Abstract

We report the first InGaAsP-based uni-travelling carrier photodiode structure grown by Solid Source Molecular Beam Epitaxy; the material contains layers of InGaAsP as thick as 300 nm and a 120 nm thick InGaAs absorber. Large area vertically illuminated test devices have been fabricated and characterised; the devices exhibited 0.1 A/W responsivity at 1550 nm, 12.5 GHz −3 dB bandwidth and −5.8 dBm output power at 10 GHz for a photocurrent of 4.8 mA. The use of Solid Source Molecular Beam Epitaxy enables the major issue associated with the unintentional diffusion of zinc in Metal Organic Vapour Phase Epitaxy to be overcome and gives the benefit of the superior control provided by MBE growth techniques without the costs and the risks of handling toxic gases of Gas Source Molecular Beam Epitaxy.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Nagatsuma, H. Ito, and T. Ishibashi, “High-power photodiodes and their applications,” Laser Photonics Rev.3, 123–137 (2009).
    [CrossRef]
  2. E. Rouvalis, C. Renaud, D. Moodie, M. Robertson, and A. Seeds, “Continuous wave terahertz generation from ultra-fast InP-based photodiodes,” IEEE Trans. Microw. Theory Tech.60(3), 509–517 (2012).
    [CrossRef]
  3. A. Beling, Z. Li, Y. Fu, H. Pan, and J. C. Campbell, “High-power and high-linearity photodiodes,” IEEE Photonic Society 24th Annual Meeting 1, 19–20 (2011).
  4. X. Wang, N. Duan, H. Chen, and J. C. Campbell, “InGaAs – InP photodiodes with high responsivity and high saturation power,” IEEE Photon. Technol. Lett.19(16), 1272–1274 (2007).
    [CrossRef]
  5. H. Ito, T. Furuta, S. Kodama, and T. Ishibashi, “InP/InGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth,” Electron. Lett.36(21), 1809–1810 (2000).
    [CrossRef]
  6. H. Ito, T. Nagatsuma, A. Hirata, T. Minotani, A. Sasaki, Y. Hirota, and T. Ishibashi, “High-power photonic millimetre wave generation at 100 GHz using matching-circuit-integrated uni-travelling-carrier photodiodes,” in IEE Proc.-Optoelectron. - (IET, 2003), 150, 138–142.
  7. H. Ito, F. Nakajima, T. Furuta, and T. Ishibashi, “Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes,” Semicond. Sci. Technol.20(7), S191–S198 (2005).
    [CrossRef]
  8. C. Renaud, D. Moodie, M. Robertson, and A. Seeds, “High output power at 110 GHz with a waveguide uni-travelling carrier photodiode,” Lasers and Electro-Optics Society 2007. LEOS 2007. The 20th Annual Meeting of the IEEE 782–783 (2007).
  9. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE6194, 61940C (2006).
  10. E. Rouvalis, C. C. Renaud, D. G. Moodie, M. J. Robertson, and A. J. Seeds, “Traveling-wave uni-traveling carrier photodiodes for continuous wave THz generation,” Opt. Express18(11), 11105–11110 (2010).
    [CrossRef] [PubMed]
  11. C. Doerr, “InP-based high-speed photonic devices,” in Proceedings of Optical Fiber Communications (OFC)/National Fiber Optic Engineers Conf. (2008).
  12. J. Baillargeon, A. Cho, F. Thiel, R. J. Fischer, P. J. Pearah, and K. Y. Cheng, “Reproducibility studies of lattice matched InGaAsP on (100) InP grown by molecular beam epitaxy using solid phosphorus,” Appl. Phys. Lett.65(2), 207–209 (1994).
    [CrossRef]
  13. C. C. Wamsley, M. W. Koch, and G. W. Wicks, “Solid source molecular beam epitaxy of InGaAsP/InP: growth mechanisms and machine operation,” J. Vac. Sci. Technol. B14(3), 2322–2324 (1996).
    [CrossRef]
  14. M. Pessa, M. Toivonen, M. Jalonen, P. Savolainen, and A. Salokatve, “All-solid-source molecular beam epitaxy for growth of III–V compound semiconductors,” Thin Solid Films306(2), 237–243 (1997).
    [CrossRef]
  15. P. A. Claxton, J. S. Roberts, J. P. R. David, C. M. Sotomayor-Torres, M. S. Skolnick, P. R. Tapster, and K. J. Nash, “Growth and characterisation of quantum wells and selectively doped heterostructures of InP/Ga0.47In0.53As grown by solid source MBE,” J. Cryst. Growth81(1-4), 288–295 (1987).
    [CrossRef]
  16. E. Schubert, S. Downey, C. Pinzone, and A. Emerson, “Evidence of very strong inter-epitaxial-layer diffusion in Zn-doped GaInPAs/InP structures,” Appl. Phys. Mater. Sci.60, 525–527 (1995).
  17. N. Otsuka, M. Kito, M. Ishino, Y. Matsui, and F. Toujou, “Control of double diffusion front unintentionally penetrated from a Zn doped InP layer during metalorganic vapor phase epitaxy,” J. Appl. Phys.84(8), 4239 (1998).
    [CrossRef]
  18. M. Henini, “Recent developments in InP and related compounds,” III-Vs Rev.13(2), 34–43 (2000).
    [CrossRef]
  19. M. Panish, “Molecular beam epitaxy of GaAs and InP with gas sources for As and P,” J. Electrochem. Soc.127(12), 2729–2733 (1980).
    [CrossRef]
  20. D. Miller and S. Bose, “Design and operation of a valved solid-source As2 oven for molecular beam epitaxy,” J. Vac. Sci. Technol. B8(2), 311–315 (1990).
    [CrossRef]
  21. G. Wicks, M. Koch, J. Varriano, F. G. Johnson, C. R. Wie, H. M. Kim, and P. Colombo, “Use of a valved, solid phosphorus source for the growth of Ga0.5In0.5P and Al0.5In0.5P by molecular beam epitaxy,” Appl. Phys. Lett.59(3), 342–344 (1991).
    [CrossRef]
  22. M. Toivonen, A. Salokatve, M. Jalonen, J. Näppi, H. Asonen, M. Pessa, and R. Murison, “All solid source molecular beam epitaxy growth of 1.35 μm wavelength strained-layer InGaAsP quantum well laser,” Electron. Lett.31(10), 797–799 (1995).
    [CrossRef]
  23. C. P. Liu, A. Seeds, J. S. Chadha, P. N. Stavrinou, G. Parry, M. Whitehead, A. B. Krysa, and J. S. Roberts, “Design fabrication and characterisation of normal-incidence 1.56-mum multiple-quantum-well asymmetric Fabry-Perot modulators for passive picocells,” IEICE Trans. Electron. E Series C 86, 1281–1289 (2003).
  24. F. Fiedler, A. Schlachetzki, and G. Klein, “Material-selective etching of InP and an InGaAsP alloy,” J. Mater. Sci.17(10), 2911–2918 (1982).
    [CrossRef]
  25. D. Pasquariello, E. Bjorlin, D. Lasaosa, Y.-J. Chiu, J. Piprek, and J. E. Bowers, “Selective undercut etching of InGaAs and InGaAsP quantum wells for improved performance of long-wavelength optoelectronic devices,” J. Lightwave Technol.24(3), 1470–1477 (2006).
    [CrossRef]
  26. S. Phatak and G. Kelner, “Material-selective chemical etching in the system InGaAsP/ InP,” J. Electrochem. Soc.126(2), 287 (1979).
    [CrossRef]
  27. S. Adachi, “Chemical etching of InP and InGaAsP/InP,” J. Electrochem. Soc.129(3), 609 (1982).
    [CrossRef]
  28. K. Williams and R. D. Esman, “Design considerations for high-current photodetectors,” J. Lightwave Technol.17(8), 1443–1454 (1999).
    [CrossRef]
  29. G. Davis, R. Weiss, R. LaRue, K. J. Williams, and R. D. Esman, “A 920-1650-nm high-current photodetector,” IEEE Photon. Technol. Lett.8(10), 1373–1375 (1996).
    [CrossRef]
  30. N. Duan, X. Wang, N. Li, H. Liu, and J. C. Campbell, “Thermal analysis of high-power InGaAs–InP photodiodes,” IEEE J. Quantum Electron.42(12), 1255–1258 (2006).
    [CrossRef]
  31. M. Chtioui, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, C. Jany, A. Enard, and M. Achouche, “Thick absorption layer uni-traveling-carrier photodiodes with high responsivity, high speed, and high saturation power,” IEEE Photon. Technol. Lett.21(7), 429–431 (2009).
    [CrossRef]
  32. M. Chtioui, F. Lelarge, A. Enard, F. Pommereau, D. Carpentier, A. Marceaux, F. van Dijk, and M. Achouche, “High responsivity and high power UTC and MUTC GaInAs-InP photodiodes,” IEEE Photon. Technol. Lett.24(4), 318–320 (2012).
    [CrossRef]

2012

E. Rouvalis, C. Renaud, D. Moodie, M. Robertson, and A. Seeds, “Continuous wave terahertz generation from ultra-fast InP-based photodiodes,” IEEE Trans. Microw. Theory Tech.60(3), 509–517 (2012).
[CrossRef]

M. Chtioui, F. Lelarge, A. Enard, F. Pommereau, D. Carpentier, A. Marceaux, F. van Dijk, and M. Achouche, “High responsivity and high power UTC and MUTC GaInAs-InP photodiodes,” IEEE Photon. Technol. Lett.24(4), 318–320 (2012).
[CrossRef]

2010

2009

M. Chtioui, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, C. Jany, A. Enard, and M. Achouche, “Thick absorption layer uni-traveling-carrier photodiodes with high responsivity, high speed, and high saturation power,” IEEE Photon. Technol. Lett.21(7), 429–431 (2009).
[CrossRef]

T. Nagatsuma, H. Ito, and T. Ishibashi, “High-power photodiodes and their applications,” Laser Photonics Rev.3, 123–137 (2009).
[CrossRef]

2007

X. Wang, N. Duan, H. Chen, and J. C. Campbell, “InGaAs – InP photodiodes with high responsivity and high saturation power,” IEEE Photon. Technol. Lett.19(16), 1272–1274 (2007).
[CrossRef]

2006

C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE6194, 61940C (2006).

N. Duan, X. Wang, N. Li, H. Liu, and J. C. Campbell, “Thermal analysis of high-power InGaAs–InP photodiodes,” IEEE J. Quantum Electron.42(12), 1255–1258 (2006).
[CrossRef]

D. Pasquariello, E. Bjorlin, D. Lasaosa, Y.-J. Chiu, J. Piprek, and J. E. Bowers, “Selective undercut etching of InGaAs and InGaAsP quantum wells for improved performance of long-wavelength optoelectronic devices,” J. Lightwave Technol.24(3), 1470–1477 (2006).
[CrossRef]

2005

H. Ito, F. Nakajima, T. Furuta, and T. Ishibashi, “Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes,” Semicond. Sci. Technol.20(7), S191–S198 (2005).
[CrossRef]

2003

C. P. Liu, A. Seeds, J. S. Chadha, P. N. Stavrinou, G. Parry, M. Whitehead, A. B. Krysa, and J. S. Roberts, “Design fabrication and characterisation of normal-incidence 1.56-mum multiple-quantum-well asymmetric Fabry-Perot modulators for passive picocells,” IEICE Trans. Electron. E Series C 86, 1281–1289 (2003).

2000

H. Ito, T. Furuta, S. Kodama, and T. Ishibashi, “InP/InGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth,” Electron. Lett.36(21), 1809–1810 (2000).
[CrossRef]

M. Henini, “Recent developments in InP and related compounds,” III-Vs Rev.13(2), 34–43 (2000).
[CrossRef]

1999

1998

N. Otsuka, M. Kito, M. Ishino, Y. Matsui, and F. Toujou, “Control of double diffusion front unintentionally penetrated from a Zn doped InP layer during metalorganic vapor phase epitaxy,” J. Appl. Phys.84(8), 4239 (1998).
[CrossRef]

1997

M. Pessa, M. Toivonen, M. Jalonen, P. Savolainen, and A. Salokatve, “All-solid-source molecular beam epitaxy for growth of III–V compound semiconductors,” Thin Solid Films306(2), 237–243 (1997).
[CrossRef]

1996

C. C. Wamsley, M. W. Koch, and G. W. Wicks, “Solid source molecular beam epitaxy of InGaAsP/InP: growth mechanisms and machine operation,” J. Vac. Sci. Technol. B14(3), 2322–2324 (1996).
[CrossRef]

G. Davis, R. Weiss, R. LaRue, K. J. Williams, and R. D. Esman, “A 920-1650-nm high-current photodetector,” IEEE Photon. Technol. Lett.8(10), 1373–1375 (1996).
[CrossRef]

1995

E. Schubert, S. Downey, C. Pinzone, and A. Emerson, “Evidence of very strong inter-epitaxial-layer diffusion in Zn-doped GaInPAs/InP structures,” Appl. Phys. Mater. Sci.60, 525–527 (1995).

M. Toivonen, A. Salokatve, M. Jalonen, J. Näppi, H. Asonen, M. Pessa, and R. Murison, “All solid source molecular beam epitaxy growth of 1.35 μm wavelength strained-layer InGaAsP quantum well laser,” Electron. Lett.31(10), 797–799 (1995).
[CrossRef]

1994

J. Baillargeon, A. Cho, F. Thiel, R. J. Fischer, P. J. Pearah, and K. Y. Cheng, “Reproducibility studies of lattice matched InGaAsP on (100) InP grown by molecular beam epitaxy using solid phosphorus,” Appl. Phys. Lett.65(2), 207–209 (1994).
[CrossRef]

1991

G. Wicks, M. Koch, J. Varriano, F. G. Johnson, C. R. Wie, H. M. Kim, and P. Colombo, “Use of a valved, solid phosphorus source for the growth of Ga0.5In0.5P and Al0.5In0.5P by molecular beam epitaxy,” Appl. Phys. Lett.59(3), 342–344 (1991).
[CrossRef]

1990

D. Miller and S. Bose, “Design and operation of a valved solid-source As2 oven for molecular beam epitaxy,” J. Vac. Sci. Technol. B8(2), 311–315 (1990).
[CrossRef]

1987

P. A. Claxton, J. S. Roberts, J. P. R. David, C. M. Sotomayor-Torres, M. S. Skolnick, P. R. Tapster, and K. J. Nash, “Growth and characterisation of quantum wells and selectively doped heterostructures of InP/Ga0.47In0.53As grown by solid source MBE,” J. Cryst. Growth81(1-4), 288–295 (1987).
[CrossRef]

1982

F. Fiedler, A. Schlachetzki, and G. Klein, “Material-selective etching of InP and an InGaAsP alloy,” J. Mater. Sci.17(10), 2911–2918 (1982).
[CrossRef]

S. Adachi, “Chemical etching of InP and InGaAsP/InP,” J. Electrochem. Soc.129(3), 609 (1982).
[CrossRef]

1980

M. Panish, “Molecular beam epitaxy of GaAs and InP with gas sources for As and P,” J. Electrochem. Soc.127(12), 2729–2733 (1980).
[CrossRef]

1979

S. Phatak and G. Kelner, “Material-selective chemical etching in the system InGaAsP/ InP,” J. Electrochem. Soc.126(2), 287 (1979).
[CrossRef]

Achouche, M.

M. Chtioui, F. Lelarge, A. Enard, F. Pommereau, D. Carpentier, A. Marceaux, F. van Dijk, and M. Achouche, “High responsivity and high power UTC and MUTC GaInAs-InP photodiodes,” IEEE Photon. Technol. Lett.24(4), 318–320 (2012).
[CrossRef]

M. Chtioui, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, C. Jany, A. Enard, and M. Achouche, “Thick absorption layer uni-traveling-carrier photodiodes with high responsivity, high speed, and high saturation power,” IEEE Photon. Technol. Lett.21(7), 429–431 (2009).
[CrossRef]

Adachi, S.

S. Adachi, “Chemical etching of InP and InGaAsP/InP,” J. Electrochem. Soc.129(3), 609 (1982).
[CrossRef]

Asonen, H.

M. Toivonen, A. Salokatve, M. Jalonen, J. Näppi, H. Asonen, M. Pessa, and R. Murison, “All solid source molecular beam epitaxy growth of 1.35 μm wavelength strained-layer InGaAsP quantum well laser,” Electron. Lett.31(10), 797–799 (1995).
[CrossRef]

Baillargeon, J.

J. Baillargeon, A. Cho, F. Thiel, R. J. Fischer, P. J. Pearah, and K. Y. Cheng, “Reproducibility studies of lattice matched InGaAsP on (100) InP grown by molecular beam epitaxy using solid phosphorus,” Appl. Phys. Lett.65(2), 207–209 (1994).
[CrossRef]

Bernard, S.

M. Chtioui, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, C. Jany, A. Enard, and M. Achouche, “Thick absorption layer uni-traveling-carrier photodiodes with high responsivity, high speed, and high saturation power,” IEEE Photon. Technol. Lett.21(7), 429–431 (2009).
[CrossRef]

Bjorlin, E.

Bose, S.

D. Miller and S. Bose, “Design and operation of a valved solid-source As2 oven for molecular beam epitaxy,” J. Vac. Sci. Technol. B8(2), 311–315 (1990).
[CrossRef]

Bowers, J. E.

Campbell, J. C.

X. Wang, N. Duan, H. Chen, and J. C. Campbell, “InGaAs – InP photodiodes with high responsivity and high saturation power,” IEEE Photon. Technol. Lett.19(16), 1272–1274 (2007).
[CrossRef]

N. Duan, X. Wang, N. Li, H. Liu, and J. C. Campbell, “Thermal analysis of high-power InGaAs–InP photodiodes,” IEEE J. Quantum Electron.42(12), 1255–1258 (2006).
[CrossRef]

Cannard, P.

C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE6194, 61940C (2006).

Carpentier, D.

M. Chtioui, F. Lelarge, A. Enard, F. Pommereau, D. Carpentier, A. Marceaux, F. van Dijk, and M. Achouche, “High responsivity and high power UTC and MUTC GaInAs-InP photodiodes,” IEEE Photon. Technol. Lett.24(4), 318–320 (2012).
[CrossRef]

M. Chtioui, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, C. Jany, A. Enard, and M. Achouche, “Thick absorption layer uni-traveling-carrier photodiodes with high responsivity, high speed, and high saturation power,” IEEE Photon. Technol. Lett.21(7), 429–431 (2009).
[CrossRef]

Chadha, J. S.

C. P. Liu, A. Seeds, J. S. Chadha, P. N. Stavrinou, G. Parry, M. Whitehead, A. B. Krysa, and J. S. Roberts, “Design fabrication and characterisation of normal-incidence 1.56-mum multiple-quantum-well asymmetric Fabry-Perot modulators for passive picocells,” IEICE Trans. Electron. E Series C 86, 1281–1289 (2003).

Chen, H.

X. Wang, N. Duan, H. Chen, and J. C. Campbell, “InGaAs – InP photodiodes with high responsivity and high saturation power,” IEEE Photon. Technol. Lett.19(16), 1272–1274 (2007).
[CrossRef]

Cheng, K. Y.

J. Baillargeon, A. Cho, F. Thiel, R. J. Fischer, P. J. Pearah, and K. Y. Cheng, “Reproducibility studies of lattice matched InGaAsP on (100) InP grown by molecular beam epitaxy using solid phosphorus,” Appl. Phys. Lett.65(2), 207–209 (1994).
[CrossRef]

Chiu, Y.-J.

Cho, A.

J. Baillargeon, A. Cho, F. Thiel, R. J. Fischer, P. J. Pearah, and K. Y. Cheng, “Reproducibility studies of lattice matched InGaAsP on (100) InP grown by molecular beam epitaxy using solid phosphorus,” Appl. Phys. Lett.65(2), 207–209 (1994).
[CrossRef]

Chtioui, M.

M. Chtioui, F. Lelarge, A. Enard, F. Pommereau, D. Carpentier, A. Marceaux, F. van Dijk, and M. Achouche, “High responsivity and high power UTC and MUTC GaInAs-InP photodiodes,” IEEE Photon. Technol. Lett.24(4), 318–320 (2012).
[CrossRef]

M. Chtioui, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, C. Jany, A. Enard, and M. Achouche, “Thick absorption layer uni-traveling-carrier photodiodes with high responsivity, high speed, and high saturation power,” IEEE Photon. Technol. Lett.21(7), 429–431 (2009).
[CrossRef]

Claxton, P. A.

P. A. Claxton, J. S. Roberts, J. P. R. David, C. M. Sotomayor-Torres, M. S. Skolnick, P. R. Tapster, and K. J. Nash, “Growth and characterisation of quantum wells and selectively doped heterostructures of InP/Ga0.47In0.53As grown by solid source MBE,” J. Cryst. Growth81(1-4), 288–295 (1987).
[CrossRef]

Colombo, P.

G. Wicks, M. Koch, J. Varriano, F. G. Johnson, C. R. Wie, H. M. Kim, and P. Colombo, “Use of a valved, solid phosphorus source for the growth of Ga0.5In0.5P and Al0.5In0.5P by molecular beam epitaxy,” Appl. Phys. Lett.59(3), 342–344 (1991).
[CrossRef]

David, J. P. R.

P. A. Claxton, J. S. Roberts, J. P. R. David, C. M. Sotomayor-Torres, M. S. Skolnick, P. R. Tapster, and K. J. Nash, “Growth and characterisation of quantum wells and selectively doped heterostructures of InP/Ga0.47In0.53As grown by solid source MBE,” J. Cryst. Growth81(1-4), 288–295 (1987).
[CrossRef]

Davis, G.

G. Davis, R. Weiss, R. LaRue, K. J. Williams, and R. D. Esman, “A 920-1650-nm high-current photodetector,” IEEE Photon. Technol. Lett.8(10), 1373–1375 (1996).
[CrossRef]

Downey, S.

E. Schubert, S. Downey, C. Pinzone, and A. Emerson, “Evidence of very strong inter-epitaxial-layer diffusion in Zn-doped GaInPAs/InP structures,” Appl. Phys. Mater. Sci.60, 525–527 (1995).

Duan, N.

X. Wang, N. Duan, H. Chen, and J. C. Campbell, “InGaAs – InP photodiodes with high responsivity and high saturation power,” IEEE Photon. Technol. Lett.19(16), 1272–1274 (2007).
[CrossRef]

N. Duan, X. Wang, N. Li, H. Liu, and J. C. Campbell, “Thermal analysis of high-power InGaAs–InP photodiodes,” IEEE J. Quantum Electron.42(12), 1255–1258 (2006).
[CrossRef]

Emerson, A.

E. Schubert, S. Downey, C. Pinzone, and A. Emerson, “Evidence of very strong inter-epitaxial-layer diffusion in Zn-doped GaInPAs/InP structures,” Appl. Phys. Mater. Sci.60, 525–527 (1995).

Enard, A.

M. Chtioui, F. Lelarge, A. Enard, F. Pommereau, D. Carpentier, A. Marceaux, F. van Dijk, and M. Achouche, “High responsivity and high power UTC and MUTC GaInAs-InP photodiodes,” IEEE Photon. Technol. Lett.24(4), 318–320 (2012).
[CrossRef]

M. Chtioui, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, C. Jany, A. Enard, and M. Achouche, “Thick absorption layer uni-traveling-carrier photodiodes with high responsivity, high speed, and high saturation power,” IEEE Photon. Technol. Lett.21(7), 429–431 (2009).
[CrossRef]

Esman, R. D.

K. Williams and R. D. Esman, “Design considerations for high-current photodetectors,” J. Lightwave Technol.17(8), 1443–1454 (1999).
[CrossRef]

G. Davis, R. Weiss, R. LaRue, K. J. Williams, and R. D. Esman, “A 920-1650-nm high-current photodetector,” IEEE Photon. Technol. Lett.8(10), 1373–1375 (1996).
[CrossRef]

Fiedler, F.

F. Fiedler, A. Schlachetzki, and G. Klein, “Material-selective etching of InP and an InGaAsP alloy,” J. Mater. Sci.17(10), 2911–2918 (1982).
[CrossRef]

Firth, R.

C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE6194, 61940C (2006).

Fischer, R. J.

J. Baillargeon, A. Cho, F. Thiel, R. J. Fischer, P. J. Pearah, and K. Y. Cheng, “Reproducibility studies of lattice matched InGaAsP on (100) InP grown by molecular beam epitaxy using solid phosphorus,” Appl. Phys. Lett.65(2), 207–209 (1994).
[CrossRef]

Furuta, T.

H. Ito, F. Nakajima, T. Furuta, and T. Ishibashi, “Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes,” Semicond. Sci. Technol.20(7), S191–S198 (2005).
[CrossRef]

H. Ito, T. Furuta, S. Kodama, and T. Ishibashi, “InP/InGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth,” Electron. Lett.36(21), 1809–1810 (2000).
[CrossRef]

Henini, M.

M. Henini, “Recent developments in InP and related compounds,” III-Vs Rev.13(2), 34–43 (2000).
[CrossRef]

Ishibashi, T.

T. Nagatsuma, H. Ito, and T. Ishibashi, “High-power photodiodes and their applications,” Laser Photonics Rev.3, 123–137 (2009).
[CrossRef]

H. Ito, F. Nakajima, T. Furuta, and T. Ishibashi, “Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes,” Semicond. Sci. Technol.20(7), S191–S198 (2005).
[CrossRef]

H. Ito, T. Furuta, S. Kodama, and T. Ishibashi, “InP/InGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth,” Electron. Lett.36(21), 1809–1810 (2000).
[CrossRef]

Ishino, M.

N. Otsuka, M. Kito, M. Ishino, Y. Matsui, and F. Toujou, “Control of double diffusion front unintentionally penetrated from a Zn doped InP layer during metalorganic vapor phase epitaxy,” J. Appl. Phys.84(8), 4239 (1998).
[CrossRef]

Ito, H.

T. Nagatsuma, H. Ito, and T. Ishibashi, “High-power photodiodes and their applications,” Laser Photonics Rev.3, 123–137 (2009).
[CrossRef]

H. Ito, F. Nakajima, T. Furuta, and T. Ishibashi, “Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes,” Semicond. Sci. Technol.20(7), S191–S198 (2005).
[CrossRef]

H. Ito, T. Furuta, S. Kodama, and T. Ishibashi, “InP/InGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth,” Electron. Lett.36(21), 1809–1810 (2000).
[CrossRef]

Jalonen, M.

M. Pessa, M. Toivonen, M. Jalonen, P. Savolainen, and A. Salokatve, “All-solid-source molecular beam epitaxy for growth of III–V compound semiconductors,” Thin Solid Films306(2), 237–243 (1997).
[CrossRef]

M. Toivonen, A. Salokatve, M. Jalonen, J. Näppi, H. Asonen, M. Pessa, and R. Murison, “All solid source molecular beam epitaxy growth of 1.35 μm wavelength strained-layer InGaAsP quantum well laser,” Electron. Lett.31(10), 797–799 (1995).
[CrossRef]

Jany, C.

M. Chtioui, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, C. Jany, A. Enard, and M. Achouche, “Thick absorption layer uni-traveling-carrier photodiodes with high responsivity, high speed, and high saturation power,” IEEE Photon. Technol. Lett.21(7), 429–431 (2009).
[CrossRef]

Johnson, F. G.

G. Wicks, M. Koch, J. Varriano, F. G. Johnson, C. R. Wie, H. M. Kim, and P. Colombo, “Use of a valved, solid phosphorus source for the growth of Ga0.5In0.5P and Al0.5In0.5P by molecular beam epitaxy,” Appl. Phys. Lett.59(3), 342–344 (1991).
[CrossRef]

Kelner, G.

S. Phatak and G. Kelner, “Material-selective chemical etching in the system InGaAsP/ InP,” J. Electrochem. Soc.126(2), 287 (1979).
[CrossRef]

Kim, H. M.

G. Wicks, M. Koch, J. Varriano, F. G. Johnson, C. R. Wie, H. M. Kim, and P. Colombo, “Use of a valved, solid phosphorus source for the growth of Ga0.5In0.5P and Al0.5In0.5P by molecular beam epitaxy,” Appl. Phys. Lett.59(3), 342–344 (1991).
[CrossRef]

Kito, M.

N. Otsuka, M. Kito, M. Ishino, Y. Matsui, and F. Toujou, “Control of double diffusion front unintentionally penetrated from a Zn doped InP layer during metalorganic vapor phase epitaxy,” J. Appl. Phys.84(8), 4239 (1998).
[CrossRef]

Klein, G.

F. Fiedler, A. Schlachetzki, and G. Klein, “Material-selective etching of InP and an InGaAsP alloy,” J. Mater. Sci.17(10), 2911–2918 (1982).
[CrossRef]

Koch, M.

G. Wicks, M. Koch, J. Varriano, F. G. Johnson, C. R. Wie, H. M. Kim, and P. Colombo, “Use of a valved, solid phosphorus source for the growth of Ga0.5In0.5P and Al0.5In0.5P by molecular beam epitaxy,” Appl. Phys. Lett.59(3), 342–344 (1991).
[CrossRef]

Koch, M. W.

C. C. Wamsley, M. W. Koch, and G. W. Wicks, “Solid source molecular beam epitaxy of InGaAsP/InP: growth mechanisms and machine operation,” J. Vac. Sci. Technol. B14(3), 2322–2324 (1996).
[CrossRef]

Kodama, S.

H. Ito, T. Furuta, S. Kodama, and T. Ishibashi, “InP/InGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth,” Electron. Lett.36(21), 1809–1810 (2000).
[CrossRef]

Krysa, A. B.

C. P. Liu, A. Seeds, J. S. Chadha, P. N. Stavrinou, G. Parry, M. Whitehead, A. B. Krysa, and J. S. Roberts, “Design fabrication and characterisation of normal-incidence 1.56-mum multiple-quantum-well asymmetric Fabry-Perot modulators for passive picocells,” IEICE Trans. Electron. E Series C 86, 1281–1289 (2003).

LaRue, R.

G. Davis, R. Weiss, R. LaRue, K. J. Williams, and R. D. Esman, “A 920-1650-nm high-current photodetector,” IEEE Photon. Technol. Lett.8(10), 1373–1375 (1996).
[CrossRef]

Lasaosa, D.

Lelarge, F.

M. Chtioui, F. Lelarge, A. Enard, F. Pommereau, D. Carpentier, A. Marceaux, F. van Dijk, and M. Achouche, “High responsivity and high power UTC and MUTC GaInAs-InP photodiodes,” IEEE Photon. Technol. Lett.24(4), 318–320 (2012).
[CrossRef]

M. Chtioui, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, C. Jany, A. Enard, and M. Achouche, “Thick absorption layer uni-traveling-carrier photodiodes with high responsivity, high speed, and high saturation power,” IEEE Photon. Technol. Lett.21(7), 429–431 (2009).
[CrossRef]

Li, N.

N. Duan, X. Wang, N. Li, H. Liu, and J. C. Campbell, “Thermal analysis of high-power InGaAs–InP photodiodes,” IEEE J. Quantum Electron.42(12), 1255–1258 (2006).
[CrossRef]

Liu, C. P.

C. P. Liu, A. Seeds, J. S. Chadha, P. N. Stavrinou, G. Parry, M. Whitehead, A. B. Krysa, and J. S. Roberts, “Design fabrication and characterisation of normal-incidence 1.56-mum multiple-quantum-well asymmetric Fabry-Perot modulators for passive picocells,” IEICE Trans. Electron. E Series C 86, 1281–1289 (2003).

Liu, H.

N. Duan, X. Wang, N. Li, H. Liu, and J. C. Campbell, “Thermal analysis of high-power InGaAs–InP photodiodes,” IEEE J. Quantum Electron.42(12), 1255–1258 (2006).
[CrossRef]

Marceaux, A.

M. Chtioui, F. Lelarge, A. Enard, F. Pommereau, D. Carpentier, A. Marceaux, F. van Dijk, and M. Achouche, “High responsivity and high power UTC and MUTC GaInAs-InP photodiodes,” IEEE Photon. Technol. Lett.24(4), 318–320 (2012).
[CrossRef]

Matsui, Y.

N. Otsuka, M. Kito, M. Ishino, Y. Matsui, and F. Toujou, “Control of double diffusion front unintentionally penetrated from a Zn doped InP layer during metalorganic vapor phase epitaxy,” J. Appl. Phys.84(8), 4239 (1998).
[CrossRef]

Miller, D.

D. Miller and S. Bose, “Design and operation of a valved solid-source As2 oven for molecular beam epitaxy,” J. Vac. Sci. Technol. B8(2), 311–315 (1990).
[CrossRef]

Moodie, D.

E. Rouvalis, C. Renaud, D. Moodie, M. Robertson, and A. Seeds, “Continuous wave terahertz generation from ultra-fast InP-based photodiodes,” IEEE Trans. Microw. Theory Tech.60(3), 509–517 (2012).
[CrossRef]

Moodie, D. G.

Moore, R.

C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE6194, 61940C (2006).

Murison, R.

M. Toivonen, A. Salokatve, M. Jalonen, J. Näppi, H. Asonen, M. Pessa, and R. Murison, “All solid source molecular beam epitaxy growth of 1.35 μm wavelength strained-layer InGaAsP quantum well laser,” Electron. Lett.31(10), 797–799 (1995).
[CrossRef]

Nagatsuma, T.

T. Nagatsuma, H. Ito, and T. Ishibashi, “High-power photodiodes and their applications,” Laser Photonics Rev.3, 123–137 (2009).
[CrossRef]

Nakajima, F.

H. Ito, F. Nakajima, T. Furuta, and T. Ishibashi, “Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes,” Semicond. Sci. Technol.20(7), S191–S198 (2005).
[CrossRef]

Näppi, J.

M. Toivonen, A. Salokatve, M. Jalonen, J. Näppi, H. Asonen, M. Pessa, and R. Murison, “All solid source molecular beam epitaxy growth of 1.35 μm wavelength strained-layer InGaAsP quantum well laser,” Electron. Lett.31(10), 797–799 (1995).
[CrossRef]

Nash, K. J.

P. A. Claxton, J. S. Roberts, J. P. R. David, C. M. Sotomayor-Torres, M. S. Skolnick, P. R. Tapster, and K. J. Nash, “Growth and characterisation of quantum wells and selectively doped heterostructures of InP/Ga0.47In0.53As grown by solid source MBE,” J. Cryst. Growth81(1-4), 288–295 (1987).
[CrossRef]

Otsuka, N.

N. Otsuka, M. Kito, M. Ishino, Y. Matsui, and F. Toujou, “Control of double diffusion front unintentionally penetrated from a Zn doped InP layer during metalorganic vapor phase epitaxy,” J. Appl. Phys.84(8), 4239 (1998).
[CrossRef]

Panish, M.

M. Panish, “Molecular beam epitaxy of GaAs and InP with gas sources for As and P,” J. Electrochem. Soc.127(12), 2729–2733 (1980).
[CrossRef]

Parry, G.

C. P. Liu, A. Seeds, J. S. Chadha, P. N. Stavrinou, G. Parry, M. Whitehead, A. B. Krysa, and J. S. Roberts, “Design fabrication and characterisation of normal-incidence 1.56-mum multiple-quantum-well asymmetric Fabry-Perot modulators for passive picocells,” IEICE Trans. Electron. E Series C 86, 1281–1289 (2003).

Pasquariello, D.

Pearah, P. J.

J. Baillargeon, A. Cho, F. Thiel, R. J. Fischer, P. J. Pearah, and K. Y. Cheng, “Reproducibility studies of lattice matched InGaAsP on (100) InP grown by molecular beam epitaxy using solid phosphorus,” Appl. Phys. Lett.65(2), 207–209 (1994).
[CrossRef]

Pessa, M.

M. Pessa, M. Toivonen, M. Jalonen, P. Savolainen, and A. Salokatve, “All-solid-source molecular beam epitaxy for growth of III–V compound semiconductors,” Thin Solid Films306(2), 237–243 (1997).
[CrossRef]

M. Toivonen, A. Salokatve, M. Jalonen, J. Näppi, H. Asonen, M. Pessa, and R. Murison, “All solid source molecular beam epitaxy growth of 1.35 μm wavelength strained-layer InGaAsP quantum well laser,” Electron. Lett.31(10), 797–799 (1995).
[CrossRef]

Phatak, S.

S. Phatak and G. Kelner, “Material-selective chemical etching in the system InGaAsP/ InP,” J. Electrochem. Soc.126(2), 287 (1979).
[CrossRef]

Pinzone, C.

E. Schubert, S. Downey, C. Pinzone, and A. Emerson, “Evidence of very strong inter-epitaxial-layer diffusion in Zn-doped GaInPAs/InP structures,” Appl. Phys. Mater. Sci.60, 525–527 (1995).

Piprek, J.

Pommereau, F.

M. Chtioui, F. Lelarge, A. Enard, F. Pommereau, D. Carpentier, A. Marceaux, F. van Dijk, and M. Achouche, “High responsivity and high power UTC and MUTC GaInAs-InP photodiodes,” IEEE Photon. Technol. Lett.24(4), 318–320 (2012).
[CrossRef]

M. Chtioui, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, C. Jany, A. Enard, and M. Achouche, “Thick absorption layer uni-traveling-carrier photodiodes with high responsivity, high speed, and high saturation power,” IEEE Photon. Technol. Lett.21(7), 429–431 (2009).
[CrossRef]

Renaud, C.

E. Rouvalis, C. Renaud, D. Moodie, M. Robertson, and A. Seeds, “Continuous wave terahertz generation from ultra-fast InP-based photodiodes,” IEEE Trans. Microw. Theory Tech.60(3), 509–517 (2012).
[CrossRef]

C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE6194, 61940C (2006).

Renaud, C. C.

Roberts, J. S.

C. P. Liu, A. Seeds, J. S. Chadha, P. N. Stavrinou, G. Parry, M. Whitehead, A. B. Krysa, and J. S. Roberts, “Design fabrication and characterisation of normal-incidence 1.56-mum multiple-quantum-well asymmetric Fabry-Perot modulators for passive picocells,” IEICE Trans. Electron. E Series C 86, 1281–1289 (2003).

P. A. Claxton, J. S. Roberts, J. P. R. David, C. M. Sotomayor-Torres, M. S. Skolnick, P. R. Tapster, and K. J. Nash, “Growth and characterisation of quantum wells and selectively doped heterostructures of InP/Ga0.47In0.53As grown by solid source MBE,” J. Cryst. Growth81(1-4), 288–295 (1987).
[CrossRef]

Robertson, M.

E. Rouvalis, C. Renaud, D. Moodie, M. Robertson, and A. Seeds, “Continuous wave terahertz generation from ultra-fast InP-based photodiodes,” IEEE Trans. Microw. Theory Tech.60(3), 509–517 (2012).
[CrossRef]

C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE6194, 61940C (2006).

Robertson, M. J.

Rogers, D.

C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE6194, 61940C (2006).

Rousseau, B.

M. Chtioui, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, C. Jany, A. Enard, and M. Achouche, “Thick absorption layer uni-traveling-carrier photodiodes with high responsivity, high speed, and high saturation power,” IEEE Photon. Technol. Lett.21(7), 429–431 (2009).
[CrossRef]

Rouvalis, E.

E. Rouvalis, C. Renaud, D. Moodie, M. Robertson, and A. Seeds, “Continuous wave terahertz generation from ultra-fast InP-based photodiodes,” IEEE Trans. Microw. Theory Tech.60(3), 509–517 (2012).
[CrossRef]

E. Rouvalis, C. C. Renaud, D. G. Moodie, M. J. Robertson, and A. J. Seeds, “Traveling-wave uni-traveling carrier photodiodes for continuous wave THz generation,” Opt. Express18(11), 11105–11110 (2010).
[CrossRef] [PubMed]

Salokatve, A.

M. Pessa, M. Toivonen, M. Jalonen, P. Savolainen, and A. Salokatve, “All-solid-source molecular beam epitaxy for growth of III–V compound semiconductors,” Thin Solid Films306(2), 237–243 (1997).
[CrossRef]

M. Toivonen, A. Salokatve, M. Jalonen, J. Näppi, H. Asonen, M. Pessa, and R. Murison, “All solid source molecular beam epitaxy growth of 1.35 μm wavelength strained-layer InGaAsP quantum well laser,” Electron. Lett.31(10), 797–799 (1995).
[CrossRef]

Savolainen, P.

M. Pessa, M. Toivonen, M. Jalonen, P. Savolainen, and A. Salokatve, “All-solid-source molecular beam epitaxy for growth of III–V compound semiconductors,” Thin Solid Films306(2), 237–243 (1997).
[CrossRef]

Schlachetzki, A.

F. Fiedler, A. Schlachetzki, and G. Klein, “Material-selective etching of InP and an InGaAsP alloy,” J. Mater. Sci.17(10), 2911–2918 (1982).
[CrossRef]

Schubert, E.

E. Schubert, S. Downey, C. Pinzone, and A. Emerson, “Evidence of very strong inter-epitaxial-layer diffusion in Zn-doped GaInPAs/InP structures,” Appl. Phys. Mater. Sci.60, 525–527 (1995).

Seeds, A.

E. Rouvalis, C. Renaud, D. Moodie, M. Robertson, and A. Seeds, “Continuous wave terahertz generation from ultra-fast InP-based photodiodes,” IEEE Trans. Microw. Theory Tech.60(3), 509–517 (2012).
[CrossRef]

C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE6194, 61940C (2006).

C. P. Liu, A. Seeds, J. S. Chadha, P. N. Stavrinou, G. Parry, M. Whitehead, A. B. Krysa, and J. S. Roberts, “Design fabrication and characterisation of normal-incidence 1.56-mum multiple-quantum-well asymmetric Fabry-Perot modulators for passive picocells,” IEICE Trans. Electron. E Series C 86, 1281–1289 (2003).

Seeds, A. J.

Skolnick, M. S.

P. A. Claxton, J. S. Roberts, J. P. R. David, C. M. Sotomayor-Torres, M. S. Skolnick, P. R. Tapster, and K. J. Nash, “Growth and characterisation of quantum wells and selectively doped heterostructures of InP/Ga0.47In0.53As grown by solid source MBE,” J. Cryst. Growth81(1-4), 288–295 (1987).
[CrossRef]

Sotomayor-Torres, C. M.

P. A. Claxton, J. S. Roberts, J. P. R. David, C. M. Sotomayor-Torres, M. S. Skolnick, P. R. Tapster, and K. J. Nash, “Growth and characterisation of quantum wells and selectively doped heterostructures of InP/Ga0.47In0.53As grown by solid source MBE,” J. Cryst. Growth81(1-4), 288–295 (1987).
[CrossRef]

Stavrinou, P. N.

C. P. Liu, A. Seeds, J. S. Chadha, P. N. Stavrinou, G. Parry, M. Whitehead, A. B. Krysa, and J. S. Roberts, “Design fabrication and characterisation of normal-incidence 1.56-mum multiple-quantum-well asymmetric Fabry-Perot modulators for passive picocells,” IEICE Trans. Electron. E Series C 86, 1281–1289 (2003).

Tapster, P. R.

P. A. Claxton, J. S. Roberts, J. P. R. David, C. M. Sotomayor-Torres, M. S. Skolnick, P. R. Tapster, and K. J. Nash, “Growth and characterisation of quantum wells and selectively doped heterostructures of InP/Ga0.47In0.53As grown by solid source MBE,” J. Cryst. Growth81(1-4), 288–295 (1987).
[CrossRef]

Thiel, F.

J. Baillargeon, A. Cho, F. Thiel, R. J. Fischer, P. J. Pearah, and K. Y. Cheng, “Reproducibility studies of lattice matched InGaAsP on (100) InP grown by molecular beam epitaxy using solid phosphorus,” Appl. Phys. Lett.65(2), 207–209 (1994).
[CrossRef]

Toivonen, M.

M. Pessa, M. Toivonen, M. Jalonen, P. Savolainen, and A. Salokatve, “All-solid-source molecular beam epitaxy for growth of III–V compound semiconductors,” Thin Solid Films306(2), 237–243 (1997).
[CrossRef]

M. Toivonen, A. Salokatve, M. Jalonen, J. Näppi, H. Asonen, M. Pessa, and R. Murison, “All solid source molecular beam epitaxy growth of 1.35 μm wavelength strained-layer InGaAsP quantum well laser,” Electron. Lett.31(10), 797–799 (1995).
[CrossRef]

Toujou, F.

N. Otsuka, M. Kito, M. Ishino, Y. Matsui, and F. Toujou, “Control of double diffusion front unintentionally penetrated from a Zn doped InP layer during metalorganic vapor phase epitaxy,” J. Appl. Phys.84(8), 4239 (1998).
[CrossRef]

van Dijk, F.

M. Chtioui, F. Lelarge, A. Enard, F. Pommereau, D. Carpentier, A. Marceaux, F. van Dijk, and M. Achouche, “High responsivity and high power UTC and MUTC GaInAs-InP photodiodes,” IEEE Photon. Technol. Lett.24(4), 318–320 (2012).
[CrossRef]

Varriano, J.

G. Wicks, M. Koch, J. Varriano, F. G. Johnson, C. R. Wie, H. M. Kim, and P. Colombo, “Use of a valved, solid phosphorus source for the growth of Ga0.5In0.5P and Al0.5In0.5P by molecular beam epitaxy,” Appl. Phys. Lett.59(3), 342–344 (1991).
[CrossRef]

Wamsley, C. C.

C. C. Wamsley, M. W. Koch, and G. W. Wicks, “Solid source molecular beam epitaxy of InGaAsP/InP: growth mechanisms and machine operation,” J. Vac. Sci. Technol. B14(3), 2322–2324 (1996).
[CrossRef]

Wang, X.

X. Wang, N. Duan, H. Chen, and J. C. Campbell, “InGaAs – InP photodiodes with high responsivity and high saturation power,” IEEE Photon. Technol. Lett.19(16), 1272–1274 (2007).
[CrossRef]

N. Duan, X. Wang, N. Li, H. Liu, and J. C. Campbell, “Thermal analysis of high-power InGaAs–InP photodiodes,” IEEE J. Quantum Electron.42(12), 1255–1258 (2006).
[CrossRef]

Weiss, R.

G. Davis, R. Weiss, R. LaRue, K. J. Williams, and R. D. Esman, “A 920-1650-nm high-current photodetector,” IEEE Photon. Technol. Lett.8(10), 1373–1375 (1996).
[CrossRef]

Whitehead, M.

C. P. Liu, A. Seeds, J. S. Chadha, P. N. Stavrinou, G. Parry, M. Whitehead, A. B. Krysa, and J. S. Roberts, “Design fabrication and characterisation of normal-incidence 1.56-mum multiple-quantum-well asymmetric Fabry-Perot modulators for passive picocells,” IEICE Trans. Electron. E Series C 86, 1281–1289 (2003).

Wicks, G.

G. Wicks, M. Koch, J. Varriano, F. G. Johnson, C. R. Wie, H. M. Kim, and P. Colombo, “Use of a valved, solid phosphorus source for the growth of Ga0.5In0.5P and Al0.5In0.5P by molecular beam epitaxy,” Appl. Phys. Lett.59(3), 342–344 (1991).
[CrossRef]

Wicks, G. W.

C. C. Wamsley, M. W. Koch, and G. W. Wicks, “Solid source molecular beam epitaxy of InGaAsP/InP: growth mechanisms and machine operation,” J. Vac. Sci. Technol. B14(3), 2322–2324 (1996).
[CrossRef]

Wie, C. R.

G. Wicks, M. Koch, J. Varriano, F. G. Johnson, C. R. Wie, H. M. Kim, and P. Colombo, “Use of a valved, solid phosphorus source for the growth of Ga0.5In0.5P and Al0.5In0.5P by molecular beam epitaxy,” Appl. Phys. Lett.59(3), 342–344 (1991).
[CrossRef]

Williams, K.

Williams, K. J.

G. Davis, R. Weiss, R. LaRue, K. J. Williams, and R. D. Esman, “A 920-1650-nm high-current photodetector,” IEEE Photon. Technol. Lett.8(10), 1373–1375 (1996).
[CrossRef]

Appl. Phys. Lett.

J. Baillargeon, A. Cho, F. Thiel, R. J. Fischer, P. J. Pearah, and K. Y. Cheng, “Reproducibility studies of lattice matched InGaAsP on (100) InP grown by molecular beam epitaxy using solid phosphorus,” Appl. Phys. Lett.65(2), 207–209 (1994).
[CrossRef]

G. Wicks, M. Koch, J. Varriano, F. G. Johnson, C. R. Wie, H. M. Kim, and P. Colombo, “Use of a valved, solid phosphorus source for the growth of Ga0.5In0.5P and Al0.5In0.5P by molecular beam epitaxy,” Appl. Phys. Lett.59(3), 342–344 (1991).
[CrossRef]

Appl. Phys. Mater. Sci.

E. Schubert, S. Downey, C. Pinzone, and A. Emerson, “Evidence of very strong inter-epitaxial-layer diffusion in Zn-doped GaInPAs/InP structures,” Appl. Phys. Mater. Sci.60, 525–527 (1995).

Electron. Lett.

H. Ito, T. Furuta, S. Kodama, and T. Ishibashi, “InP/InGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth,” Electron. Lett.36(21), 1809–1810 (2000).
[CrossRef]

M. Toivonen, A. Salokatve, M. Jalonen, J. Näppi, H. Asonen, M. Pessa, and R. Murison, “All solid source molecular beam epitaxy growth of 1.35 μm wavelength strained-layer InGaAsP quantum well laser,” Electron. Lett.31(10), 797–799 (1995).
[CrossRef]

IEEE J. Quantum Electron.

N. Duan, X. Wang, N. Li, H. Liu, and J. C. Campbell, “Thermal analysis of high-power InGaAs–InP photodiodes,” IEEE J. Quantum Electron.42(12), 1255–1258 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

M. Chtioui, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, C. Jany, A. Enard, and M. Achouche, “Thick absorption layer uni-traveling-carrier photodiodes with high responsivity, high speed, and high saturation power,” IEEE Photon. Technol. Lett.21(7), 429–431 (2009).
[CrossRef]

M. Chtioui, F. Lelarge, A. Enard, F. Pommereau, D. Carpentier, A. Marceaux, F. van Dijk, and M. Achouche, “High responsivity and high power UTC and MUTC GaInAs-InP photodiodes,” IEEE Photon. Technol. Lett.24(4), 318–320 (2012).
[CrossRef]

G. Davis, R. Weiss, R. LaRue, K. J. Williams, and R. D. Esman, “A 920-1650-nm high-current photodetector,” IEEE Photon. Technol. Lett.8(10), 1373–1375 (1996).
[CrossRef]

X. Wang, N. Duan, H. Chen, and J. C. Campbell, “InGaAs – InP photodiodes with high responsivity and high saturation power,” IEEE Photon. Technol. Lett.19(16), 1272–1274 (2007).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

E. Rouvalis, C. Renaud, D. Moodie, M. Robertson, and A. Seeds, “Continuous wave terahertz generation from ultra-fast InP-based photodiodes,” IEEE Trans. Microw. Theory Tech.60(3), 509–517 (2012).
[CrossRef]

IEICE Trans. Electron. E Series

C. P. Liu, A. Seeds, J. S. Chadha, P. N. Stavrinou, G. Parry, M. Whitehead, A. B. Krysa, and J. S. Roberts, “Design fabrication and characterisation of normal-incidence 1.56-mum multiple-quantum-well asymmetric Fabry-Perot modulators for passive picocells,” IEICE Trans. Electron. E Series C 86, 1281–1289 (2003).

III-Vs Rev.

M. Henini, “Recent developments in InP and related compounds,” III-Vs Rev.13(2), 34–43 (2000).
[CrossRef]

J. Appl. Phys.

N. Otsuka, M. Kito, M. Ishino, Y. Matsui, and F. Toujou, “Control of double diffusion front unintentionally penetrated from a Zn doped InP layer during metalorganic vapor phase epitaxy,” J. Appl. Phys.84(8), 4239 (1998).
[CrossRef]

J. Cryst. Growth

P. A. Claxton, J. S. Roberts, J. P. R. David, C. M. Sotomayor-Torres, M. S. Skolnick, P. R. Tapster, and K. J. Nash, “Growth and characterisation of quantum wells and selectively doped heterostructures of InP/Ga0.47In0.53As grown by solid source MBE,” J. Cryst. Growth81(1-4), 288–295 (1987).
[CrossRef]

J. Electrochem. Soc.

S. Phatak and G. Kelner, “Material-selective chemical etching in the system InGaAsP/ InP,” J. Electrochem. Soc.126(2), 287 (1979).
[CrossRef]

S. Adachi, “Chemical etching of InP and InGaAsP/InP,” J. Electrochem. Soc.129(3), 609 (1982).
[CrossRef]

M. Panish, “Molecular beam epitaxy of GaAs and InP with gas sources for As and P,” J. Electrochem. Soc.127(12), 2729–2733 (1980).
[CrossRef]

J. Lightwave Technol.

J. Mater. Sci.

F. Fiedler, A. Schlachetzki, and G. Klein, “Material-selective etching of InP and an InGaAsP alloy,” J. Mater. Sci.17(10), 2911–2918 (1982).
[CrossRef]

J. Vac. Sci. Technol. B

D. Miller and S. Bose, “Design and operation of a valved solid-source As2 oven for molecular beam epitaxy,” J. Vac. Sci. Technol. B8(2), 311–315 (1990).
[CrossRef]

C. C. Wamsley, M. W. Koch, and G. W. Wicks, “Solid source molecular beam epitaxy of InGaAsP/InP: growth mechanisms and machine operation,” J. Vac. Sci. Technol. B14(3), 2322–2324 (1996).
[CrossRef]

Laser Photonics Rev.

T. Nagatsuma, H. Ito, and T. Ishibashi, “High-power photodiodes and their applications,” Laser Photonics Rev.3, 123–137 (2009).
[CrossRef]

Opt. Express

Proc. SPIE

C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE6194, 61940C (2006).

Semicond. Sci. Technol.

H. Ito, F. Nakajima, T. Furuta, and T. Ishibashi, “Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes,” Semicond. Sci. Technol.20(7), S191–S198 (2005).
[CrossRef]

Thin Solid Films

M. Pessa, M. Toivonen, M. Jalonen, P. Savolainen, and A. Salokatve, “All-solid-source molecular beam epitaxy for growth of III–V compound semiconductors,” Thin Solid Films306(2), 237–243 (1997).
[CrossRef]

Other

C. Doerr, “InP-based high-speed photonic devices,” in Proceedings of Optical Fiber Communications (OFC)/National Fiber Optic Engineers Conf. (2008).

C. Renaud, D. Moodie, M. Robertson, and A. Seeds, “High output power at 110 GHz with a waveguide uni-travelling carrier photodiode,” Lasers and Electro-Optics Society 2007. LEOS 2007. The 20th Annual Meeting of the IEEE 782–783 (2007).

H. Ito, T. Nagatsuma, A. Hirata, T. Minotani, A. Sasaki, Y. Hirota, and T. Ishibashi, “High-power photonic millimetre wave generation at 100 GHz using matching-circuit-integrated uni-travelling-carrier photodiodes,” in IEE Proc.-Optoelectron. - (IET, 2003), 150, 138–142.

A. Beling, Z. Li, Y. Fu, H. Pan, and J. C. Campbell, “High-power and high-linearity photodiodes,” IEEE Photonic Society 24th Annual Meeting 1, 19–20 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

High-resolution X-ray diffraction diagram of 300 nm thick InGaAsP layer and subsequent 7-period (10-nm InGaAsP/10-nm InP) superlattice grown on InP substrate by SSMBE.

Fig. 2
Fig. 2

(a) Top microscopic view of an entire air-bridged normal incidence UTC-PD, (b) Schematic cross-section of the air-bridged normal incidence UTC.

Fig. 3
Fig. 3

I-V characteristic of the device showing 70 mA current for a 3 V forward bias and 23 nA of dark current for a reverse bias of −5 V. The 24 Ω value of series resistance shown by the photodiode is due to non optimal ohmic contacts.

Fig. 4
Fig. 4

C-V measurement displaying a capacitance of circa 200 fF when biased at −5 V.

Fig. 5
Fig. 5

Responsivity measurements.

Fig. 6
Fig. 6

Relative frequency response measured with the Lightwave component analyser for bias values ranging from −1.2 to −2.4 V. The photodiode exhibits a 3dB bandwidth of approximately 12.5 GHz. The minima visible at 10 GHz, 15 GHz and 20 GHz are due to the microstrip mount.

Fig. 7
Fig. 7

RF power over the frequency delivered by the device to the effective 25 Ω load. In agreement with the relative frequency response measurements, ripples are visible due to the microstrip mount.

Tables (1)

Tables Icon

Table 1 Detailed UTC layer structure grown by SSMBE

Metrics