Abstract

We propose an optical sensor by integrating a circular-hole defect with an etched diffraction grating spectrometer based on amorphous silicon photonic platforms. There are some superiorities of this device, such as high sensitivity (~10000 nm/RIU), and ability to deliver component analysis from the near-infrared spectrum by using the integrated spectrometer. As application example, the chip is used for distinguishing similar biodiesel types and accurately determining their concentrations in a diesel oil mixture.

© 2012 OSA

Full Article  |  PDF Article

Errata

Jun Song, Xiang Zhou, Yuan-zhou Li, and Xuan Li, "On-chip spectrometer with a circular-hole defect for optical sensing applications: errata," Opt. Express 20, 24093-24093 (2012)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-20-21-24093

References

  • View by:
  • |
  • |
  • |

  1. J. A. Xia, A. M. Rossi, and T. E. Murphy, “Laser-written nanoporous silicon ridge waveguide for highly sensitive optical sensors,” Opt. Lett.37(2), 256–258 (2012).
    [CrossRef]
  2. D. J. Lee, H. D. Yim, S. G. Lee, and B. H. O, “Tiny surface plasmon resonance sensor integrated on silicon waveguide based on vertical coupling into finite metal-insulator-metal plasmonic waveguide,” Opt. Express19(21), 19895–19900 (2011).
    [CrossRef] [PubMed]
  3. N. A. Yebo, W. Bogaerts, Z. Hens, and R. Baets, “On-chip arrayed waveguide grating interrogated silicon-on-insulator microring resonator-based gas sensor,” IEEE Photon. Technol. Lett.23(20), 1505–1507 (2011).
    [CrossRef]
  4. H. X. Yi, D. S. Citrin, and Z. P. Zhou, “Highly sensitive silicon microring sensor with sharp asymmetrical resonance,” Opt. Express18(3), 2967–2972 (2010).
    [CrossRef] [PubMed]
  5. B. Y. Fan, F. Liu, Y. X. Li, Y. D. Huang, Y. Miura, and D. Ohnishi, “Refractive index sensor based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide,” Appl. Phys. Lett.100(11), 111108 (2012).
    [CrossRef]
  6. L. J. Zhou, X. M. Sun, X. W. Li, and J. P. Chen, “Miniature microring resonator sensor based on a hybrid plasmonic waveguide,” Sensors (Basel)11(7), 6856–6867 (2011).
    [CrossRef] [PubMed]
  7. J. Song, Y. Z. Li, X. Zhou, and X. Li, “A highly sensitive optical sensor design by integrating a circular-hole defect with an etched diffraction grating spectrometer on an amorphous-silicon photonic chip,” IEEE Photonics J.4(2), 317–326 (2012).
    [CrossRef]
  8. F. Liu, R. Wan, Y. Huang, and J. Peng, “Refractive index dependence of the coupling characteristics between long-range surface-plasmon-polariton and dielectric waveguide modes,” Opt. Lett.34(17), 2697–2699 (2009).
    [CrossRef] [PubMed]
  9. R. Wan, F. Liu, and Y. Huang, “Ultrathin layer sensing based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide,” Opt. Lett.35(2), 244–246 (2010).
    [CrossRef] [PubMed]
  10. C. J. Chuck, C. D. Bannister, J. Gary Hawley, and M. G. Davidson, “Spectroscopic sensor techniques applicable to real-time biodiesel determination,” Fuel89(2), 457–461 (2010).
    [CrossRef]

2012 (3)

J. A. Xia, A. M. Rossi, and T. E. Murphy, “Laser-written nanoporous silicon ridge waveguide for highly sensitive optical sensors,” Opt. Lett.37(2), 256–258 (2012).
[CrossRef]

B. Y. Fan, F. Liu, Y. X. Li, Y. D. Huang, Y. Miura, and D. Ohnishi, “Refractive index sensor based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide,” Appl. Phys. Lett.100(11), 111108 (2012).
[CrossRef]

J. Song, Y. Z. Li, X. Zhou, and X. Li, “A highly sensitive optical sensor design by integrating a circular-hole defect with an etched diffraction grating spectrometer on an amorphous-silicon photonic chip,” IEEE Photonics J.4(2), 317–326 (2012).
[CrossRef]

2011 (3)

L. J. Zhou, X. M. Sun, X. W. Li, and J. P. Chen, “Miniature microring resonator sensor based on a hybrid plasmonic waveguide,” Sensors (Basel)11(7), 6856–6867 (2011).
[CrossRef] [PubMed]

D. J. Lee, H. D. Yim, S. G. Lee, and B. H. O, “Tiny surface plasmon resonance sensor integrated on silicon waveguide based on vertical coupling into finite metal-insulator-metal plasmonic waveguide,” Opt. Express19(21), 19895–19900 (2011).
[CrossRef] [PubMed]

N. A. Yebo, W. Bogaerts, Z. Hens, and R. Baets, “On-chip arrayed waveguide grating interrogated silicon-on-insulator microring resonator-based gas sensor,” IEEE Photon. Technol. Lett.23(20), 1505–1507 (2011).
[CrossRef]

2010 (3)

2009 (1)

Baets, R.

N. A. Yebo, W. Bogaerts, Z. Hens, and R. Baets, “On-chip arrayed waveguide grating interrogated silicon-on-insulator microring resonator-based gas sensor,” IEEE Photon. Technol. Lett.23(20), 1505–1507 (2011).
[CrossRef]

Bannister, C. D.

C. J. Chuck, C. D. Bannister, J. Gary Hawley, and M. G. Davidson, “Spectroscopic sensor techniques applicable to real-time biodiesel determination,” Fuel89(2), 457–461 (2010).
[CrossRef]

Bogaerts, W.

N. A. Yebo, W. Bogaerts, Z. Hens, and R. Baets, “On-chip arrayed waveguide grating interrogated silicon-on-insulator microring resonator-based gas sensor,” IEEE Photon. Technol. Lett.23(20), 1505–1507 (2011).
[CrossRef]

Chen, J. P.

L. J. Zhou, X. M. Sun, X. W. Li, and J. P. Chen, “Miniature microring resonator sensor based on a hybrid plasmonic waveguide,” Sensors (Basel)11(7), 6856–6867 (2011).
[CrossRef] [PubMed]

Chuck, C. J.

C. J. Chuck, C. D. Bannister, J. Gary Hawley, and M. G. Davidson, “Spectroscopic sensor techniques applicable to real-time biodiesel determination,” Fuel89(2), 457–461 (2010).
[CrossRef]

Citrin, D. S.

Davidson, M. G.

C. J. Chuck, C. D. Bannister, J. Gary Hawley, and M. G. Davidson, “Spectroscopic sensor techniques applicable to real-time biodiesel determination,” Fuel89(2), 457–461 (2010).
[CrossRef]

Fan, B. Y.

B. Y. Fan, F. Liu, Y. X. Li, Y. D. Huang, Y. Miura, and D. Ohnishi, “Refractive index sensor based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide,” Appl. Phys. Lett.100(11), 111108 (2012).
[CrossRef]

Gary Hawley, J.

C. J. Chuck, C. D. Bannister, J. Gary Hawley, and M. G. Davidson, “Spectroscopic sensor techniques applicable to real-time biodiesel determination,” Fuel89(2), 457–461 (2010).
[CrossRef]

Hens, Z.

N. A. Yebo, W. Bogaerts, Z. Hens, and R. Baets, “On-chip arrayed waveguide grating interrogated silicon-on-insulator microring resonator-based gas sensor,” IEEE Photon. Technol. Lett.23(20), 1505–1507 (2011).
[CrossRef]

Huang, Y.

Huang, Y. D.

B. Y. Fan, F. Liu, Y. X. Li, Y. D. Huang, Y. Miura, and D. Ohnishi, “Refractive index sensor based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide,” Appl. Phys. Lett.100(11), 111108 (2012).
[CrossRef]

Lee, D. J.

Lee, S. G.

Li, X.

J. Song, Y. Z. Li, X. Zhou, and X. Li, “A highly sensitive optical sensor design by integrating a circular-hole defect with an etched diffraction grating spectrometer on an amorphous-silicon photonic chip,” IEEE Photonics J.4(2), 317–326 (2012).
[CrossRef]

Li, X. W.

L. J. Zhou, X. M. Sun, X. W. Li, and J. P. Chen, “Miniature microring resonator sensor based on a hybrid plasmonic waveguide,” Sensors (Basel)11(7), 6856–6867 (2011).
[CrossRef] [PubMed]

Li, Y. X.

B. Y. Fan, F. Liu, Y. X. Li, Y. D. Huang, Y. Miura, and D. Ohnishi, “Refractive index sensor based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide,” Appl. Phys. Lett.100(11), 111108 (2012).
[CrossRef]

Li, Y. Z.

J. Song, Y. Z. Li, X. Zhou, and X. Li, “A highly sensitive optical sensor design by integrating a circular-hole defect with an etched diffraction grating spectrometer on an amorphous-silicon photonic chip,” IEEE Photonics J.4(2), 317–326 (2012).
[CrossRef]

Liu, F.

Miura, Y.

B. Y. Fan, F. Liu, Y. X. Li, Y. D. Huang, Y. Miura, and D. Ohnishi, “Refractive index sensor based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide,” Appl. Phys. Lett.100(11), 111108 (2012).
[CrossRef]

Murphy, T. E.

O, B. H.

Ohnishi, D.

B. Y. Fan, F. Liu, Y. X. Li, Y. D. Huang, Y. Miura, and D. Ohnishi, “Refractive index sensor based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide,” Appl. Phys. Lett.100(11), 111108 (2012).
[CrossRef]

Peng, J.

Rossi, A. M.

Song, J.

J. Song, Y. Z. Li, X. Zhou, and X. Li, “A highly sensitive optical sensor design by integrating a circular-hole defect with an etched diffraction grating spectrometer on an amorphous-silicon photonic chip,” IEEE Photonics J.4(2), 317–326 (2012).
[CrossRef]

Sun, X. M.

L. J. Zhou, X. M. Sun, X. W. Li, and J. P. Chen, “Miniature microring resonator sensor based on a hybrid plasmonic waveguide,” Sensors (Basel)11(7), 6856–6867 (2011).
[CrossRef] [PubMed]

Wan, R.

Xia, J. A.

Yebo, N. A.

N. A. Yebo, W. Bogaerts, Z. Hens, and R. Baets, “On-chip arrayed waveguide grating interrogated silicon-on-insulator microring resonator-based gas sensor,” IEEE Photon. Technol. Lett.23(20), 1505–1507 (2011).
[CrossRef]

Yi, H. X.

Yim, H. D.

Zhou, L. J.

L. J. Zhou, X. M. Sun, X. W. Li, and J. P. Chen, “Miniature microring resonator sensor based on a hybrid plasmonic waveguide,” Sensors (Basel)11(7), 6856–6867 (2011).
[CrossRef] [PubMed]

Zhou, X.

J. Song, Y. Z. Li, X. Zhou, and X. Li, “A highly sensitive optical sensor design by integrating a circular-hole defect with an etched diffraction grating spectrometer on an amorphous-silicon photonic chip,” IEEE Photonics J.4(2), 317–326 (2012).
[CrossRef]

Zhou, Z. P.

Appl. Phys. Lett. (1)

B. Y. Fan, F. Liu, Y. X. Li, Y. D. Huang, Y. Miura, and D. Ohnishi, “Refractive index sensor based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide,” Appl. Phys. Lett.100(11), 111108 (2012).
[CrossRef]

Fuel (1)

C. J. Chuck, C. D. Bannister, J. Gary Hawley, and M. G. Davidson, “Spectroscopic sensor techniques applicable to real-time biodiesel determination,” Fuel89(2), 457–461 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

N. A. Yebo, W. Bogaerts, Z. Hens, and R. Baets, “On-chip arrayed waveguide grating interrogated silicon-on-insulator microring resonator-based gas sensor,” IEEE Photon. Technol. Lett.23(20), 1505–1507 (2011).
[CrossRef]

IEEE Photonics J. (1)

J. Song, Y. Z. Li, X. Zhou, and X. Li, “A highly sensitive optical sensor design by integrating a circular-hole defect with an etched diffraction grating spectrometer on an amorphous-silicon photonic chip,” IEEE Photonics J.4(2), 317–326 (2012).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Sensors (Basel) (1)

L. J. Zhou, X. M. Sun, X. W. Li, and J. P. Chen, “Miniature microring resonator sensor based on a hybrid plasmonic waveguide,” Sensors (Basel)11(7), 6856–6867 (2011).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The Schematic configuration of proposed optical sensor by integrating a circular-hole defect with an EDG spectrometer.

Fig. 2
Fig. 2

Top-view SEM pictures of the fabricated device corresponding to the region with the dotted square in Fig. 1.

Fig. 3
Fig. 3

Numerical analysis of the influence of the circular-hole defect size on the sensing application. (a) The calculated scattering loss with different wavelengths and diameters of the air circular-hole defect for a given refractive index (i.e., 1.455) of the analyte. (b) The calculated resonant scattering wavelength varies as the refractive index of the analyte increases for four resonant peaks marked in (a).

Fig. 4
Fig. 4

Measured results using the sensing chip with 2.4 nm channel interval. (a) The normalized transmission loss at 33 channels for three different SuEE concentrations in a diesel oil mixture. (b) The resonant scattering wavelength varies as the blend level of the SuEE in a diesel oil mixture increases. (c) The loss at the 1665 nm absorption peak varies as the blend level increases.

Fig. 5
Fig. 5

The resonant scattering wavelength varies as the blend level of the SuEE and SeMe in a diesel oil mixture increases based on the sensing chip with 0.5 nm channel interval.

Metrics