Abstract

We present the design, the fabrication and the characterization of a tunable one-dimensional (1D) photonic crystal cavity (PCC) etched on two vertically-coupled GaAs nanobeams. A novel fabrication method which prevents their adhesion under capillary forces is introduced. We discuss a design to increase the flexibility of the structure and we demonstrate a large reversible and controllable electromechanical wavelength tuning (> 15 nm) of the cavity modes.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, “Optomechanical wavelength and energy conversion in high-Q double-layer cavities of photonic crystal slabs,” Phys. Rev. Lett. 97(2), 023903 (2006).
    [CrossRef] [PubMed]
  2. I. W. Frank, P. B. Deotare, M. W. McCutcheon, and M. Lon?ar, “Programmable photonic crystal nanobeam cavities,” Opt. Express 18(8) 8705–8712 (2010).
    [CrossRef] [PubMed]
  3. R. Perahia, J. D. Cohen, S. Meenehan, T. P. Mayer Alegre, and O. Painter, “Electrostatically tunable optomechanical zipper cavity laser,” Appl. Phys. Lett. 97(19), 191112 (2010).
    [CrossRef]
  4. X. Chew, G. Zhou, H. Yu, F. S. Chau, J. Deng, Y. C. Loke, and X. Tang, “An in-plane nano-mechanics approach to achieve reversible resonance control of photonic crystal nanocavities,” Opt. Express 18(21), 22232–22244 (2010).
    [CrossRef] [PubMed]
  5. M. Winger, T. D. Blasius, T. P. Mayer Alegre, A. H. Safavi-Naeini, S. Meenehan, J. Cohen, S. Stobbe, and O. Painter, “A chip-scale integrated cavity-electro-optomechanics platform,” Opt. Express 19(25), 24905–24921 (2011).
    [CrossRef]
  6. L. Balet, M. Francardi, A. Gerardino, N. Chauvin, B. Alloing, C. Zinoni, C. Monat, L. H. Li, N. Le Thomas, R. Houdré, and A. Fiore, “Enhanced spontaneous emission rate from single InAs quantum dots in a photonic crystal nanocavity at telecom wavelengths,” Appl. Phys. Lett. 91(12), 123115 (2007).
    [CrossRef]
  7. G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2, 81–90 (2006).
    [CrossRef]
  8. L. Midolo, P. J. van Veldhoven, M. A. Dündar, R. Nötzel, and A. Fiore, “Electromechanical wavelength tuning of double-membrane photonic crystal cavities,” Appl. Phys. Lett. 98(21), 211120 (2011).
    [CrossRef]
  9. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lon?ar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 91(12), 121106 (2009).
    [CrossRef]
  10. A. R. Md Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express 16(16), 12084–12089 (2008).
    [CrossRef]
  11. J. D. Joannopoulos, S. G. Johnson, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light2nd ed. (Princeton Univ. Press, 2008).
  12. COMSOL Multiphysics 3.5a (2009).
  13. F. Römer, B. Witzigmann, O. Chinellato, and P. Arbenz, “Investigation of the Purcell effect in photonic crystal cavities with a 3D finite element Maxwell solver,” Opt. Quant. Electron. 39, 341–352 (2007).
    [CrossRef]
  14. Y. Xu, J. S. Vuc?kovi?, R. K. Lee, O. J. Painter, A. Scherer, and A. Yariv “Finite-difference time-domain calculation of spontaneous emission lifetime in a microcavity,” J. Opt. Soc. Am. B 16(3), 465–474 (1999).
    [CrossRef]
  15. Y. Akahane, T. Asano, B. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature (London) 425, 944–947 (2003).
    [CrossRef]
  16. N. Le Thomas and R. Houdré, “Inhibited emission of electromagnetic modes confined in subwavelength cavities,” Phys. Rev. B 84, 035320 (2011).
    [CrossRef]
  17. R. J. Roark and W. C. Young, Roark’s Formulas for Stress and Strain (McGraw-Hill, 1989).
    [PubMed]
  18. B. Alloing, C. Zinoni, V. Zwiller, L. H. Li, C. Monat, M. Gobet, G. Buchs, A. Fiore, E. Pelucchi, and E. Kapon, “Growth and characterization of single quantum dots emitting at 1300 nm,” Appl. Phys. Lett. 86(10), 101908 (2005).
    [CrossRef]
  19. C. H. Mastrangelo and C. H. Hsu, “Mechanical stability and adhesion of microstructures under capillary forces - Part I: basic theory” J. Microelectromech. Syst. 2(1), 33–43 (1993).
    [CrossRef]
  20. X. Sun, L. Hu, H. Song, Z. Li, D. Li, H. Jiang, and G. Miao, “Selective wet etching of Al0.7Ga0.3As layer in concentrated HCl solution for peeling off GaAs microtips,” Solid-State Electronics 53, 1032–1035 (2009).
    [CrossRef]
  21. E. Viasnoff-Schwoob, C. Weisbuch, H. Benisty, S. Olivier, S. Varoutsis, I. Robert-Philip, R. Houdré, and C. J. M. Smith, “Spontaneous emission enhancement of quantum dots in a photonic crystal wire,” Phys. Rev. Lett. 95, 183901 (2005).
    [CrossRef] [PubMed]

2011 (3)

M. Winger, T. D. Blasius, T. P. Mayer Alegre, A. H. Safavi-Naeini, S. Meenehan, J. Cohen, S. Stobbe, and O. Painter, “A chip-scale integrated cavity-electro-optomechanics platform,” Opt. Express 19(25), 24905–24921 (2011).
[CrossRef]

L. Midolo, P. J. van Veldhoven, M. A. Dündar, R. Nötzel, and A. Fiore, “Electromechanical wavelength tuning of double-membrane photonic crystal cavities,” Appl. Phys. Lett. 98(21), 211120 (2011).
[CrossRef]

N. Le Thomas and R. Houdré, “Inhibited emission of electromagnetic modes confined in subwavelength cavities,” Phys. Rev. B 84, 035320 (2011).
[CrossRef]

2010 (3)

2009 (3)

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lon?ar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 91(12), 121106 (2009).
[CrossRef]

COMSOL Multiphysics 3.5a (2009).

X. Sun, L. Hu, H. Song, Z. Li, D. Li, H. Jiang, and G. Miao, “Selective wet etching of Al0.7Ga0.3As layer in concentrated HCl solution for peeling off GaAs microtips,” Solid-State Electronics 53, 1032–1035 (2009).
[CrossRef]

2008 (1)

2007 (2)

F. Römer, B. Witzigmann, O. Chinellato, and P. Arbenz, “Investigation of the Purcell effect in photonic crystal cavities with a 3D finite element Maxwell solver,” Opt. Quant. Electron. 39, 341–352 (2007).
[CrossRef]

L. Balet, M. Francardi, A. Gerardino, N. Chauvin, B. Alloing, C. Zinoni, C. Monat, L. H. Li, N. Le Thomas, R. Houdré, and A. Fiore, “Enhanced spontaneous emission rate from single InAs quantum dots in a photonic crystal nanocavity at telecom wavelengths,” Appl. Phys. Lett. 91(12), 123115 (2007).
[CrossRef]

2006 (2)

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2, 81–90 (2006).
[CrossRef]

M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, “Optomechanical wavelength and energy conversion in high-Q double-layer cavities of photonic crystal slabs,” Phys. Rev. Lett. 97(2), 023903 (2006).
[CrossRef] [PubMed]

2005 (2)

B. Alloing, C. Zinoni, V. Zwiller, L. H. Li, C. Monat, M. Gobet, G. Buchs, A. Fiore, E. Pelucchi, and E. Kapon, “Growth and characterization of single quantum dots emitting at 1300 nm,” Appl. Phys. Lett. 86(10), 101908 (2005).
[CrossRef]

E. Viasnoff-Schwoob, C. Weisbuch, H. Benisty, S. Olivier, S. Varoutsis, I. Robert-Philip, R. Houdré, and C. J. M. Smith, “Spontaneous emission enhancement of quantum dots in a photonic crystal wire,” Phys. Rev. Lett. 95, 183901 (2005).
[CrossRef] [PubMed]

2003 (1)

Y. Akahane, T. Asano, B. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature (London) 425, 944–947 (2003).
[CrossRef]

1999 (1)

1993 (1)

C. H. Mastrangelo and C. H. Hsu, “Mechanical stability and adhesion of microstructures under capillary forces - Part I: basic theory” J. Microelectromech. Syst. 2(1), 33–43 (1993).
[CrossRef]

Akahane, Y.

Y. Akahane, T. Asano, B. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature (London) 425, 944–947 (2003).
[CrossRef]

Alloing, B.

L. Balet, M. Francardi, A. Gerardino, N. Chauvin, B. Alloing, C. Zinoni, C. Monat, L. H. Li, N. Le Thomas, R. Houdré, and A. Fiore, “Enhanced spontaneous emission rate from single InAs quantum dots in a photonic crystal nanocavity at telecom wavelengths,” Appl. Phys. Lett. 91(12), 123115 (2007).
[CrossRef]

B. Alloing, C. Zinoni, V. Zwiller, L. H. Li, C. Monat, M. Gobet, G. Buchs, A. Fiore, E. Pelucchi, and E. Kapon, “Growth and characterization of single quantum dots emitting at 1300 nm,” Appl. Phys. Lett. 86(10), 101908 (2005).
[CrossRef]

Arbenz, P.

F. Römer, B. Witzigmann, O. Chinellato, and P. Arbenz, “Investigation of the Purcell effect in photonic crystal cavities with a 3D finite element Maxwell solver,” Opt. Quant. Electron. 39, 341–352 (2007).
[CrossRef]

Asano, T.

Y. Akahane, T. Asano, B. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature (London) 425, 944–947 (2003).
[CrossRef]

Balet, L.

L. Balet, M. Francardi, A. Gerardino, N. Chauvin, B. Alloing, C. Zinoni, C. Monat, L. H. Li, N. Le Thomas, R. Houdré, and A. Fiore, “Enhanced spontaneous emission rate from single InAs quantum dots in a photonic crystal nanocavity at telecom wavelengths,” Appl. Phys. Lett. 91(12), 123115 (2007).
[CrossRef]

Benisty, H.

E. Viasnoff-Schwoob, C. Weisbuch, H. Benisty, S. Olivier, S. Varoutsis, I. Robert-Philip, R. Houdré, and C. J. M. Smith, “Spontaneous emission enhancement of quantum dots in a photonic crystal wire,” Phys. Rev. Lett. 95, 183901 (2005).
[CrossRef] [PubMed]

Blasius, T. D.

Buchs, G.

B. Alloing, C. Zinoni, V. Zwiller, L. H. Li, C. Monat, M. Gobet, G. Buchs, A. Fiore, E. Pelucchi, and E. Kapon, “Growth and characterization of single quantum dots emitting at 1300 nm,” Appl. Phys. Lett. 86(10), 101908 (2005).
[CrossRef]

Chau, F. S.

Chauvin, N.

L. Balet, M. Francardi, A. Gerardino, N. Chauvin, B. Alloing, C. Zinoni, C. Monat, L. H. Li, N. Le Thomas, R. Houdré, and A. Fiore, “Enhanced spontaneous emission rate from single InAs quantum dots in a photonic crystal nanocavity at telecom wavelengths,” Appl. Phys. Lett. 91(12), 123115 (2007).
[CrossRef]

Chew, X.

Chinellato, O.

F. Römer, B. Witzigmann, O. Chinellato, and P. Arbenz, “Investigation of the Purcell effect in photonic crystal cavities with a 3D finite element Maxwell solver,” Opt. Quant. Electron. 39, 341–352 (2007).
[CrossRef]

Cohen, J.

Cohen, J. D.

R. Perahia, J. D. Cohen, S. Meenehan, T. P. Mayer Alegre, and O. Painter, “Electrostatically tunable optomechanical zipper cavity laser,” Appl. Phys. Lett. 97(19), 191112 (2010).
[CrossRef]

De La Rue, R. M.

Deng, J.

Deotare, P. B.

I. W. Frank, P. B. Deotare, M. W. McCutcheon, and M. Lon?ar, “Programmable photonic crystal nanobeam cavities,” Opt. Express 18(8) 8705–8712 (2010).
[CrossRef] [PubMed]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lon?ar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 91(12), 121106 (2009).
[CrossRef]

Dündar, M. A.

L. Midolo, P. J. van Veldhoven, M. A. Dündar, R. Nötzel, and A. Fiore, “Electromechanical wavelength tuning of double-membrane photonic crystal cavities,” Appl. Phys. Lett. 98(21), 211120 (2011).
[CrossRef]

Fiore, A.

L. Midolo, P. J. van Veldhoven, M. A. Dündar, R. Nötzel, and A. Fiore, “Electromechanical wavelength tuning of double-membrane photonic crystal cavities,” Appl. Phys. Lett. 98(21), 211120 (2011).
[CrossRef]

L. Balet, M. Francardi, A. Gerardino, N. Chauvin, B. Alloing, C. Zinoni, C. Monat, L. H. Li, N. Le Thomas, R. Houdré, and A. Fiore, “Enhanced spontaneous emission rate from single InAs quantum dots in a photonic crystal nanocavity at telecom wavelengths,” Appl. Phys. Lett. 91(12), 123115 (2007).
[CrossRef]

B. Alloing, C. Zinoni, V. Zwiller, L. H. Li, C. Monat, M. Gobet, G. Buchs, A. Fiore, E. Pelucchi, and E. Kapon, “Growth and characterization of single quantum dots emitting at 1300 nm,” Appl. Phys. Lett. 86(10), 101908 (2005).
[CrossRef]

Francardi, M.

L. Balet, M. Francardi, A. Gerardino, N. Chauvin, B. Alloing, C. Zinoni, C. Monat, L. H. Li, N. Le Thomas, R. Houdré, and A. Fiore, “Enhanced spontaneous emission rate from single InAs quantum dots in a photonic crystal nanocavity at telecom wavelengths,” Appl. Phys. Lett. 91(12), 123115 (2007).
[CrossRef]

Frank, I. W.

I. W. Frank, P. B. Deotare, M. W. McCutcheon, and M. Lon?ar, “Programmable photonic crystal nanobeam cavities,” Opt. Express 18(8) 8705–8712 (2010).
[CrossRef] [PubMed]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lon?ar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 91(12), 121106 (2009).
[CrossRef]

Gerardino, A.

L. Balet, M. Francardi, A. Gerardino, N. Chauvin, B. Alloing, C. Zinoni, C. Monat, L. H. Li, N. Le Thomas, R. Houdré, and A. Fiore, “Enhanced spontaneous emission rate from single InAs quantum dots in a photonic crystal nanocavity at telecom wavelengths,” Appl. Phys. Lett. 91(12), 123115 (2007).
[CrossRef]

Gibbs, H. M.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2, 81–90 (2006).
[CrossRef]

Gobet, M.

B. Alloing, C. Zinoni, V. Zwiller, L. H. Li, C. Monat, M. Gobet, G. Buchs, A. Fiore, E. Pelucchi, and E. Kapon, “Growth and characterization of single quantum dots emitting at 1300 nm,” Appl. Phys. Lett. 86(10), 101908 (2005).
[CrossRef]

Houdré, R.

N. Le Thomas and R. Houdré, “Inhibited emission of electromagnetic modes confined in subwavelength cavities,” Phys. Rev. B 84, 035320 (2011).
[CrossRef]

L. Balet, M. Francardi, A. Gerardino, N. Chauvin, B. Alloing, C. Zinoni, C. Monat, L. H. Li, N. Le Thomas, R. Houdré, and A. Fiore, “Enhanced spontaneous emission rate from single InAs quantum dots in a photonic crystal nanocavity at telecom wavelengths,” Appl. Phys. Lett. 91(12), 123115 (2007).
[CrossRef]

E. Viasnoff-Schwoob, C. Weisbuch, H. Benisty, S. Olivier, S. Varoutsis, I. Robert-Philip, R. Houdré, and C. J. M. Smith, “Spontaneous emission enhancement of quantum dots in a photonic crystal wire,” Phys. Rev. Lett. 95, 183901 (2005).
[CrossRef] [PubMed]

Hsu, C. H.

C. H. Mastrangelo and C. H. Hsu, “Mechanical stability and adhesion of microstructures under capillary forces - Part I: basic theory” J. Microelectromech. Syst. 2(1), 33–43 (1993).
[CrossRef]

Hu, L.

X. Sun, L. Hu, H. Song, Z. Li, D. Li, H. Jiang, and G. Miao, “Selective wet etching of Al0.7Ga0.3As layer in concentrated HCl solution for peeling off GaAs microtips,” Solid-State Electronics 53, 1032–1035 (2009).
[CrossRef]

Jiang, H.

X. Sun, L. Hu, H. Song, Z. Li, D. Li, H. Jiang, and G. Miao, “Selective wet etching of Al0.7Ga0.3As layer in concentrated HCl solution for peeling off GaAs microtips,” Solid-State Electronics 53, 1032–1035 (2009).
[CrossRef]

Joannopoulos, J. D.

J. D. Joannopoulos, S. G. Johnson, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light2nd ed. (Princeton Univ. Press, 2008).

Johnson, N. P.

Johnson, S. G.

J. D. Joannopoulos, S. G. Johnson, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light2nd ed. (Princeton Univ. Press, 2008).

Kapon, E.

B. Alloing, C. Zinoni, V. Zwiller, L. H. Li, C. Monat, M. Gobet, G. Buchs, A. Fiore, E. Pelucchi, and E. Kapon, “Growth and characterization of single quantum dots emitting at 1300 nm,” Appl. Phys. Lett. 86(10), 101908 (2005).
[CrossRef]

Khan, M.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lon?ar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 91(12), 121106 (2009).
[CrossRef]

Khitrova, G.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2, 81–90 (2006).
[CrossRef]

Kira, M.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2, 81–90 (2006).
[CrossRef]

Koch, S. W.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2, 81–90 (2006).
[CrossRef]

Kuramochi, E.

M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, “Optomechanical wavelength and energy conversion in high-Q double-layer cavities of photonic crystal slabs,” Phys. Rev. Lett. 97(2), 023903 (2006).
[CrossRef] [PubMed]

Le Thomas, N.

N. Le Thomas and R. Houdré, “Inhibited emission of electromagnetic modes confined in subwavelength cavities,” Phys. Rev. B 84, 035320 (2011).
[CrossRef]

L. Balet, M. Francardi, A. Gerardino, N. Chauvin, B. Alloing, C. Zinoni, C. Monat, L. H. Li, N. Le Thomas, R. Houdré, and A. Fiore, “Enhanced spontaneous emission rate from single InAs quantum dots in a photonic crystal nanocavity at telecom wavelengths,” Appl. Phys. Lett. 91(12), 123115 (2007).
[CrossRef]

Lee, R. K.

Li, D.

X. Sun, L. Hu, H. Song, Z. Li, D. Li, H. Jiang, and G. Miao, “Selective wet etching of Al0.7Ga0.3As layer in concentrated HCl solution for peeling off GaAs microtips,” Solid-State Electronics 53, 1032–1035 (2009).
[CrossRef]

Li, L. H.

L. Balet, M. Francardi, A. Gerardino, N. Chauvin, B. Alloing, C. Zinoni, C. Monat, L. H. Li, N. Le Thomas, R. Houdré, and A. Fiore, “Enhanced spontaneous emission rate from single InAs quantum dots in a photonic crystal nanocavity at telecom wavelengths,” Appl. Phys. Lett. 91(12), 123115 (2007).
[CrossRef]

B. Alloing, C. Zinoni, V. Zwiller, L. H. Li, C. Monat, M. Gobet, G. Buchs, A. Fiore, E. Pelucchi, and E. Kapon, “Growth and characterization of single quantum dots emitting at 1300 nm,” Appl. Phys. Lett. 86(10), 101908 (2005).
[CrossRef]

Li, Z.

X. Sun, L. Hu, H. Song, Z. Li, D. Li, H. Jiang, and G. Miao, “Selective wet etching of Al0.7Ga0.3As layer in concentrated HCl solution for peeling off GaAs microtips,” Solid-State Electronics 53, 1032–1035 (2009).
[CrossRef]

Loke, Y. C.

Loncar, M.

I. W. Frank, P. B. Deotare, M. W. McCutcheon, and M. Lon?ar, “Programmable photonic crystal nanobeam cavities,” Opt. Express 18(8) 8705–8712 (2010).
[CrossRef] [PubMed]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lon?ar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 91(12), 121106 (2009).
[CrossRef]

Mastrangelo, C. H.

C. H. Mastrangelo and C. H. Hsu, “Mechanical stability and adhesion of microstructures under capillary forces - Part I: basic theory” J. Microelectromech. Syst. 2(1), 33–43 (1993).
[CrossRef]

Mayer Alegre, T. P.

M. Winger, T. D. Blasius, T. P. Mayer Alegre, A. H. Safavi-Naeini, S. Meenehan, J. Cohen, S. Stobbe, and O. Painter, “A chip-scale integrated cavity-electro-optomechanics platform,” Opt. Express 19(25), 24905–24921 (2011).
[CrossRef]

R. Perahia, J. D. Cohen, S. Meenehan, T. P. Mayer Alegre, and O. Painter, “Electrostatically tunable optomechanical zipper cavity laser,” Appl. Phys. Lett. 97(19), 191112 (2010).
[CrossRef]

McCutcheon, M. W.

I. W. Frank, P. B. Deotare, M. W. McCutcheon, and M. Lon?ar, “Programmable photonic crystal nanobeam cavities,” Opt. Express 18(8) 8705–8712 (2010).
[CrossRef] [PubMed]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lon?ar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 91(12), 121106 (2009).
[CrossRef]

Md Zain, A. R.

Meade, R. D.

J. D. Joannopoulos, S. G. Johnson, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light2nd ed. (Princeton Univ. Press, 2008).

Meenehan, S.

M. Winger, T. D. Blasius, T. P. Mayer Alegre, A. H. Safavi-Naeini, S. Meenehan, J. Cohen, S. Stobbe, and O. Painter, “A chip-scale integrated cavity-electro-optomechanics platform,” Opt. Express 19(25), 24905–24921 (2011).
[CrossRef]

R. Perahia, J. D. Cohen, S. Meenehan, T. P. Mayer Alegre, and O. Painter, “Electrostatically tunable optomechanical zipper cavity laser,” Appl. Phys. Lett. 97(19), 191112 (2010).
[CrossRef]

Miao, G.

X. Sun, L. Hu, H. Song, Z. Li, D. Li, H. Jiang, and G. Miao, “Selective wet etching of Al0.7Ga0.3As layer in concentrated HCl solution for peeling off GaAs microtips,” Solid-State Electronics 53, 1032–1035 (2009).
[CrossRef]

Midolo, L.

L. Midolo, P. J. van Veldhoven, M. A. Dündar, R. Nötzel, and A. Fiore, “Electromechanical wavelength tuning of double-membrane photonic crystal cavities,” Appl. Phys. Lett. 98(21), 211120 (2011).
[CrossRef]

Mitsugi, S.

M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, “Optomechanical wavelength and energy conversion in high-Q double-layer cavities of photonic crystal slabs,” Phys. Rev. Lett. 97(2), 023903 (2006).
[CrossRef] [PubMed]

Monat, C.

L. Balet, M. Francardi, A. Gerardino, N. Chauvin, B. Alloing, C. Zinoni, C. Monat, L. H. Li, N. Le Thomas, R. Houdré, and A. Fiore, “Enhanced spontaneous emission rate from single InAs quantum dots in a photonic crystal nanocavity at telecom wavelengths,” Appl. Phys. Lett. 91(12), 123115 (2007).
[CrossRef]

B. Alloing, C. Zinoni, V. Zwiller, L. H. Li, C. Monat, M. Gobet, G. Buchs, A. Fiore, E. Pelucchi, and E. Kapon, “Growth and characterization of single quantum dots emitting at 1300 nm,” Appl. Phys. Lett. 86(10), 101908 (2005).
[CrossRef]

Noda, S.

Y. Akahane, T. Asano, B. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature (London) 425, 944–947 (2003).
[CrossRef]

Notomi, M.

M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, “Optomechanical wavelength and energy conversion in high-Q double-layer cavities of photonic crystal slabs,” Phys. Rev. Lett. 97(2), 023903 (2006).
[CrossRef] [PubMed]

Nötzel, R.

L. Midolo, P. J. van Veldhoven, M. A. Dündar, R. Nötzel, and A. Fiore, “Electromechanical wavelength tuning of double-membrane photonic crystal cavities,” Appl. Phys. Lett. 98(21), 211120 (2011).
[CrossRef]

Olivier, S.

E. Viasnoff-Schwoob, C. Weisbuch, H. Benisty, S. Olivier, S. Varoutsis, I. Robert-Philip, R. Houdré, and C. J. M. Smith, “Spontaneous emission enhancement of quantum dots in a photonic crystal wire,” Phys. Rev. Lett. 95, 183901 (2005).
[CrossRef] [PubMed]

Painter, O.

M. Winger, T. D. Blasius, T. P. Mayer Alegre, A. H. Safavi-Naeini, S. Meenehan, J. Cohen, S. Stobbe, and O. Painter, “A chip-scale integrated cavity-electro-optomechanics platform,” Opt. Express 19(25), 24905–24921 (2011).
[CrossRef]

R. Perahia, J. D. Cohen, S. Meenehan, T. P. Mayer Alegre, and O. Painter, “Electrostatically tunable optomechanical zipper cavity laser,” Appl. Phys. Lett. 97(19), 191112 (2010).
[CrossRef]

Painter, O. J.

Pelucchi, E.

B. Alloing, C. Zinoni, V. Zwiller, L. H. Li, C. Monat, M. Gobet, G. Buchs, A. Fiore, E. Pelucchi, and E. Kapon, “Growth and characterization of single quantum dots emitting at 1300 nm,” Appl. Phys. Lett. 86(10), 101908 (2005).
[CrossRef]

Perahia, R.

R. Perahia, J. D. Cohen, S. Meenehan, T. P. Mayer Alegre, and O. Painter, “Electrostatically tunable optomechanical zipper cavity laser,” Appl. Phys. Lett. 97(19), 191112 (2010).
[CrossRef]

Roark, R. J.

R. J. Roark and W. C. Young, Roark’s Formulas for Stress and Strain (McGraw-Hill, 1989).
[PubMed]

Robert-Philip, I.

E. Viasnoff-Schwoob, C. Weisbuch, H. Benisty, S. Olivier, S. Varoutsis, I. Robert-Philip, R. Houdré, and C. J. M. Smith, “Spontaneous emission enhancement of quantum dots in a photonic crystal wire,” Phys. Rev. Lett. 95, 183901 (2005).
[CrossRef] [PubMed]

Römer, F.

F. Römer, B. Witzigmann, O. Chinellato, and P. Arbenz, “Investigation of the Purcell effect in photonic crystal cavities with a 3D finite element Maxwell solver,” Opt. Quant. Electron. 39, 341–352 (2007).
[CrossRef]

Safavi-Naeini, A. H.

Scherer, A.

Smith, C. J. M.

E. Viasnoff-Schwoob, C. Weisbuch, H. Benisty, S. Olivier, S. Varoutsis, I. Robert-Philip, R. Houdré, and C. J. M. Smith, “Spontaneous emission enhancement of quantum dots in a photonic crystal wire,” Phys. Rev. Lett. 95, 183901 (2005).
[CrossRef] [PubMed]

Song, B.

Y. Akahane, T. Asano, B. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature (London) 425, 944–947 (2003).
[CrossRef]

Song, H.

X. Sun, L. Hu, H. Song, Z. Li, D. Li, H. Jiang, and G. Miao, “Selective wet etching of Al0.7Ga0.3As layer in concentrated HCl solution for peeling off GaAs microtips,” Solid-State Electronics 53, 1032–1035 (2009).
[CrossRef]

Sorel, M.

Stobbe, S.

Sun, X.

X. Sun, L. Hu, H. Song, Z. Li, D. Li, H. Jiang, and G. Miao, “Selective wet etching of Al0.7Ga0.3As layer in concentrated HCl solution for peeling off GaAs microtips,” Solid-State Electronics 53, 1032–1035 (2009).
[CrossRef]

Tang, X.

Taniyama, H.

M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, “Optomechanical wavelength and energy conversion in high-Q double-layer cavities of photonic crystal slabs,” Phys. Rev. Lett. 97(2), 023903 (2006).
[CrossRef] [PubMed]

van Veldhoven, P. J.

L. Midolo, P. J. van Veldhoven, M. A. Dündar, R. Nötzel, and A. Fiore, “Electromechanical wavelength tuning of double-membrane photonic crystal cavities,” Appl. Phys. Lett. 98(21), 211120 (2011).
[CrossRef]

Varoutsis, S.

E. Viasnoff-Schwoob, C. Weisbuch, H. Benisty, S. Olivier, S. Varoutsis, I. Robert-Philip, R. Houdré, and C. J. M. Smith, “Spontaneous emission enhancement of quantum dots in a photonic crystal wire,” Phys. Rev. Lett. 95, 183901 (2005).
[CrossRef] [PubMed]

Viasnoff-Schwoob, E.

E. Viasnoff-Schwoob, C. Weisbuch, H. Benisty, S. Olivier, S. Varoutsis, I. Robert-Philip, R. Houdré, and C. J. M. Smith, “Spontaneous emission enhancement of quantum dots in a photonic crystal wire,” Phys. Rev. Lett. 95, 183901 (2005).
[CrossRef] [PubMed]

Vuc?kovic, J. S.

Weisbuch, C.

E. Viasnoff-Schwoob, C. Weisbuch, H. Benisty, S. Olivier, S. Varoutsis, I. Robert-Philip, R. Houdré, and C. J. M. Smith, “Spontaneous emission enhancement of quantum dots in a photonic crystal wire,” Phys. Rev. Lett. 95, 183901 (2005).
[CrossRef] [PubMed]

Winger, M.

Winn, J. N.

J. D. Joannopoulos, S. G. Johnson, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light2nd ed. (Princeton Univ. Press, 2008).

Witzigmann, B.

F. Römer, B. Witzigmann, O. Chinellato, and P. Arbenz, “Investigation of the Purcell effect in photonic crystal cavities with a 3D finite element Maxwell solver,” Opt. Quant. Electron. 39, 341–352 (2007).
[CrossRef]

Xu, Y.

Yariv, A.

Young, W. C.

R. J. Roark and W. C. Young, Roark’s Formulas for Stress and Strain (McGraw-Hill, 1989).
[PubMed]

Yu, H.

Zhou, G.

Zinoni, C.

L. Balet, M. Francardi, A. Gerardino, N. Chauvin, B. Alloing, C. Zinoni, C. Monat, L. H. Li, N. Le Thomas, R. Houdré, and A. Fiore, “Enhanced spontaneous emission rate from single InAs quantum dots in a photonic crystal nanocavity at telecom wavelengths,” Appl. Phys. Lett. 91(12), 123115 (2007).
[CrossRef]

B. Alloing, C. Zinoni, V. Zwiller, L. H. Li, C. Monat, M. Gobet, G. Buchs, A. Fiore, E. Pelucchi, and E. Kapon, “Growth and characterization of single quantum dots emitting at 1300 nm,” Appl. Phys. Lett. 86(10), 101908 (2005).
[CrossRef]

Zwiller, V.

B. Alloing, C. Zinoni, V. Zwiller, L. H. Li, C. Monat, M. Gobet, G. Buchs, A. Fiore, E. Pelucchi, and E. Kapon, “Growth and characterization of single quantum dots emitting at 1300 nm,” Appl. Phys. Lett. 86(10), 101908 (2005).
[CrossRef]

Appl. Phys. Lett. (5)

R. Perahia, J. D. Cohen, S. Meenehan, T. P. Mayer Alegre, and O. Painter, “Electrostatically tunable optomechanical zipper cavity laser,” Appl. Phys. Lett. 97(19), 191112 (2010).
[CrossRef]

L. Midolo, P. J. van Veldhoven, M. A. Dündar, R. Nötzel, and A. Fiore, “Electromechanical wavelength tuning of double-membrane photonic crystal cavities,” Appl. Phys. Lett. 98(21), 211120 (2011).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Lon?ar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 91(12), 121106 (2009).
[CrossRef]

L. Balet, M. Francardi, A. Gerardino, N. Chauvin, B. Alloing, C. Zinoni, C. Monat, L. H. Li, N. Le Thomas, R. Houdré, and A. Fiore, “Enhanced spontaneous emission rate from single InAs quantum dots in a photonic crystal nanocavity at telecom wavelengths,” Appl. Phys. Lett. 91(12), 123115 (2007).
[CrossRef]

B. Alloing, C. Zinoni, V. Zwiller, L. H. Li, C. Monat, M. Gobet, G. Buchs, A. Fiore, E. Pelucchi, and E. Kapon, “Growth and characterization of single quantum dots emitting at 1300 nm,” Appl. Phys. Lett. 86(10), 101908 (2005).
[CrossRef]

COMSOL Multiphysics 3.5a (1)

COMSOL Multiphysics 3.5a (2009).

J. Microelectromech. Syst. (1)

C. H. Mastrangelo and C. H. Hsu, “Mechanical stability and adhesion of microstructures under capillary forces - Part I: basic theory” J. Microelectromech. Syst. 2(1), 33–43 (1993).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Phys. (1)

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2, 81–90 (2006).
[CrossRef]

Nature (London) (1)

Y. Akahane, T. Asano, B. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature (London) 425, 944–947 (2003).
[CrossRef]

Opt. Express (4)

Opt. Quant. Electron. (1)

F. Römer, B. Witzigmann, O. Chinellato, and P. Arbenz, “Investigation of the Purcell effect in photonic crystal cavities with a 3D finite element Maxwell solver,” Opt. Quant. Electron. 39, 341–352 (2007).
[CrossRef]

Phys. Rev. B (1)

N. Le Thomas and R. Houdré, “Inhibited emission of electromagnetic modes confined in subwavelength cavities,” Phys. Rev. B 84, 035320 (2011).
[CrossRef]

Phys. Rev. Lett. (2)

M. Notomi, H. Taniyama, S. Mitsugi, and E. Kuramochi, “Optomechanical wavelength and energy conversion in high-Q double-layer cavities of photonic crystal slabs,” Phys. Rev. Lett. 97(2), 023903 (2006).
[CrossRef] [PubMed]

E. Viasnoff-Schwoob, C. Weisbuch, H. Benisty, S. Olivier, S. Varoutsis, I. Robert-Philip, R. Houdré, and C. J. M. Smith, “Spontaneous emission enhancement of quantum dots in a photonic crystal wire,” Phys. Rev. Lett. 95, 183901 (2005).
[CrossRef] [PubMed]

Solid-State Electronics (1)

X. Sun, L. Hu, H. Song, Z. Li, D. Li, H. Jiang, and G. Miao, “Selective wet etching of Al0.7Ga0.3As layer in concentrated HCl solution for peeling off GaAs microtips,” Solid-State Electronics 53, 1032–1035 (2009).
[CrossRef]

Other (2)

J. D. Joannopoulos, S. G. Johnson, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light2nd ed. (Princeton Univ. Press, 2008).

R. J. Roark and W. C. Young, Roark’s Formulas for Stress and Strain (McGraw-Hill, 1989).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Geometry of the 1D PCC on nanobeams and simulated in-plane mode profile of the Ey component. The symmetric (left) and anti-symmetric (right) vertical profiles of the coupled system is also shown. (b) Sketch of the proposed diode structure to realize short and tunable nanobeams: a 12×12μm2 doubly-clamped bridge with a 8μm long nanobeam in the center. Only the holes and the side trenches are etched through both membranes. By operating the junction under reverse bias, the electrostatic force bends the upper slab and brings the nanobeams at a closer distance.

Fig. 2
Fig. 2

(a) Results of a 3D FEM simulation of double nanobeams. The peak wavelength of the symmetric and the anti-symmetric modes are plotted against the intermembrane distance. The parameters are: thickness t = 160 nm, width w = 420 nm, lattice spacing a = 370 nm and hole radius r = 96 nm. The refractive index dispersion in GaAs is taken into account. λ0 is the wavelength in the uncoupled case (b) Calculated Q factor, obtained from the solution of the lossy eigenvalue problem. Q0 is the Q factor in the uncoupled case.

Fig. 3
Fig. 3

(a) The fabrication process used to realize freestanding nanobeams (seen in cross-section). (b) SEM picture of the cleaved hole cross-section after the sidewall fabrication but before wet undercut. The sidewalls cover the nanobeam but the holes are opened again. No Si3N4 is visible inside the hole. (c) 15 μm long free-standing nanobeams. Stress relaxation induces a large bending in different directions which may also cause the nanobeams to touch and adhere.

Fig. 4
Fig. 4

(a) SEM image of the final device used for the tuning experiments. (b) PL spectra at 0 and 15 V DC bias (maximum tuning) compared to FEM simulations. (c) Tuning curve of the observed 1D PCC peaks, showing the as-mode, the s-mode and a double antisymmetric dielectric band-edge mode. (d) Calculated displacement of the upper membrane as a function of the voltage. The curve has been fit with a lumped electrostatic model to extract the equivalent device stiffness keff.

Tables (1)

Tables Icon

Table 1 PCC and nanobeam geometry as measured from SEM. When not explicitly specified, an uncertainty on the measurement of ±10nm is expected.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

z 3 z 0 z 2 + ε 0 U 2 k = 0

Metrics