 nm,” Opt. Express 15(11), 7038–7046 (2007).
[CrossRef] [PubMed]

D. J. Spence, P. Dekker, and H. M. Pask, “Modeling of continuous wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 756–763 (2007).
[CrossRef]

V. N. Burakevich, V. A. Lisinetskii, A. S. Grabtchikov, A. A. Demidovich, V. A. Orlovich, and V. N. Matrosov, “Diode-pumped continuous-wave Nd:YVO4 laser with self-frequency Raman conversion,” Appl. Phys. B 86(3), 511–514 (2007).
[CrossRef]

V. A. Lisinetskii, A. S. Grabtchikov, A. A. Demidovich, V. N. Burakevich, V. A. Orlovich, and A. N. Titov, “Nd:KGW/KGW crystal: efficient medium for continuous-wave intracavity Raman generation,” Appl. Phys. B 88(4), 499–501 (2007).
[CrossRef]

2005 (1)

W. Ge, H. Zhang, J. Wang, J. Liu, H. Li, X. Cheng, H. Xu, X. Xu, X. Hu, and M. Jiang, “The thermal and optical properties of BaWO4 single crystal,” J. Cryst. Growth 276(1-2), 208–214 (2005).
[CrossRef]

2002 (1)

Y. Sato and T. Taira, “Spectroscopic Properties of Neodymium-Doped Yttrium Orthovanadate Single Crystals with High-Resolution Measurement,” Jpn. J. Appl. Phys. 41(Part 1, No. 10), 5999–6002 (2002).
[CrossRef]

2001 (1)

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3) –materials for Raman lasers,” Opt. Commun. 194(1-3), 201–206 (2001).
[CrossRef]

2000 (1)

Bagaev, S. N.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3) –materials for Raman lasers,” Opt. Commun. 194(1-3), 201–206 (2001).
[CrossRef]

Barnes, J. C.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3) –materials for Raman lasers,” Opt. Commun. 194(1-3), 201–206 (2001).
[CrossRef]

Burakevich, V. N.

V. A. Lisinetskii, A. S. Grabtchikov, A. A. Demidovich, V. N. Burakevich, V. A. Orlovich, and A. N. Titov, “Nd:KGW/KGW crystal: efficient medium for continuous-wave intracavity Raman generation,” Appl. Phys. B 88(4), 499–501 (2007).
[CrossRef]

V. N. Burakevich, V. A. Lisinetskii, A. S. Grabtchikov, A. A. Demidovich, V. A. Orlovich, and V. N. Matrosov, “Diode-pumped continuous-wave Nd:YVO4 laser with self-frequency Raman conversion,” Appl. Phys. B 86(3), 511–514 (2007).
[CrossRef]

Carlsten, J. L.

Cheng, W.

Cheng, W. B.

J. Xia, Y. F. Lu, X. H. Zhang, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, Z. M. Zhao, and Y. Tan, “All-solid-state CW Nd:KGd(WO4)2 self-Raman laser at 561 nm by intracavity sum-frequency mixing of fundamental and first-Stokes wavelengths,” Laser Phys. Lett. 8(1), 21–23 (2011).
[CrossRef]

Y. F. Lu, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, and Z. M. Zhao, “Efficient CW laser at 559 nm by intracavity sum-frequency mixing in a self-Raman Nd:YVO4 laser under direct 880 nm diode laser pumping,” Laser Phys. Lett. 7(11), 787–789 (2010).
[CrossRef]

Cheng, X.

W. Ge, H. Zhang, J. Wang, J. Liu, H. Li, X. Cheng, H. Xu, X. Xu, X. Hu, and M. Jiang, “The thermal and optical properties of BaWO4 single crystal,” J. Cryst. Growth 276(1-2), 208–214 (2005).
[CrossRef]

Chyba, T. H.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3) –materials for Raman lasers,” Opt. Commun. 194(1-3), 201–206 (2001).
[CrossRef]

Dekker, P.

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008).
[CrossRef]

P. Dekker, H. M. Pask, D. J. Spence, and J. A. Piper, “Continuous-wave, intracavity doubled, self-Raman laser operation in Nd:GdVO4 at 586.5 nm,” Opt. Express 15(11), 7038–7046 (2007).
[CrossRef] [PubMed]

D. J. Spence, P. Dekker, and H. M. Pask, “Modeling of continuous wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 756–763 (2007).
[CrossRef]

Demidovich, A. A.

V. A. Lisinetskii, A. S. Grabtchikov, A. A. Demidovich, V. N. Burakevich, V. A. Orlovich, and A. N. Titov, “Nd:KGW/KGW crystal: efficient medium for continuous-wave intracavity Raman generation,” Appl. Phys. B 88(4), 499–501 (2007).
[CrossRef]

V. N. Burakevich, V. A. Lisinetskii, A. S. Grabtchikov, A. A. Demidovich, V. A. Orlovich, and V. N. Matrosov, “Diode-pumped continuous-wave Nd:YVO4 laser with self-frequency Raman conversion,” Appl. Phys. B 86(3), 511–514 (2007).
[CrossRef]

Eichler, H. J.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3) –materials for Raman lasers,” Opt. Commun. 194(1-3), 201–206 (2001).
[CrossRef]

Fan, L.

Fan, Y. X.

Gad, G. M. A.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3) –materials for Raman lasers,” Opt. Commun. 194(1-3), 201–206 (2001).
[CrossRef]

Ge, W.

W. Ge, H. Zhang, J. Wang, J. Liu, H. Li, X. Cheng, H. Xu, X. Xu, X. Hu, and M. Jiang, “The thermal and optical properties of BaWO4 single crystal,” J. Cryst. Growth 276(1-2), 208–214 (2005).
[CrossRef]

Grabtchikov, A. S.

V. N. Burakevich, V. A. Lisinetskii, A. S. Grabtchikov, A. A. Demidovich, V. A. Orlovich, and V. N. Matrosov, “Diode-pumped continuous-wave Nd:YVO4 laser with self-frequency Raman conversion,” Appl. Phys. B 86(3), 511–514 (2007).
[CrossRef]

V. A. Lisinetskii, A. S. Grabtchikov, A. A. Demidovich, V. N. Burakevich, V. A. Orlovich, and A. N. Titov, “Nd:KGW/KGW crystal: efficient medium for continuous-wave intracavity Raman generation,” Appl. Phys. B 88(4), 499–501 (2007).
[CrossRef]

Hamilton, C. J.

Hu, X.

W. Ge, H. Zhang, J. Wang, J. Liu, H. Li, X. Cheng, H. Xu, X. Xu, X. Hu, and M. Jiang, “The thermal and optical properties of BaWO4 single crystal,” J. Cryst. Growth 276(1-2), 208–214 (2005).
[CrossRef]

Huo, Y.

Jakutis-Neto, J.

Jiang, M.

H. Yu, Z. Li, A. J. Lee, J. Li, H. Zhang, J. Wang, H. M. Pask, J. A. Piper, and M. Jiang, “A continuous wave SrMoO4 Raman laser,” Opt. Lett. 36(4), 579–581 (2011).
[CrossRef] [PubMed]

W. Ge, H. Zhang, J. Wang, J. Liu, H. Li, X. Cheng, H. Xu, X. Xu, X. Hu, and M. Jiang, “The thermal and optical properties of BaWO4 single crystal,” J. Cryst. Growth 276(1-2), 208–214 (2005).
[CrossRef]

Kaminskii, A. A.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3) –materials for Raman lasers,” Opt. Commun. 194(1-3), 201–206 (2001).
[CrossRef]

Kouta, H.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3) –materials for Raman lasers,” Opt. Commun. 194(1-3), 201–206 (2001).
[CrossRef]

Kuwano, Y.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3) –materials for Raman lasers,” Opt. Commun. 194(1-3), 201–206 (2001).
[CrossRef]

Lee, A. J.

D. J. Spence, X. Li, A. J. Lee, and H. M. Pask, “Modeling of wavelength-selectable visible Raman lasers,” Opt. Commun. 285(18), 3849–3854 (2012), doi:.
[CrossRef]

X. Li, A. J. Lee, H. M. Pask, J. A. Piper, and Y. Huo, “Efficient, miniature, cw yellow source based on an intracavity frequency-doubled Nd:YVO₄ self-Raman laser,” Opt. Lett. 36(8), 1428–1430 (2011).
[CrossRef] [PubMed]

X. Li, H. M. Pask, A. J. Lee, Y. Huo, J. A. Piper, and D. J. Spence, “Miniature wavelength-selectable Raman laser: new insights for optimizing performance,” Opt. Express 19(25), 25623–25631 (2011).
[CrossRef] [PubMed]

H. Yu, Z. Li, A. J. Lee, J. Li, H. Zhang, J. Wang, H. M. Pask, J. A. Piper, and M. Jiang, “A continuous wave SrMoO4 Raman laser,” Opt. Lett. 36(4), 579–581 (2011).
[CrossRef] [PubMed]

A. J. Lee, H. M. Pask, D. J. Spence, and J. A. Piper, “Efficient 5.3 W cw laser at 559 nm by intracavity frequency summation of fundamental and first-Stokes wavelengths in a self-Raman Nd:GdVO4 laser,” Opt. Lett. 35(5), 682–684 (2010).
[CrossRef] [PubMed]

A. J. Lee, H. M. Pask, J. A. Piper, H. Zhang, and J. Wang, “An intracavity, frequency-doubled BaWO4 Raman laser generating multi-watt continuous-wave, yellow emission,” Opt. Express 18(6), 5984–5992 (2010).
[CrossRef] [PubMed]

A. J. Lee, D. J. Spence, J. A. Piper, and H. M. Pask, “A wavelength-versatile, continuous-wave, self-Raman solid-state laser operating in the visible,” Opt. Express 18(19), 20013–20018 (2010).
[CrossRef] [PubMed]

Li, H.

W. Ge, H. Zhang, J. Wang, J. Liu, H. Li, X. Cheng, H. Xu, X. Xu, X. Hu, and M. Jiang, “The thermal and optical properties of BaWO4 single crystal,” J. Cryst. Growth 276(1-2), 208–214 (2005).
[CrossRef]

Li, J.

Li, S.

Li, X.

Li, Y. Q.

Li, Z.

Lin, J.

Lisinetskii, V. A.

V. A. Lisinetskii, A. S. Grabtchikov, A. A. Demidovich, V. N. Burakevich, V. A. Orlovich, and A. N. Titov, “Nd:KGW/KGW crystal: efficient medium for continuous-wave intracavity Raman generation,” Appl. Phys. B 88(4), 499–501 (2007).
[CrossRef]

V. N. Burakevich, V. A. Lisinetskii, A. S. Grabtchikov, A. A. Demidovich, V. A. Orlovich, and V. N. Matrosov, “Diode-pumped continuous-wave Nd:YVO4 laser with self-frequency Raman conversion,” Appl. Phys. B 86(3), 511–514 (2007).
[CrossRef]

Liu, J.

W. Ge, H. Zhang, J. Wang, J. Liu, H. Li, X. Cheng, H. Xu, X. Xu, X. Hu, and M. Jiang, “The thermal and optical properties of BaWO4 single crystal,” J. Cryst. Growth 276(1-2), 208–214 (2005).
[CrossRef]

Lu, J.

J. Xia, Y. F. Lu, X. H. Zhang, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, Z. M. Zhao, and Y. Tan, “All-solid-state CW Nd:KGd(WO4)2 self-Raman laser at 561 nm by intracavity sum-frequency mixing of fundamental and first-Stokes wavelengths,” Laser Phys. Lett. 8(1), 21–23 (2011).
[CrossRef]

Y. F. Lu, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, and Z. M. Zhao, “Efficient CW laser at 559 nm by intracavity sum-frequency mixing in a self-Raman Nd:YVO4 laser under direct 880 nm diode laser pumping,” Laser Phys. Lett. 7(11), 787–789 (2010).
[CrossRef]

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3) –materials for Raman lasers,” Opt. Commun. 194(1-3), 201–206 (2001).
[CrossRef]

Lu, Y. F.

J. Xia, Y. F. Lu, X. H. Zhang, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, Z. M. Zhao, and Y. Tan, “All-solid-state CW Nd:KGd(WO4)2 self-Raman laser at 561 nm by intracavity sum-frequency mixing of fundamental and first-Stokes wavelengths,” Laser Phys. Lett. 8(1), 21–23 (2011).
[CrossRef]

Y. F. Lu, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, and Z. M. Zhao, “Efficient CW laser at 559 nm by intracavity sum-frequency mixing in a self-Raman Nd:YVO4 laser under direct 880 nm diode laser pumping,” Laser Phys. Lett. 7(11), 787–789 (2010).
[CrossRef]

Lü, Y.

Malcolm, G. P. A.

Matrosov, V. N.

V. N. Burakevich, V. A. Lisinetskii, A. S. Grabtchikov, A. A. Demidovich, V. A. Orlovich, and V. N. Matrosov, “Diode-pumped continuous-wave Nd:YVO4 laser with self-frequency Raman conversion,” Appl. Phys. B 86(3), 511–514 (2007).
[CrossRef]

Meng, L. S.

Mildren, R. P.

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008).
[CrossRef]

Murai, T.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3) –materials for Raman lasers,” Opt. Commun. 194(1-3), 201–206 (2001).
[CrossRef]

Orlovich, V. A.

V. A. Lisinetskii, A. S. Grabtchikov, A. A. Demidovich, V. N. Burakevich, V. A. Orlovich, and A. N. Titov, “Nd:KGW/KGW crystal: efficient medium for continuous-wave intracavity Raman generation,” Appl. Phys. B 88(4), 499–501 (2007).
[CrossRef]

V. N. Burakevich, V. A. Lisinetskii, A. S. Grabtchikov, A. A. Demidovich, V. A. Orlovich, and V. N. Matrosov, “Diode-pumped continuous-wave Nd:YVO4 laser with self-frequency Raman conversion,” Appl. Phys. B 86(3), 511–514 (2007).
[CrossRef]

Pask, H.

J. Lin and H. Pask, “Nd:GdVO4 self-Raman laser using double-end polarised pumping at 880nm for high power infrared and visible output,” in press, DOI , Appl. Phys. B (2012).
[CrossRef]

J. Jakutis-Neto, J. Lin, N. U. Wetter, and H. Pask, “Continuous-wave Watt-level Nd:YLF/KGW Raman laser operating at near-IR, yellow and lime-green wavelengths,” Opt. Express 20(9), 9841–9850 (2012).
[CrossRef] [PubMed]

Pask, H. M.

J. Lin, H. M. Pask, D. J. Spence, C. J. Hamilton, and G. P. A. Malcolm, “Continuous-wave VECSEL Raman laser with tunable lime-yellow-orange output,” Opt. Express 20(5), 5219–5224 (2012).
[CrossRef] [PubMed]

D. J. Spence, X. Li, A. J. Lee, and H. M. Pask, “Modeling of wavelength-selectable visible Raman lasers,” Opt. Commun. 285(18), 3849–3854 (2012), doi:.
[CrossRef]

X. Li, A. J. Lee, H. M. Pask, J. A. Piper, and Y. Huo, “Efficient, miniature, cw yellow source based on an intracavity frequency-doubled Nd:YVO₄ self-Raman laser,” Opt. Lett. 36(8), 1428–1430 (2011).
[CrossRef] [PubMed]

X. Li, H. M. Pask, A. J. Lee, Y. Huo, J. A. Piper, and D. J. Spence, “Miniature wavelength-selectable Raman laser: new insights for optimizing performance,” Opt. Express 19(25), 25623–25631 (2011).
[CrossRef] [PubMed]

H. Yu, Z. Li, A. J. Lee, J. Li, H. Zhang, J. Wang, H. M. Pask, J. A. Piper, and M. Jiang, “A continuous wave SrMoO4 Raman laser,” Opt. Lett. 36(4), 579–581 (2011).
[CrossRef] [PubMed]

A. J. Lee, H. M. Pask, J. A. Piper, H. Zhang, and J. Wang, “An intracavity, frequency-doubled BaWO4 Raman laser generating multi-watt continuous-wave, yellow emission,” Opt. Express 18(6), 5984–5992 (2010).
[CrossRef] [PubMed]

A. J. Lee, H. M. Pask, D. J. Spence, and J. A. Piper, “Efficient 5.3 W cw laser at 559 nm by intracavity frequency summation of fundamental and first-Stokes wavelengths in a self-Raman Nd:GdVO4 laser,” Opt. Lett. 35(5), 682–684 (2010).
[CrossRef] [PubMed]

A. J. Lee, D. J. Spence, J. A. Piper, and H. M. Pask, “A wavelength-versatile, continuous-wave, self-Raman solid-state laser operating in the visible,” Opt. Express 18(19), 20013–20018 (2010).
[CrossRef] [PubMed]

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008).
[CrossRef]

P. Dekker, H. M. Pask, D. J. Spence, and J. A. Piper, “Continuous-wave, intracavity doubled, self-Raman laser operation in Nd:GdVO4 at 586.5 nm,” Opt. Express 15(11), 7038–7046 (2007).
[CrossRef] [PubMed]

D. J. Spence, P. Dekker, and H. M. Pask, “Modeling of continuous wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 756–763 (2007).
[CrossRef]

Piper, J. A.

H. Yu, Z. Li, A. J. Lee, J. Li, H. Zhang, J. Wang, H. M. Pask, J. A. Piper, and M. Jiang, “A continuous wave SrMoO4 Raman laser,” Opt. Lett. 36(4), 579–581 (2011).
[CrossRef] [PubMed]

X. Li, H. M. Pask, A. J. Lee, Y. Huo, J. A. Piper, and D. J. Spence, “Miniature wavelength-selectable Raman laser: new insights for optimizing performance,” Opt. Express 19(25), 25623–25631 (2011).
[CrossRef] [PubMed]

X. Li, A. J. Lee, H. M. Pask, J. A. Piper, and Y. Huo, “Efficient, miniature, cw yellow source based on an intracavity frequency-doubled Nd:YVO₄ self-Raman laser,” Opt. Lett. 36(8), 1428–1430 (2011).
[CrossRef] [PubMed]

A. J. Lee, H. M. Pask, D. J. Spence, and J. A. Piper, “Efficient 5.3 W cw laser at 559 nm by intracavity frequency summation of fundamental and first-Stokes wavelengths in a self-Raman Nd:GdVO4 laser,” Opt. Lett. 35(5), 682–684 (2010).
[CrossRef] [PubMed]

A. J. Lee, D. J. Spence, J. A. Piper, and H. M. Pask, “A wavelength-versatile, continuous-wave, self-Raman solid-state laser operating in the visible,” Opt. Express 18(19), 20013–20018 (2010).
[CrossRef] [PubMed]

A. J. Lee, H. M. Pask, J. A. Piper, H. Zhang, and J. Wang, “An intracavity, frequency-doubled BaWO4 Raman laser generating multi-watt continuous-wave, yellow emission,” Opt. Express 18(6), 5984–5992 (2010).
[CrossRef] [PubMed]

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008).
[CrossRef]

P. Dekker, H. M. Pask, D. J. Spence, and J. A. Piper, “Continuous-wave, intracavity doubled, self-Raman laser operation in Nd:GdVO4 at 586.5 nm,” Opt. Express 15(11), 7038–7046 (2007).
[CrossRef] [PubMed]

Repasky, K. S.

Roos, P. A.

Sato, Y.

Y. Sato and T. Taira, “Spectroscopic Properties of Neodymium-Doped Yttrium Orthovanadate Single Crystals with High-Resolution Measurement,” Jpn. J. Appl. Phys. 41(Part 1, No. 10), 5999–6002 (2002).
[CrossRef]

Spence, D. J.

J. Lin, H. M. Pask, D. J. Spence, C. J. Hamilton, and G. P. A. Malcolm, “Continuous-wave VECSEL Raman laser with tunable lime-yellow-orange output,” Opt. Express 20(5), 5219–5224 (2012).
[CrossRef] [PubMed]

D. J. Spence, X. Li, A. J. Lee, and H. M. Pask, “Modeling of wavelength-selectable visible Raman lasers,” Opt. Commun. 285(18), 3849–3854 (2012), doi:.
[CrossRef]

X. Li, H. M. Pask, A. J. Lee, Y. Huo, J. A. Piper, and D. J. Spence, “Miniature wavelength-selectable Raman laser: new insights for optimizing performance,” Opt. Express 19(25), 25623–25631 (2011).
[CrossRef] [PubMed]

A. J. Lee, H. M. Pask, D. J. Spence, and J. A. Piper, “Efficient 5.3 W cw laser at 559 nm by intracavity frequency summation of fundamental and first-Stokes wavelengths in a self-Raman Nd:GdVO4 laser,” Opt. Lett. 35(5), 682–684 (2010).
[CrossRef] [PubMed]

A. J. Lee, D. J. Spence, J. A. Piper, and H. M. Pask, “A wavelength-versatile, continuous-wave, self-Raman solid-state laser operating in the visible,” Opt. Express 18(19), 20013–20018 (2010).
[CrossRef] [PubMed]

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008).
[CrossRef]

P. Dekker, H. M. Pask, D. J. Spence, and J. A. Piper, “Continuous-wave, intracavity doubled, self-Raman laser operation in Nd:GdVO4 at 586.5 nm,” Opt. Express 15(11), 7038–7046 (2007).
[CrossRef] [PubMed]

D. J. Spence, P. Dekker, and H. M. Pask, “Modeling of continuous wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 756–763 (2007).
[CrossRef]

Sun, G. C.

J. Xia, Y. F. Lu, X. H. Zhang, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, Z. M. Zhao, and Y. Tan, “All-solid-state CW Nd:KGd(WO4)2 self-Raman laser at 561 nm by intracavity sum-frequency mixing of fundamental and first-Stokes wavelengths,” Laser Phys. Lett. 8(1), 21–23 (2011).
[CrossRef]

Y. F. Lu, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, and Z. M. Zhao, “Efficient CW laser at 559 nm by intracavity sum-frequency mixing in a self-Raman Nd:YVO4 laser under direct 880 nm diode laser pumping,” Laser Phys. Lett. 7(11), 787–789 (2010).
[CrossRef]

Taira, T.

Y. Sato and T. Taira, “Spectroscopic Properties of Neodymium-Doped Yttrium Orthovanadate Single Crystals with High-Resolution Measurement,” Jpn. J. Appl. Phys. 41(Part 1, No. 10), 5999–6002 (2002).
[CrossRef]

Tan, Y.

J. Xia, Y. F. Lu, X. H. Zhang, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, Z. M. Zhao, and Y. Tan, “All-solid-state CW Nd:KGd(WO4)2 self-Raman laser at 561 nm by intracavity sum-frequency mixing of fundamental and first-Stokes wavelengths,” Laser Phys. Lett. 8(1), 21–23 (2011).
[CrossRef]

Titov, A. N.

V. A. Lisinetskii, A. S. Grabtchikov, A. A. Demidovich, V. N. Burakevich, V. A. Orlovich, and A. N. Titov, “Nd:KGW/KGW crystal: efficient medium for continuous-wave intracavity Raman generation,” Appl. Phys. B 88(4), 499–501 (2007).
[CrossRef]

Ueda, K.

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3) –materials for Raman lasers,” Opt. Commun. 194(1-3), 201–206 (2001).
[CrossRef]

Wang, H. T.

Wang, J.

Wang, Q.

Wetter, N. U.

Xia, J.

J. Xia, Y. F. Lu, X. H. Zhang, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, Z. M. Zhao, and Y. Tan, “All-solid-state CW Nd:KGd(WO4)2 self-Raman laser at 561 nm by intracavity sum-frequency mixing of fundamental and first-Stokes wavelengths,” Laser Phys. Lett. 8(1), 21–23 (2011).
[CrossRef]

Y. Lü, X. Zhang, S. Li, J. Xia, W. Cheng, and Z. Xiong, “All-solid-state cw sodium D2 resonance radiation based on intracavity frequency-doubled self-Raman laser operation in double-end diffusion-bonded Nd3+:LuVO4 crystal,” Opt. Lett. 35(17), 2964–2966 (2010).
[CrossRef] [PubMed]

Xiong, Z.

J. Xia, Y. F. Lu, X. H. Zhang, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, Z. M. Zhao, and Y. Tan, “All-solid-state CW Nd:KGd(WO4)2 self-Raman laser at 561 nm by intracavity sum-frequency mixing of fundamental and first-Stokes wavelengths,” Laser Phys. Lett. 8(1), 21–23 (2011).
[CrossRef]

Y. Lü, X. Zhang, S. Li, J. Xia, W. Cheng, and Z. Xiong, “All-solid-state cw sodium D2 resonance radiation based on intracavity frequency-doubled self-Raman laser operation in double-end diffusion-bonded Nd3+:LuVO4 crystal,” Opt. Lett. 35(17), 2964–2966 (2010).
[CrossRef] [PubMed]

Y. F. Lu, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, and Z. M. Zhao, “Efficient CW laser at 559 nm by intracavity sum-frequency mixing in a self-Raman Nd:YVO4 laser under direct 880 nm diode laser pumping,” Laser Phys. Lett. 7(11), 787–789 (2010).
[CrossRef]

Xu, H.

W. Ge, H. Zhang, J. Wang, J. Liu, H. Li, X. Cheng, H. Xu, X. Xu, X. Hu, and M. Jiang, “The thermal and optical properties of BaWO4 single crystal,” J. Cryst. Growth 276(1-2), 208–214 (2005).
[CrossRef]

Xu, L. J.

J. Xia, Y. F. Lu, X. H. Zhang, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, Z. M. Zhao, and Y. Tan, “All-solid-state CW Nd:KGd(WO4)2 self-Raman laser at 561 nm by intracavity sum-frequency mixing of fundamental and first-Stokes wavelengths,” Laser Phys. Lett. 8(1), 21–23 (2011).
[CrossRef]

Y. F. Lu, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, and Z. M. Zhao, “Efficient CW laser at 559 nm by intracavity sum-frequency mixing in a self-Raman Nd:YVO4 laser under direct 880 nm diode laser pumping,” Laser Phys. Lett. 7(11), 787–789 (2010).
[CrossRef]

Xu, X.

W. Ge, H. Zhang, J. Wang, J. Liu, H. Li, X. Cheng, H. Xu, X. Xu, X. Hu, and M. Jiang, “The thermal and optical properties of BaWO4 single crystal,” J. Cryst. Growth 276(1-2), 208–214 (2005).
[CrossRef]

Yu, H.

Zhang, H.

Zhang, X.

Zhang, X. H.

J. Xia, Y. F. Lu, X. H. Zhang, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, Z. M. Zhao, and Y. Tan, “All-solid-state CW Nd:KGd(WO4)2 self-Raman laser at 561 nm by intracavity sum-frequency mixing of fundamental and first-Stokes wavelengths,” Laser Phys. Lett. 8(1), 21–23 (2011).
[CrossRef]

Zhao, Z. M.

J. Xia, Y. F. Lu, X. H. Zhang, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, Z. M. Zhao, and Y. Tan, “All-solid-state CW Nd:KGd(WO4)2 self-Raman laser at 561 nm by intracavity sum-frequency mixing of fundamental and first-Stokes wavelengths,” Laser Phys. Lett. 8(1), 21–23 (2011).
[CrossRef]

Y. F. Lu, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, and Z. M. Zhao, “Efficient CW laser at 559 nm by intracavity sum-frequency mixing in a self-Raman Nd:YVO4 laser under direct 880 nm diode laser pumping,” Laser Phys. Lett. 7(11), 787–789 (2010).
[CrossRef]

Appl. Phys. B (3)

J. Lin and H. Pask, “Nd:GdVO4 self-Raman laser using double-end polarised pumping at 880nm for high power infrared and visible output,” in press, DOI , Appl. Phys. B (2012).
[CrossRef]

V. N. Burakevich, V. A. Lisinetskii, A. S. Grabtchikov, A. A. Demidovich, V. A. Orlovich, and V. N. Matrosov, “Diode-pumped continuous-wave Nd:YVO4 laser with self-frequency Raman conversion,” Appl. Phys. B 86(3), 511–514 (2007).
[CrossRef]

V. A. Lisinetskii, A. S. Grabtchikov, A. A. Demidovich, V. N. Burakevich, V. A. Orlovich, and A. N. Titov, “Nd:KGW/KGW crystal: efficient medium for continuous-wave intracavity Raman generation,” Appl. Phys. B 88(4), 499–501 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

D. J. Spence, P. Dekker, and H. M. Pask, “Modeling of continuous wave intracavity Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 756–763 (2007).
[CrossRef]

J. Cryst. Growth (1)

W. Ge, H. Zhang, J. Wang, J. Liu, H. Li, X. Cheng, H. Xu, X. Xu, X. Hu, and M. Jiang, “The thermal and optical properties of BaWO4 single crystal,” J. Cryst. Growth 276(1-2), 208–214 (2005).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Sato and T. Taira, “Spectroscopic Properties of Neodymium-Doped Yttrium Orthovanadate Single Crystals with High-Resolution Measurement,” Jpn. J. Appl. Phys. 41(Part 1, No. 10), 5999–6002 (2002).
[CrossRef]

Laser Phys. Lett. (2)

J. Xia, Y. F. Lu, X. H. Zhang, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, Z. M. Zhao, and Y. Tan, “All-solid-state CW Nd:KGd(WO4)2 self-Raman laser at 561 nm by intracavity sum-frequency mixing of fundamental and first-Stokes wavelengths,” Laser Phys. Lett. 8(1), 21–23 (2011).
[CrossRef]

Y. F. Lu, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, and Z. M. Zhao, “Efficient CW laser at 559 nm by intracavity sum-frequency mixing in a self-Raman Nd:YVO4 laser under direct 880 nm diode laser pumping,” Laser Phys. Lett. 7(11), 787–789 (2010).
[CrossRef]

Opt. Commun. (2)

D. J. Spence, X. Li, A. J. Lee, and H. M. Pask, “Modeling of wavelength-selectable visible Raman lasers,” Opt. Commun. 285(18), 3849–3854 (2012), doi:.
[CrossRef]

A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 – new efficient χ(3) –materials for Raman lasers,” Opt. Commun. 194(1-3), 201–206 (2001).
[CrossRef]

Opt. Express (6)

Opt. Lett. (6)

Prog. Quantum Electron. (1)

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008).
[CrossRef]

Other (1)

A. V. Smith, “SNLO nonlinear optics code,” AS-Photonics, Albuquerque, NM, http://www.as-photonics.com/SNLO.html

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Laser setup.

Fig. 2
Fig. 2

(a) Spontaneous Raman spectra for the cases of laser excitation polarised along the a- and c-axes of BaWO4 and the c-axis of YVO4. (b) Laser output powers; and (c) spectral characteristics of visible output and (d) infrared fields (3.8 W incident pump) of the laser formed using 3 mm long Nd:YVO4 and 3 mm long BaWO4 crystals.

Fig. 3
Fig. 3

(a) Yellow laser performance with crystal combination of 1 mm-long Nd:YVO4 and 3 mm-long BaWO4 (oriented so the fundamental laser is polarized along its c-axis); and (b) residual fundamental-field and Stokes power collected through the output coupler.

Fig. 4
Fig. 4

Yellow laser performance with crystal combination of 1 mm-long Nd:YVO4 and 3 mm-long BaWO4, oriented with the fundamental field polarized along its a-axis (circles), and its c-axis (umbrellas). Shown inset is a spectrum of the IR wavelengths leaking from the output coupler at maximum pump power.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

κ R BW / κ R NdY = 8.5 4.5 l R BW l R NdY A R NdY A R BW

Metrics