Abstract

We experimentally, analytically, and numerically demonstrate the nonlinear photo-induced plasmon-assisted magnetic response that occurs with metallic nanoparticles in aqueous solution. We measure the scattered spectra from solutions of gold nanospheres (10−7 fill factor) and observe appreciable changes when simultaneously applying DC magnetic fields and illuminating samples with light. The magnetic response is achieved using light from a solar simulator at unprecedented low illumination intensities (< 1W/cm2) and is sustained when the magnetic field is removed. Distinctly different behavior is observed depending on the circular-polarization handedness given a fixed magnetic field. Nanoparticle aggregation is more likely to occur when the circular-polarization trajectory opposes the solenoid current that produces the magnetic field. Using Mie’s theoretical solution, we show how vortex orbital surface currents lead to an increased and anisotropic electrical conductivity, which shifts the scattered spectra in agreement with experimental results. The single-nanoparticle plasmon-induced magnetization, which couples the scattered and incident electric fields, changes sign with orthogonal circular-polarization handedness.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Meixner, “The behavior of electromagnetic fields at edges,” Antennas Propaga.20, 442–446 (1972).
    [CrossRef]
  2. N. B. Baranova, B. Ya. Zel’dovich, A. V. Mamaev, N. F. Pilipetskii, and V. V. Shkukov, “Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment),” J. Exp. Theor. Phys. Lett.33, 195–199 (1981).
  3. D. Rozas, C. T. Law, and G. A. Swartzlander, “Propagation dynamics of optical vortices,” J. Opt. Soc. Amer. B14, 3054–3065 (1997).
    [CrossRef]
  4. A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90, 107404 (2003).
    [CrossRef] [PubMed]
  5. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95, 227401 (2005).
    [CrossRef] [PubMed]
  6. V.P. Drachev, W. D. Bragg, V. A. Podolskiy, V. P. Safonov, W.-T. Kim, Z. C. Ying, R. L. Armstrong, and V. M. Shalaev, “Large local optical activity in fractal aggregates of nanoparticles,” J. Opt. Soc. Amer. B18, 1896–1903 (2001).
    [CrossRef]
  7. I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, “Giant Goos-Hanchen effect at the reflection from left-handed metamaterials,” App. Phys. Lett.83, 2713–2715 (2003).
    [CrossRef]
  8. A. Alu, A. Salandrino, and N. Engheta, “Negative effective permeability and left-handed materials at optical frequencies,” Opt. Express14, 1557–1567 (2006).
    [CrossRef] [PubMed]
  9. J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” 328, 1135–1138 (2010).
  10. P. N. Stavrinou and L. Solymar, “Pulse delay and propagation through subwavelength metallic slits,” Phys. Rev. E68, 066604 (2003).
    [CrossRef]
  11. D. Crouse and P. Keshavareddy, “Role of optical and surface plasmon modes in enhanced transmission and applications,” Opt. Express13, 7760–7771 (2005).
    [CrossRef] [PubMed]
  12. V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett.7, 1996–1999 (2007).
    [CrossRef]
  13. H. Yu, M. Chen, P. M. Rice, S. X. Wang, R. L. White, and S. H. Sun, “Dumbbell-like bifunctional Au-Fe3O4 nanoparticles,” Nano Lett.5, 379–382 (2005).
    [CrossRef] [PubMed]
  14. H. Deng, J. Liu, W. Zhao, W. Zhang, X. Lin, T. Sun, Q. Dai, L. Wu, S. Lan, and A. V. Gopal, “Enhancement of switching speed by laser-induced clustering of nanoparticles in magnetic fluids,” App. Phys. Lett.92, 233103 (2008).
    [CrossRef]
  15. S. Mühlig, C. Rockstuhl, V. Yannopapas, T. Burgi, N. Shalkevich, and F. Lederer, “Optical properties of a fabricated self-assembled bottom-up bulk metamaterial,” Opt. Express19, 9607–9616 (2011).
    [CrossRef] [PubMed]
  16. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mat.9, 193–204 (2010).
    [CrossRef]
  17. L. T. Vuong, A. J. L. Adam, J. M. Brok, and H. P. Urbach, “Electromagnetic spin-orbit interactions via scattering of sub-wavelength apertures,” Phys. Rev. Lett.104, 083903 (2010).
    [CrossRef] [PubMed]
  18. S. N. Volkov, K. Dolgaleva, R. W. Boyd, K. Jefimovs, J. Turunen, Y. Svirko, B.K. Canfield, and M. Kauranen, “Optical activity in diffraction from a planar array of achiral nanoparticles,” Phys. Rev. A79, 043819 (2009).
    [CrossRef]
  19. S. N. Sheikholeslami, A. García-Etxarri, and J. A. Dionne, “Controlling the interplay of electric and magnetic modes via Fano-like plasmonic resonances,” Nano Lett.11, 3927–3934 (2011).
    [CrossRef] [PubMed]
  20. B. S. Luk’yanchuk and V. Ternovsky, “Light scattering by a thin wire with a surface-plasmon resonance: bifurcations of the Poynting vector eld,” Phys. Rev. B73, 235432 (2006).
    [CrossRef]
  21. M. V. Bashevoy, V. A. Fedotov, and N. I. Zheludev, “Optical whirlpool on an absorbing metallic nanoparticle,” Opt. Express13, 8372–8379 (2005).
    [CrossRef] [PubMed]
  22. S. V. Boriskina and B. M. Reinhard, “Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery,” Nanoscale4, 76–90 (2012).
    [CrossRef]
  23. M. Durach, A. Rusina, and M. I. Stockman, “Giant surface-plasmon-induced drag effect in metal nanowires,” Phys. Rev. Lett.103, 186801 (1990).
    [CrossRef]
  24. V. L. Gurevich, R. Laiho, and A. V. Lashkul, “Photomagnetism of metals,” Phys. Rev. Lett.69, 180–183 (1992).
    [CrossRef] [PubMed]
  25. V. L. Gurevich and R. Laiho, “Photomagnetism of metals: microscopic theory of the photoinduced surface current,” Phys. Rev. B48, 8307–8316 (1993).
    [CrossRef]
  26. O. Keller and G. Wang, “Angular momentum photon drag in a mesoscopic ring,” Opt. Commun.138, 75–80 (1997).
    [CrossRef]
  27. A. S. Vengurlekar and T. Ishihara, “Surface plasmon enhanced photon drag in metal films,” App. Phys. Lett.87, 091118 (2005).
    [CrossRef]
  28. N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B84, 035447 (2011).
    [CrossRef]
  29. Y. Gu and K. G. Kornev, “Plasmon enhanced direct and inverse Faraday effects in non-magnetic nanocomposites,” J. Opt. Soc. Am. B.27, 2165–2173 (2010).
    [CrossRef]
  30. R. Hertel, “Theory of the inverse Faraday effect in metals,” Journal of Magnetism and Magnetic Materials303, L1–L4 (2006).
    [CrossRef]
  31. D. Nykypanchuk, M. M. Mayer, D. van der Lelie, and O. Gang, “DNA-guided crystallization of colloidal nanoparticles,” Nature451, 549–552 (2008).
    [CrossRef] [PubMed]
  32. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, Cambridge, 1999), pp. 760–771.
  33. N. Satoh, H. Hasegawa, K. Tsujii, and K. Kimura, “Photoinduced coagulation of Au nanocolloids,” J. Phys. Chem.98, 2143–2147 (1994).
    [CrossRef]
  34. C. Timm and K. H. Bennemann, “Response theory for time-resolved second-harmonic generation and two-photon photoemission,” J. Phys.: Cond. Matt.16, 661–694 (2004).
    [CrossRef]

2012

S. V. Boriskina and B. M. Reinhard, “Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery,” Nanoscale4, 76–90 (2012).
[CrossRef]

2011

S. N. Sheikholeslami, A. García-Etxarri, and J. A. Dionne, “Controlling the interplay of electric and magnetic modes via Fano-like plasmonic resonances,” Nano Lett.11, 3927–3934 (2011).
[CrossRef] [PubMed]

N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B84, 035447 (2011).
[CrossRef]

S. Mühlig, C. Rockstuhl, V. Yannopapas, T. Burgi, N. Shalkevich, and F. Lederer, “Optical properties of a fabricated self-assembled bottom-up bulk metamaterial,” Opt. Express19, 9607–9616 (2011).
[CrossRef] [PubMed]

2010

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mat.9, 193–204 (2010).
[CrossRef]

L. T. Vuong, A. J. L. Adam, J. M. Brok, and H. P. Urbach, “Electromagnetic spin-orbit interactions via scattering of sub-wavelength apertures,” Phys. Rev. Lett.104, 083903 (2010).
[CrossRef] [PubMed]

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” 328, 1135–1138 (2010).

Y. Gu and K. G. Kornev, “Plasmon enhanced direct and inverse Faraday effects in non-magnetic nanocomposites,” J. Opt. Soc. Am. B.27, 2165–2173 (2010).
[CrossRef]

2009

S. N. Volkov, K. Dolgaleva, R. W. Boyd, K. Jefimovs, J. Turunen, Y. Svirko, B.K. Canfield, and M. Kauranen, “Optical activity in diffraction from a planar array of achiral nanoparticles,” Phys. Rev. A79, 043819 (2009).
[CrossRef]

2008

D. Nykypanchuk, M. M. Mayer, D. van der Lelie, and O. Gang, “DNA-guided crystallization of colloidal nanoparticles,” Nature451, 549–552 (2008).
[CrossRef] [PubMed]

H. Deng, J. Liu, W. Zhao, W. Zhang, X. Lin, T. Sun, Q. Dai, L. Wu, S. Lan, and A. V. Gopal, “Enhancement of switching speed by laser-induced clustering of nanoparticles in magnetic fluids,” App. Phys. Lett.92, 233103 (2008).
[CrossRef]

2007

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett.7, 1996–1999 (2007).
[CrossRef]

2006

A. Alu, A. Salandrino, and N. Engheta, “Negative effective permeability and left-handed materials at optical frequencies,” Opt. Express14, 1557–1567 (2006).
[CrossRef] [PubMed]

B. S. Luk’yanchuk and V. Ternovsky, “Light scattering by a thin wire with a surface-plasmon resonance: bifurcations of the Poynting vector eld,” Phys. Rev. B73, 235432 (2006).
[CrossRef]

R. Hertel, “Theory of the inverse Faraday effect in metals,” Journal of Magnetism and Magnetic Materials303, L1–L4 (2006).
[CrossRef]

2005

A. S. Vengurlekar and T. Ishihara, “Surface plasmon enhanced photon drag in metal films,” App. Phys. Lett.87, 091118 (2005).
[CrossRef]

M. V. Bashevoy, V. A. Fedotov, and N. I. Zheludev, “Optical whirlpool on an absorbing metallic nanoparticle,” Opt. Express13, 8372–8379 (2005).
[CrossRef] [PubMed]

D. Crouse and P. Keshavareddy, “Role of optical and surface plasmon modes in enhanced transmission and applications,” Opt. Express13, 7760–7771 (2005).
[CrossRef] [PubMed]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95, 227401 (2005).
[CrossRef] [PubMed]

H. Yu, M. Chen, P. M. Rice, S. X. Wang, R. L. White, and S. H. Sun, “Dumbbell-like bifunctional Au-Fe3O4 nanoparticles,” Nano Lett.5, 379–382 (2005).
[CrossRef] [PubMed]

2004

C. Timm and K. H. Bennemann, “Response theory for time-resolved second-harmonic generation and two-photon photoemission,” J. Phys.: Cond. Matt.16, 661–694 (2004).
[CrossRef]

2003

P. N. Stavrinou and L. Solymar, “Pulse delay and propagation through subwavelength metallic slits,” Phys. Rev. E68, 066604 (2003).
[CrossRef]

I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, “Giant Goos-Hanchen effect at the reflection from left-handed metamaterials,” App. Phys. Lett.83, 2713–2715 (2003).
[CrossRef]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90, 107404 (2003).
[CrossRef] [PubMed]

2001

V.P. Drachev, W. D. Bragg, V. A. Podolskiy, V. P. Safonov, W.-T. Kim, Z. C. Ying, R. L. Armstrong, and V. M. Shalaev, “Large local optical activity in fractal aggregates of nanoparticles,” J. Opt. Soc. Amer. B18, 1896–1903 (2001).
[CrossRef]

1997

D. Rozas, C. T. Law, and G. A. Swartzlander, “Propagation dynamics of optical vortices,” J. Opt. Soc. Amer. B14, 3054–3065 (1997).
[CrossRef]

O. Keller and G. Wang, “Angular momentum photon drag in a mesoscopic ring,” Opt. Commun.138, 75–80 (1997).
[CrossRef]

1994

N. Satoh, H. Hasegawa, K. Tsujii, and K. Kimura, “Photoinduced coagulation of Au nanocolloids,” J. Phys. Chem.98, 2143–2147 (1994).
[CrossRef]

1993

V. L. Gurevich and R. Laiho, “Photomagnetism of metals: microscopic theory of the photoinduced surface current,” Phys. Rev. B48, 8307–8316 (1993).
[CrossRef]

1992

V. L. Gurevich, R. Laiho, and A. V. Lashkul, “Photomagnetism of metals,” Phys. Rev. Lett.69, 180–183 (1992).
[CrossRef] [PubMed]

1990

M. Durach, A. Rusina, and M. I. Stockman, “Giant surface-plasmon-induced drag effect in metal nanowires,” Phys. Rev. Lett.103, 186801 (1990).
[CrossRef]

1981

N. B. Baranova, B. Ya. Zel’dovich, A. V. Mamaev, N. F. Pilipetskii, and V. V. Shkukov, “Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment),” J. Exp. Theor. Phys. Lett.33, 195–199 (1981).

1972

J. Meixner, “The behavior of electromagnetic fields at edges,” Antennas Propaga.20, 442–446 (1972).
[CrossRef]

Adam, A. J. L.

L. T. Vuong, A. J. L. Adam, J. M. Brok, and H. P. Urbach, “Electromagnetic spin-orbit interactions via scattering of sub-wavelength apertures,” Phys. Rev. Lett.104, 083903 (2010).
[CrossRef] [PubMed]

Alu, A.

Armstrong, R. L.

V.P. Drachev, W. D. Bragg, V. A. Podolskiy, V. P. Safonov, W.-T. Kim, Z. C. Ying, R. L. Armstrong, and V. M. Shalaev, “Large local optical activity in fractal aggregates of nanoparticles,” J. Opt. Soc. Amer. B18, 1896–1903 (2001).
[CrossRef]

Bagnall, D. M.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90, 107404 (2003).
[CrossRef] [PubMed]

Bao, J.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” 328, 1135–1138 (2010).

Bao, K.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” 328, 1135–1138 (2010).

Baranova, N. B.

N. B. Baranova, B. Ya. Zel’dovich, A. V. Mamaev, N. F. Pilipetskii, and V. V. Shkukov, “Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment),” J. Exp. Theor. Phys. Lett.33, 195–199 (1981).

Bardhan, R.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” 328, 1135–1138 (2010).

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mat.9, 193–204 (2010).
[CrossRef]

Bashevoy, M. V.

Bennemann, K. H.

C. Timm and K. H. Bennemann, “Response theory for time-resolved second-harmonic generation and two-photon photoemission,” J. Phys.: Cond. Matt.16, 661–694 (2004).
[CrossRef]

Boriskina, S. V.

S. V. Boriskina and B. M. Reinhard, “Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery,” Nanoscale4, 76–90 (2012).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, Cambridge, 1999), pp. 760–771.

Boyd, R. W.

S. N. Volkov, K. Dolgaleva, R. W. Boyd, K. Jefimovs, J. Turunen, Y. Svirko, B.K. Canfield, and M. Kauranen, “Optical activity in diffraction from a planar array of achiral nanoparticles,” Phys. Rev. A79, 043819 (2009).
[CrossRef]

Bragg, W. D.

V.P. Drachev, W. D. Bragg, V. A. Podolskiy, V. P. Safonov, W.-T. Kim, Z. C. Ying, R. L. Armstrong, and V. M. Shalaev, “Large local optical activity in fractal aggregates of nanoparticles,” J. Opt. Soc. Amer. B18, 1896–1903 (2001).
[CrossRef]

Brok, J. M.

L. T. Vuong, A. J. L. Adam, J. M. Brok, and H. P. Urbach, “Electromagnetic spin-orbit interactions via scattering of sub-wavelength apertures,” Phys. Rev. Lett.104, 083903 (2010).
[CrossRef] [PubMed]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mat.9, 193–204 (2010).
[CrossRef]

Burgi, T.

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mat.9, 193–204 (2010).
[CrossRef]

Canfield, B.K.

S. N. Volkov, K. Dolgaleva, R. W. Boyd, K. Jefimovs, J. Turunen, Y. Svirko, B.K. Canfield, and M. Kauranen, “Optical activity in diffraction from a planar array of achiral nanoparticles,” Phys. Rev. A79, 043819 (2009).
[CrossRef]

Capasso, F.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” 328, 1135–1138 (2010).

Chen, M.

H. Yu, M. Chen, P. M. Rice, S. X. Wang, R. L. White, and S. H. Sun, “Dumbbell-like bifunctional Au-Fe3O4 nanoparticles,” Nano Lett.5, 379–382 (2005).
[CrossRef] [PubMed]

Coles, H. J.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90, 107404 (2003).
[CrossRef] [PubMed]

Crouse, D.

Dai, Q.

H. Deng, J. Liu, W. Zhao, W. Zhang, X. Lin, T. Sun, Q. Dai, L. Wu, S. Lan, and A. V. Gopal, “Enhancement of switching speed by laser-induced clustering of nanoparticles in magnetic fluids,” App. Phys. Lett.92, 233103 (2008).
[CrossRef]

Deng, H.

H. Deng, J. Liu, W. Zhao, W. Zhang, X. Lin, T. Sun, Q. Dai, L. Wu, S. Lan, and A. V. Gopal, “Enhancement of switching speed by laser-induced clustering of nanoparticles in magnetic fluids,” App. Phys. Lett.92, 233103 (2008).
[CrossRef]

Dionne, J. A.

S. N. Sheikholeslami, A. García-Etxarri, and J. A. Dionne, “Controlling the interplay of electric and magnetic modes via Fano-like plasmonic resonances,” Nano Lett.11, 3927–3934 (2011).
[CrossRef] [PubMed]

Dolgaleva, K.

S. N. Volkov, K. Dolgaleva, R. W. Boyd, K. Jefimovs, J. Turunen, Y. Svirko, B.K. Canfield, and M. Kauranen, “Optical activity in diffraction from a planar array of achiral nanoparticles,” Phys. Rev. A79, 043819 (2009).
[CrossRef]

Drachev, V.P.

V.P. Drachev, W. D. Bragg, V. A. Podolskiy, V. P. Safonov, W.-T. Kim, Z. C. Ying, R. L. Armstrong, and V. M. Shalaev, “Large local optical activity in fractal aggregates of nanoparticles,” J. Opt. Soc. Amer. B18, 1896–1903 (2001).
[CrossRef]

Durach, M.

M. Durach, A. Rusina, and M. I. Stockman, “Giant surface-plasmon-induced drag effect in metal nanowires,” Phys. Rev. Lett.103, 186801 (1990).
[CrossRef]

Engheta, N.

Fan, J. A.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” 328, 1135–1138 (2010).

Fedotov, V. A.

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett.7, 1996–1999 (2007).
[CrossRef]

M. V. Bashevoy, V. A. Fedotov, and N. I. Zheludev, “Optical whirlpool on an absorbing metallic nanoparticle,” Opt. Express13, 8372–8379 (2005).
[CrossRef] [PubMed]

Gang, O.

D. Nykypanchuk, M. M. Mayer, D. van der Lelie, and O. Gang, “DNA-guided crystallization of colloidal nanoparticles,” Nature451, 549–552 (2008).
[CrossRef] [PubMed]

García-Etxarri, A.

S. N. Sheikholeslami, A. García-Etxarri, and J. A. Dionne, “Controlling the interplay of electric and magnetic modes via Fano-like plasmonic resonances,” Nano Lett.11, 3927–3934 (2011).
[CrossRef] [PubMed]

Gopal, A. V.

H. Deng, J. Liu, W. Zhao, W. Zhang, X. Lin, T. Sun, Q. Dai, L. Wu, S. Lan, and A. V. Gopal, “Enhancement of switching speed by laser-induced clustering of nanoparticles in magnetic fluids,” App. Phys. Lett.92, 233103 (2008).
[CrossRef]

Gu, L.

N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B84, 035447 (2011).
[CrossRef]

Gu, Y.

Y. Gu and K. G. Kornev, “Plasmon enhanced direct and inverse Faraday effects in non-magnetic nanocomposites,” J. Opt. Soc. Am. B.27, 2165–2173 (2010).
[CrossRef]

Gurevich, V. L.

V. L. Gurevich and R. Laiho, “Photomagnetism of metals: microscopic theory of the photoinduced surface current,” Phys. Rev. B48, 8307–8316 (1993).
[CrossRef]

V. L. Gurevich, R. Laiho, and A. V. Lashkul, “Photomagnetism of metals,” Phys. Rev. Lett.69, 180–183 (1992).
[CrossRef] [PubMed]

Halas, N. J.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” 328, 1135–1138 (2010).

Hasegawa, H.

N. Satoh, H. Hasegawa, K. Tsujii, and K. Kimura, “Photoinduced coagulation of Au nanocolloids,” J. Phys. Chem.98, 2143–2147 (1994).
[CrossRef]

Hertel, R.

R. Hertel, “Theory of the inverse Faraday effect in metals,” Journal of Magnetism and Magnetic Materials303, L1–L4 (2006).
[CrossRef]

Ino, Y.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95, 227401 (2005).
[CrossRef] [PubMed]

Ishihara, T.

A. S. Vengurlekar and T. Ishihara, “Surface plasmon enhanced photon drag in metal films,” App. Phys. Lett.87, 091118 (2005).
[CrossRef]

Jefimovs, K.

S. N. Volkov, K. Dolgaleva, R. W. Boyd, K. Jefimovs, J. Turunen, Y. Svirko, B.K. Canfield, and M. Kauranen, “Optical activity in diffraction from a planar array of achiral nanoparticles,” Phys. Rev. A79, 043819 (2009).
[CrossRef]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95, 227401 (2005).
[CrossRef] [PubMed]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mat.9, 193–204 (2010).
[CrossRef]

Kauranen, M.

S. N. Volkov, K. Dolgaleva, R. W. Boyd, K. Jefimovs, J. Turunen, Y. Svirko, B.K. Canfield, and M. Kauranen, “Optical activity in diffraction from a planar array of achiral nanoparticles,” Phys. Rev. A79, 043819 (2009).
[CrossRef]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95, 227401 (2005).
[CrossRef] [PubMed]

Keller, O.

O. Keller and G. Wang, “Angular momentum photon drag in a mesoscopic ring,” Opt. Commun.138, 75–80 (1997).
[CrossRef]

Keshavareddy, P.

Khardikov, V. V.

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett.7, 1996–1999 (2007).
[CrossRef]

Kim, W.-T.

V.P. Drachev, W. D. Bragg, V. A. Podolskiy, V. P. Safonov, W.-T. Kim, Z. C. Ying, R. L. Armstrong, and V. M. Shalaev, “Large local optical activity in fractal aggregates of nanoparticles,” J. Opt. Soc. Amer. B18, 1896–1903 (2001).
[CrossRef]

Kimura, K.

N. Satoh, H. Hasegawa, K. Tsujii, and K. Kimura, “Photoinduced coagulation of Au nanocolloids,” J. Phys. Chem.98, 2143–2147 (1994).
[CrossRef]

Kivshar, Y. S.

I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, “Giant Goos-Hanchen effect at the reflection from left-handed metamaterials,” App. Phys. Lett.83, 2713–2715 (2003).
[CrossRef]

Kornev, K. G.

Y. Gu and K. G. Kornev, “Plasmon enhanced direct and inverse Faraday effects in non-magnetic nanocomposites,” J. Opt. Soc. Am. B.27, 2165–2173 (2010).
[CrossRef]

Kuwata-Gonokami, M.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95, 227401 (2005).
[CrossRef] [PubMed]

Laiho, R.

V. L. Gurevich and R. Laiho, “Photomagnetism of metals: microscopic theory of the photoinduced surface current,” Phys. Rev. B48, 8307–8316 (1993).
[CrossRef]

V. L. Gurevich, R. Laiho, and A. V. Lashkul, “Photomagnetism of metals,” Phys. Rev. Lett.69, 180–183 (1992).
[CrossRef] [PubMed]

Lan, S.

H. Deng, J. Liu, W. Zhao, W. Zhang, X. Lin, T. Sun, Q. Dai, L. Wu, S. Lan, and A. V. Gopal, “Enhancement of switching speed by laser-induced clustering of nanoparticles in magnetic fluids,” App. Phys. Lett.92, 233103 (2008).
[CrossRef]

Lashkul, A. V.

V. L. Gurevich, R. Laiho, and A. V. Lashkul, “Photomagnetism of metals,” Phys. Rev. Lett.69, 180–183 (1992).
[CrossRef] [PubMed]

Law, C. T.

D. Rozas, C. T. Law, and G. A. Swartzlander, “Propagation dynamics of optical vortices,” J. Opt. Soc. Amer. B14, 3054–3065 (1997).
[CrossRef]

Lederer, F.

Lin, X.

H. Deng, J. Liu, W. Zhao, W. Zhang, X. Lin, T. Sun, Q. Dai, L. Wu, S. Lan, and A. V. Gopal, “Enhancement of switching speed by laser-induced clustering of nanoparticles in magnetic fluids,” App. Phys. Lett.92, 233103 (2008).
[CrossRef]

Liu, J.

H. Deng, J. Liu, W. Zhao, W. Zhang, X. Lin, T. Sun, Q. Dai, L. Wu, S. Lan, and A. V. Gopal, “Enhancement of switching speed by laser-induced clustering of nanoparticles in magnetic fluids,” App. Phys. Lett.92, 233103 (2008).
[CrossRef]

Luk’yanchuk, B. S.

B. S. Luk’yanchuk and V. Ternovsky, “Light scattering by a thin wire with a surface-plasmon resonance: bifurcations of the Poynting vector eld,” Phys. Rev. B73, 235432 (2006).
[CrossRef]

Mamaev, A. V.

N. B. Baranova, B. Ya. Zel’dovich, A. V. Mamaev, N. F. Pilipetskii, and V. V. Shkukov, “Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment),” J. Exp. Theor. Phys. Lett.33, 195–199 (1981).

Manoharan, V. N.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” 328, 1135–1138 (2010).

Mayer, M. M.

D. Nykypanchuk, M. M. Mayer, D. van der Lelie, and O. Gang, “DNA-guided crystallization of colloidal nanoparticles,” Nature451, 549–552 (2008).
[CrossRef] [PubMed]

Meixner, J.

J. Meixner, “The behavior of electromagnetic fields at edges,” Antennas Propaga.20, 442–446 (1972).
[CrossRef]

Mühlig, S.

Noginov, M. A.

N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B84, 035447 (2011).
[CrossRef]

Noginova, N.

N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B84, 035447 (2011).
[CrossRef]

Nordlander, P.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” 328, 1135–1138 (2010).

Nykypanchuk, D.

D. Nykypanchuk, M. M. Mayer, D. van der Lelie, and O. Gang, “DNA-guided crystallization of colloidal nanoparticles,” Nature451, 549–552 (2008).
[CrossRef] [PubMed]

Papakostas, A.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90, 107404 (2003).
[CrossRef] [PubMed]

Pilipetskii, N. F.

N. B. Baranova, B. Ya. Zel’dovich, A. V. Mamaev, N. F. Pilipetskii, and V. V. Shkukov, “Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment),” J. Exp. Theor. Phys. Lett.33, 195–199 (1981).

Podolskiy, V. A.

V.P. Drachev, W. D. Bragg, V. A. Podolskiy, V. P. Safonov, W.-T. Kim, Z. C. Ying, R. L. Armstrong, and V. M. Shalaev, “Large local optical activity in fractal aggregates of nanoparticles,” J. Opt. Soc. Amer. B18, 1896–1903 (2001).
[CrossRef]

Potts, A.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90, 107404 (2003).
[CrossRef] [PubMed]

Prosvirnin, S. L.

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett.7, 1996–1999 (2007).
[CrossRef]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90, 107404 (2003).
[CrossRef] [PubMed]

Reinhard, B. M.

S. V. Boriskina and B. M. Reinhard, “Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery,” Nanoscale4, 76–90 (2012).
[CrossRef]

Rice, P. M.

H. Yu, M. Chen, P. M. Rice, S. X. Wang, R. L. White, and S. H. Sun, “Dumbbell-like bifunctional Au-Fe3O4 nanoparticles,” Nano Lett.5, 379–382 (2005).
[CrossRef] [PubMed]

Rockstuhl, C.

Rozas, D.

D. Rozas, C. T. Law, and G. A. Swartzlander, “Propagation dynamics of optical vortices,” J. Opt. Soc. Amer. B14, 3054–3065 (1997).
[CrossRef]

Rusina, A.

M. Durach, A. Rusina, and M. I. Stockman, “Giant surface-plasmon-induced drag effect in metal nanowires,” Phys. Rev. Lett.103, 186801 (1990).
[CrossRef]

Safonov, V. P.

V.P. Drachev, W. D. Bragg, V. A. Podolskiy, V. P. Safonov, W.-T. Kim, Z. C. Ying, R. L. Armstrong, and V. M. Shalaev, “Large local optical activity in fractal aggregates of nanoparticles,” J. Opt. Soc. Amer. B18, 1896–1903 (2001).
[CrossRef]

Saito, N.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95, 227401 (2005).
[CrossRef] [PubMed]

Salandrino, A.

Satoh, N.

N. Satoh, H. Hasegawa, K. Tsujii, and K. Kimura, “Photoinduced coagulation of Au nanocolloids,” J. Phys. Chem.98, 2143–2147 (1994).
[CrossRef]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mat.9, 193–204 (2010).
[CrossRef]

Schwanecke, A. S.

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett.7, 1996–1999 (2007).
[CrossRef]

Shadrivov, I. V.

I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, “Giant Goos-Hanchen effect at the reflection from left-handed metamaterials,” App. Phys. Lett.83, 2713–2715 (2003).
[CrossRef]

Shalaev, V. M.

V.P. Drachev, W. D. Bragg, V. A. Podolskiy, V. P. Safonov, W.-T. Kim, Z. C. Ying, R. L. Armstrong, and V. M. Shalaev, “Large local optical activity in fractal aggregates of nanoparticles,” J. Opt. Soc. Amer. B18, 1896–1903 (2001).
[CrossRef]

Shalkevich, N.

Sheikholeslami, S. N.

S. N. Sheikholeslami, A. García-Etxarri, and J. A. Dionne, “Controlling the interplay of electric and magnetic modes via Fano-like plasmonic resonances,” Nano Lett.11, 3927–3934 (2011).
[CrossRef] [PubMed]

Shkukov, V. V.

N. B. Baranova, B. Ya. Zel’dovich, A. V. Mamaev, N. F. Pilipetskii, and V. V. Shkukov, “Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment),” J. Exp. Theor. Phys. Lett.33, 195–199 (1981).

Shvets, G.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” 328, 1135–1138 (2010).

Soimo, J.

N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B84, 035447 (2011).
[CrossRef]

Solymar, L.

P. N. Stavrinou and L. Solymar, “Pulse delay and propagation through subwavelength metallic slits,” Phys. Rev. E68, 066604 (2003).
[CrossRef]

Stavrinou, P. N.

P. N. Stavrinou and L. Solymar, “Pulse delay and propagation through subwavelength metallic slits,” Phys. Rev. E68, 066604 (2003).
[CrossRef]

Stockman, M. I.

M. Durach, A. Rusina, and M. I. Stockman, “Giant surface-plasmon-induced drag effect in metal nanowires,” Phys. Rev. Lett.103, 186801 (1990).
[CrossRef]

Sun, S. H.

H. Yu, M. Chen, P. M. Rice, S. X. Wang, R. L. White, and S. H. Sun, “Dumbbell-like bifunctional Au-Fe3O4 nanoparticles,” Nano Lett.5, 379–382 (2005).
[CrossRef] [PubMed]

Sun, T.

H. Deng, J. Liu, W. Zhao, W. Zhang, X. Lin, T. Sun, Q. Dai, L. Wu, S. Lan, and A. V. Gopal, “Enhancement of switching speed by laser-induced clustering of nanoparticles in magnetic fluids,” App. Phys. Lett.92, 233103 (2008).
[CrossRef]

Svirko, Y.

S. N. Volkov, K. Dolgaleva, R. W. Boyd, K. Jefimovs, J. Turunen, Y. Svirko, B.K. Canfield, and M. Kauranen, “Optical activity in diffraction from a planar array of achiral nanoparticles,” Phys. Rev. A79, 043819 (2009).
[CrossRef]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95, 227401 (2005).
[CrossRef] [PubMed]

Swartzlander, G. A.

D. Rozas, C. T. Law, and G. A. Swartzlander, “Propagation dynamics of optical vortices,” J. Opt. Soc. Amer. B14, 3054–3065 (1997).
[CrossRef]

Ternovsky, V.

B. S. Luk’yanchuk and V. Ternovsky, “Light scattering by a thin wire with a surface-plasmon resonance: bifurcations of the Poynting vector eld,” Phys. Rev. B73, 235432 (2006).
[CrossRef]

Timm, C.

C. Timm and K. H. Bennemann, “Response theory for time-resolved second-harmonic generation and two-photon photoemission,” J. Phys.: Cond. Matt.16, 661–694 (2004).
[CrossRef]

Tsujii, K.

N. Satoh, H. Hasegawa, K. Tsujii, and K. Kimura, “Photoinduced coagulation of Au nanocolloids,” J. Phys. Chem.98, 2143–2147 (1994).
[CrossRef]

Turunen, J.

S. N. Volkov, K. Dolgaleva, R. W. Boyd, K. Jefimovs, J. Turunen, Y. Svirko, B.K. Canfield, and M. Kauranen, “Optical activity in diffraction from a planar array of achiral nanoparticles,” Phys. Rev. A79, 043819 (2009).
[CrossRef]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95, 227401 (2005).
[CrossRef] [PubMed]

Urbach, H. P.

L. T. Vuong, A. J. L. Adam, J. M. Brok, and H. P. Urbach, “Electromagnetic spin-orbit interactions via scattering of sub-wavelength apertures,” Phys. Rev. Lett.104, 083903 (2010).
[CrossRef] [PubMed]

Vallius, T.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95, 227401 (2005).
[CrossRef] [PubMed]

van der Lelie, D.

D. Nykypanchuk, M. M. Mayer, D. van der Lelie, and O. Gang, “DNA-guided crystallization of colloidal nanoparticles,” Nature451, 549–552 (2008).
[CrossRef] [PubMed]

Vengurlekar, A. S.

A. S. Vengurlekar and T. Ishihara, “Surface plasmon enhanced photon drag in metal films,” App. Phys. Lett.87, 091118 (2005).
[CrossRef]

Volkov, S. N.

S. N. Volkov, K. Dolgaleva, R. W. Boyd, K. Jefimovs, J. Turunen, Y. Svirko, B.K. Canfield, and M. Kauranen, “Optical activity in diffraction from a planar array of achiral nanoparticles,” Phys. Rev. A79, 043819 (2009).
[CrossRef]

Vuong, L. T.

L. T. Vuong, A. J. L. Adam, J. M. Brok, and H. P. Urbach, “Electromagnetic spin-orbit interactions via scattering of sub-wavelength apertures,” Phys. Rev. Lett.104, 083903 (2010).
[CrossRef] [PubMed]

Wang, G.

O. Keller and G. Wang, “Angular momentum photon drag in a mesoscopic ring,” Opt. Commun.138, 75–80 (1997).
[CrossRef]

Wang, S. X.

H. Yu, M. Chen, P. M. Rice, S. X. Wang, R. L. White, and S. H. Sun, “Dumbbell-like bifunctional Au-Fe3O4 nanoparticles,” Nano Lett.5, 379–382 (2005).
[CrossRef] [PubMed]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mat.9, 193–204 (2010).
[CrossRef]

White, R. L.

H. Yu, M. Chen, P. M. Rice, S. X. Wang, R. L. White, and S. H. Sun, “Dumbbell-like bifunctional Au-Fe3O4 nanoparticles,” Nano Lett.5, 379–382 (2005).
[CrossRef] [PubMed]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, Cambridge, 1999), pp. 760–771.

Wu, C.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” 328, 1135–1138 (2010).

Wu, L.

H. Deng, J. Liu, W. Zhao, W. Zhang, X. Lin, T. Sun, Q. Dai, L. Wu, S. Lan, and A. V. Gopal, “Enhancement of switching speed by laser-induced clustering of nanoparticles in magnetic fluids,” App. Phys. Lett.92, 233103 (2008).
[CrossRef]

Yakim, A. V.

N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B84, 035447 (2011).
[CrossRef]

Yannopapas, V.

Ying, Z. C.

V.P. Drachev, W. D. Bragg, V. A. Podolskiy, V. P. Safonov, W.-T. Kim, Z. C. Ying, R. L. Armstrong, and V. M. Shalaev, “Large local optical activity in fractal aggregates of nanoparticles,” J. Opt. Soc. Amer. B18, 1896–1903 (2001).
[CrossRef]

Yu, H.

H. Yu, M. Chen, P. M. Rice, S. X. Wang, R. L. White, and S. H. Sun, “Dumbbell-like bifunctional Au-Fe3O4 nanoparticles,” Nano Lett.5, 379–382 (2005).
[CrossRef] [PubMed]

Zel’dovich, B. Ya.

N. B. Baranova, B. Ya. Zel’dovich, A. V. Mamaev, N. F. Pilipetskii, and V. V. Shkukov, “Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment),” J. Exp. Theor. Phys. Lett.33, 195–199 (1981).

Zhang, W.

H. Deng, J. Liu, W. Zhao, W. Zhang, X. Lin, T. Sun, Q. Dai, L. Wu, S. Lan, and A. V. Gopal, “Enhancement of switching speed by laser-induced clustering of nanoparticles in magnetic fluids,” App. Phys. Lett.92, 233103 (2008).
[CrossRef]

Zhao, W.

H. Deng, J. Liu, W. Zhao, W. Zhang, X. Lin, T. Sun, Q. Dai, L. Wu, S. Lan, and A. V. Gopal, “Enhancement of switching speed by laser-induced clustering of nanoparticles in magnetic fluids,” App. Phys. Lett.92, 233103 (2008).
[CrossRef]

Zharov, A. A.

I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, “Giant Goos-Hanchen effect at the reflection from left-handed metamaterials,” App. Phys. Lett.83, 2713–2715 (2003).
[CrossRef]

Zheludev, N. I.

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett.7, 1996–1999 (2007).
[CrossRef]

M. V. Bashevoy, V. A. Fedotov, and N. I. Zheludev, “Optical whirlpool on an absorbing metallic nanoparticle,” Opt. Express13, 8372–8379 (2005).
[CrossRef] [PubMed]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90, 107404 (2003).
[CrossRef] [PubMed]

Antennas Propaga.

J. Meixner, “The behavior of electromagnetic fields at edges,” Antennas Propaga.20, 442–446 (1972).
[CrossRef]

App. Phys. Lett.

I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, “Giant Goos-Hanchen effect at the reflection from left-handed metamaterials,” App. Phys. Lett.83, 2713–2715 (2003).
[CrossRef]

H. Deng, J. Liu, W. Zhao, W. Zhang, X. Lin, T. Sun, Q. Dai, L. Wu, S. Lan, and A. V. Gopal, “Enhancement of switching speed by laser-induced clustering of nanoparticles in magnetic fluids,” App. Phys. Lett.92, 233103 (2008).
[CrossRef]

A. S. Vengurlekar and T. Ishihara, “Surface plasmon enhanced photon drag in metal films,” App. Phys. Lett.87, 091118 (2005).
[CrossRef]

J. Exp. Theor. Phys. Lett.

N. B. Baranova, B. Ya. Zel’dovich, A. V. Mamaev, N. F. Pilipetskii, and V. V. Shkukov, “Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment),” J. Exp. Theor. Phys. Lett.33, 195–199 (1981).

J. Opt. Soc. Am. B.

Y. Gu and K. G. Kornev, “Plasmon enhanced direct and inverse Faraday effects in non-magnetic nanocomposites,” J. Opt. Soc. Am. B.27, 2165–2173 (2010).
[CrossRef]

J. Opt. Soc. Amer. B

D. Rozas, C. T. Law, and G. A. Swartzlander, “Propagation dynamics of optical vortices,” J. Opt. Soc. Amer. B14, 3054–3065 (1997).
[CrossRef]

V.P. Drachev, W. D. Bragg, V. A. Podolskiy, V. P. Safonov, W.-T. Kim, Z. C. Ying, R. L. Armstrong, and V. M. Shalaev, “Large local optical activity in fractal aggregates of nanoparticles,” J. Opt. Soc. Amer. B18, 1896–1903 (2001).
[CrossRef]

J. Phys. Chem.

N. Satoh, H. Hasegawa, K. Tsujii, and K. Kimura, “Photoinduced coagulation of Au nanocolloids,” J. Phys. Chem.98, 2143–2147 (1994).
[CrossRef]

J. Phys.: Cond. Matt.

C. Timm and K. H. Bennemann, “Response theory for time-resolved second-harmonic generation and two-photon photoemission,” J. Phys.: Cond. Matt.16, 661–694 (2004).
[CrossRef]

Journal of Magnetism and Magnetic Materials

R. Hertel, “Theory of the inverse Faraday effect in metals,” Journal of Magnetism and Magnetic Materials303, L1–L4 (2006).
[CrossRef]

Nano Lett.

S. N. Sheikholeslami, A. García-Etxarri, and J. A. Dionne, “Controlling the interplay of electric and magnetic modes via Fano-like plasmonic resonances,” Nano Lett.11, 3927–3934 (2011).
[CrossRef] [PubMed]

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett.7, 1996–1999 (2007).
[CrossRef]

H. Yu, M. Chen, P. M. Rice, S. X. Wang, R. L. White, and S. H. Sun, “Dumbbell-like bifunctional Au-Fe3O4 nanoparticles,” Nano Lett.5, 379–382 (2005).
[CrossRef] [PubMed]

Nanoscale

S. V. Boriskina and B. M. Reinhard, “Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery,” Nanoscale4, 76–90 (2012).
[CrossRef]

Nat. Mat.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mat.9, 193–204 (2010).
[CrossRef]

Nature

D. Nykypanchuk, M. M. Mayer, D. van der Lelie, and O. Gang, “DNA-guided crystallization of colloidal nanoparticles,” Nature451, 549–552 (2008).
[CrossRef] [PubMed]

Opt. Commun.

O. Keller and G. Wang, “Angular momentum photon drag in a mesoscopic ring,” Opt. Commun.138, 75–80 (1997).
[CrossRef]

Opt. Express

Phys. Rev. A

S. N. Volkov, K. Dolgaleva, R. W. Boyd, K. Jefimovs, J. Turunen, Y. Svirko, B.K. Canfield, and M. Kauranen, “Optical activity in diffraction from a planar array of achiral nanoparticles,” Phys. Rev. A79, 043819 (2009).
[CrossRef]

Phys. Rev. B

V. L. Gurevich and R. Laiho, “Photomagnetism of metals: microscopic theory of the photoinduced surface current,” Phys. Rev. B48, 8307–8316 (1993).
[CrossRef]

N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B84, 035447 (2011).
[CrossRef]

B. S. Luk’yanchuk and V. Ternovsky, “Light scattering by a thin wire with a surface-plasmon resonance: bifurcations of the Poynting vector eld,” Phys. Rev. B73, 235432 (2006).
[CrossRef]

Phys. Rev. E

P. N. Stavrinou and L. Solymar, “Pulse delay and propagation through subwavelength metallic slits,” Phys. Rev. E68, 066604 (2003).
[CrossRef]

Phys. Rev. Lett.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90, 107404 (2003).
[CrossRef] [PubMed]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95, 227401 (2005).
[CrossRef] [PubMed]

L. T. Vuong, A. J. L. Adam, J. M. Brok, and H. P. Urbach, “Electromagnetic spin-orbit interactions via scattering of sub-wavelength apertures,” Phys. Rev. Lett.104, 083903 (2010).
[CrossRef] [PubMed]

M. Durach, A. Rusina, and M. I. Stockman, “Giant surface-plasmon-induced drag effect in metal nanowires,” Phys. Rev. Lett.103, 186801 (1990).
[CrossRef]

V. L. Gurevich, R. Laiho, and A. V. Lashkul, “Photomagnetism of metals,” Phys. Rev. Lett.69, 180–183 (1992).
[CrossRef] [PubMed]

Other

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, Cambridge, 1999), pp. 760–771.

J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” 328, 1135–1138 (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Experimental setup. The magnetic field produced by the solenoid points in the direction of light propagation. (b) Relative changes in the sample transmission intensity as the sample settles when illuminated with circularly-polarized light.

Fig. 2
Fig. 2

Effect of an external DC magnetic field on the scattering spectra of 80nm-diameter gold nanocolloids in aqueous solution. Relative scattering spectra before (blue), during (red), and after (green) application of a 0.8-mT magnetic field. Scattering spectra is shown for (a) left-handed and (b) right-handed circularly-polarized light, where consistent and distinct differences are associated with each orthogonal polarization, given the fixed direction of the magnetic field. Note different vertical scales for these plots. (c) Cropped photos of the sample before and after illumination with left and right-handed circularly-polarized light. On the left, the sample exhibits slight discoloration but on the right, the sample is clear because the nanocolloidal gold has aggregated and fallen to the bottom of the sample.

Fig. 3
Fig. 3

(a) Nonlinear changes in the relative scattering when smaller (μT) magnetic fields are applied. (b) Top-to-bottom minute-lapsed changes in the relative scattering when samples are illuminated with unpolarized light and (c) stabilized scattered spectra, without offset, when samples are illuminated with left-handed circularly-polarized light. The spectra before (blue), during (red), and after (green) application of a 1.5-mT DC magnetic field show a relative increase in the scattered light at the plasmonic resonance. The scattered spectra broadens when the incident light is subsequently changed to linear polarization (yellow).

Fig. 4
Fig. 4

Scattering cross-section of 80-nm gold nanospheres surrounded by PVP with different values for the gold electrical conductivity. With increased conductivity, the scattering spectra increases at the plasmon resonance, in agreement with experimental results.

Fig. 5
Fig. 5

Numerical evaluation of the nonlinear magnetization at the surface of an 80nm-diameter gold nanosphere in water when illuminated with circularly-polarized light at wavelength λ = 540nm. The “plus”-circular polarization is shown, with the orthogonal “minus”-circular polarization inset at half-scale. (a) Mnl,r, (b) Mnl,θ, (c) Mnl,ϕ.

Fig. 6
Fig. 6

Numerical evaluation of the nonlinear magnetization on the surface of the nanosphere from Fig. 5 after applying a DC longitudinal magnetic field. (a) Mnl,r, (b) Mnl,θ, (c) Mnl,ϕ. The “plus”-circular polarization is shown, with the orthogonal “minus”-circular polarization inset at half-scale.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

J ˜ = q n ˜ v ˜ = J 0 + J 1 e i ω t + c . c . ,
E ˜ = E 0 + E 1 e i ω t + c . c . ,
E i , r = 1 ( k b r ) 2 l = 1 i l 1 ( 2 l + 1 ) ψ l ( k b r ) P l ( cos θ ) ( e ± i ϕ ) , E i , θ = 1 k b r l = 1 i l ( 2 l + 1 ) ψ l ( k b r ) P l ( cos θ ) cos θ ( e ± i ϕ ) , E i , ϕ = ± 1 k b r l = 1 i l + 1 ( 2 l + 1 ) ψ l ( k b r ) P l ( cos θ ) ( e ± i ϕ ) ,
E s , r = e ± i ϕ ( k b r ) 2 l = 1 l ( l + 1 ) B TM l ξ l ( k b r ) P l ( cos θ ) , E s , θ = e ± i ϕ k b r sin θ l = 1 B TM l ξ ( k b r ) P l ( cos θ ) sin 2 θ i B TE l ξ l ( k b r ) P l ( cos θ ) , E s , ϕ = ± e ± i ϕ k b r sin θ l = 1 B TM l ξ ( k b r ) P l ( cos θ ) i B TE l ξ ( k b r ) P l ( cos θ ) sin 2 θ ,
B TM l = i l + 1 ( 2 l + 1 ) l ( l + 1 ) k a k 2 b ψ l ( k a a ) ψ l ( k b a ) k 2 a k b ψ l ( k a a ) ψ l ( k b a ) k 2 b k a ψ l ( k a a ) ζ l ( k b a ) k b k 2 a ζ l ( k b a ) ψ l ( k a a ) B TE l = i l + 1 ( 2 l + 1 ) l ( l + 1 ) k a k 2 b ψ l ( k b a ) ψ l ( k a a ) k 2 a k b ψ l ( k a a ) ψ l ( k b a ) k 2 b k a ζ l ( k b a ) ψ l ( k a a ) k b k 2 a ψ l ( k a a ) ζ l ( k b a )
σ r , r = ( v 1 r ^ n 0 ) q E 1 r ^ ,
σ θ , θ = ( v 1 θ ^ n 0 ) q E 1 θ ^ ,
σ ϕ , ϕ = ( v 1 ϕ ^ n 0 + v 0 n 1 ) q E 1 ϕ ^ .
J n l [ i ( E * ) E + c . c . ]
= i [ ( E * ) E c . c . ]
= i × ( E × E * ) + i [ ( E ) E * ( E * ) E ]
M n l i ( E × E * ) ,
M n l i ( E s × E s * + E i × E s * + E s × E i * ) ,
M n l , z = cos ( θ ) M n l , r sin ( θ ) M n l , θ ,
M n l , z i ( E i × E TM S * + E TM S × E i * ) ,

Metrics