Abstract

Attenuation characteristics of hollow, flexible, metal and metal/dielectric coated polycarbonate waveguides were investigated using an optically pumped far infrared (FIR) laser at 215 µm. The bending loss of silver coated polycarbonate waveguides were measured as a function of various bending angles, bending radii, and bore diameters. Minimal propagation losses of 1.77, 0.96 dB/m were achieved by coupling the lowest loss TE11 mode into the silver or gold coated waveguide, and HE11 mode into the silver/polystyrene coated waveguides respectively. The maximal bending loss was found to be less than 1 dB/m for waveguides of 2 to 4.1 mm bore diameters, with a 6.4 cm bend radius, and up to 150° bending angle. The investigation shows the preservation of single laser mode in smaller bore waveguides even at greater bending angles.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005).
    [CrossRef]
  2. W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys.70(8), 1325–1379 (2007).
    [CrossRef]
  3. K. F. Ross and R. E. Gordon, “Water in malignant tissue, measured by cell refractometry and nuclear magnetic resonance,” J. Microsc.128(1), 7–21 (1982).
    [CrossRef] [PubMed]
  4. J. T. Lu, Y. C. Hsueh, Y. R. Huang, Y. J. Hwang, and C. K. Sun, “Bending loss of terahertz pipe waveguides,” Opt. Express18(25), 26332–26338 (2010).
    [CrossRef] [PubMed]
  5. R. George and J. A. Harrington, “Infrared transmissive, hollow plastic waveguides with inner Ag-AgI coatings,” Appl. Opt.44(30), 6449–6455 (2005).
    [CrossRef] [PubMed]
  6. K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express17(10), 8592–8601 (2009).
    [CrossRef] [PubMed]
  7. C. Yeh, F. Shimabukuro, and P. H. Siegel, “Low-loss terahertz ribbon waveguides,” Appl. Opt.44(28), 5937–5946 (2005).
    [CrossRef] [PubMed]
  8. J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express12(21), 5263–5268 (2004).
    [CrossRef] [PubMed]
  9. O. Mitrofanov, R. James, F. Aníbal Fernández, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” THz. Technol.1(1), 2159547 (2011).
  10. J.-T. Lu, C.-H. Lai, T.-F. Tseng, H. Chen, Y.-F. Tsai, I.-J. Chen, Y.-J. Hwang, H.-C. Chang, and C.-K. Sun, “Terahertz polarization-sensitive rectangular pipe waveguides,” Opt. Express19(22), 21532–21539 (2011).
    [CrossRef] [PubMed]
  11. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett.32(20), 2945–2947 (2007).
    [CrossRef] [PubMed]
  12. Y. Matsuura and E. Takeda, “Hollow optical fibers loaded with an inner dielectric film for terahertz broadband spectroscopy,” J. Opt. Soc. Am. B25(12), 1949–1954 (2008).
    [CrossRef]
  13. J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, “THz propagation in kagome hollow-core microstructured fibers,” Opt. Express19(19), 18470–18478 (2011).
    [CrossRef] [PubMed]
  14. A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, and M. Skorobogatiy, “Transmission measurements of hollow-core THz Bragg fibers,” J. Opt. Soc. Am. B28(4), 896–907 (2011).
    [CrossRef]
  15. C.-H. Lai, J.-Y. Lu, and H.-C. Chang, “Adding metallic layers outside terahertz antiresonant reflecting waveguides: the influence on loss spectra,” J. Opt. Soc. Am. B28(9), 2200–2206 (2011).
    [CrossRef]
  16. T. Ito, M. Miyagi, H. Minamide, H. Ito, and Y. Matsuura, “Flexible terahertz fiber optics with low bend-induced losses,” J. Opt. Soc. Am. B24(5), 1230–1235 (2007).
    [CrossRef]
  17. M. S. Vitiello, J.-H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys.110, 063112 (2011).
    [CrossRef]
  18. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett.93(18), 181104 (2008).
    [CrossRef]
  19. K. Iwai, Y. W. Shi, M. Miyagi, and Y. Matsuura, “Improved coating method for uniform polymer layer in infrared hollow fiber,” Opt. Laser Technol.39(8), 1528–1531 (2007).
    [CrossRef]
  20. P. Doradla, C. S. Joseph, J. Kumar, and R. H. Giles, “Propagation Loss Optimization in Metal/Dielectric Coated Hollow Flexible Teradhertz Waveguides,” Proc. SPIE8261, 82601P1–82610P10 (2012).
  21. R. K. Nubling and J. A. Harrington, “Launch conditions and mode coupling in hollow glass waveguides,” Opt. Eng.37(9), 2454–2458 (1998).
    [CrossRef]
  22. M. Miyagi and S. Kawakami, “Design Theory of Dielectric-Coated Circular Metallic Waveguides for Infrared Transmission,” J. Lightwave Technol.2(2), 116–126 (1984).
    [CrossRef]
  23. M. Miyagi and S. Kawakami, “Losses and phase constant changes caused by bends in the general class of hollow waveguides for the infrared,” Appl. Opt.20(24), 4221–4226 (1981).
    [CrossRef] [PubMed]

2012

P. Doradla, C. S. Joseph, J. Kumar, and R. H. Giles, “Propagation Loss Optimization in Metal/Dielectric Coated Hollow Flexible Teradhertz Waveguides,” Proc. SPIE8261, 82601P1–82610P10 (2012).

2011

2010

2009

2008

Y. Matsuura and E. Takeda, “Hollow optical fibers loaded with an inner dielectric film for terahertz broadband spectroscopy,” J. Opt. Soc. Am. B25(12), 1949–1954 (2008).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett.93(18), 181104 (2008).
[CrossRef]

2007

K. Iwai, Y. W. Shi, M. Miyagi, and Y. Matsuura, “Improved coating method for uniform polymer layer in infrared hollow fiber,” Opt. Laser Technol.39(8), 1528–1531 (2007).
[CrossRef]

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys.70(8), 1325–1379 (2007).
[CrossRef]

T. Ito, M. Miyagi, H. Minamide, H. Ito, and Y. Matsuura, “Flexible terahertz fiber optics with low bend-induced losses,” J. Opt. Soc. Am. B24(5), 1230–1235 (2007).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett.32(20), 2945–2947 (2007).
[CrossRef] [PubMed]

2005

C. Yeh, F. Shimabukuro, and P. H. Siegel, “Low-loss terahertz ribbon waveguides,” Appl. Opt.44(28), 5937–5946 (2005).
[CrossRef] [PubMed]

R. George and J. A. Harrington, “Infrared transmissive, hollow plastic waveguides with inner Ag-AgI coatings,” Appl. Opt.44(30), 6449–6455 (2005).
[CrossRef] [PubMed]

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005).
[CrossRef]

2004

1998

R. K. Nubling and J. A. Harrington, “Launch conditions and mode coupling in hollow glass waveguides,” Opt. Eng.37(9), 2454–2458 (1998).
[CrossRef]

1984

M. Miyagi and S. Kawakami, “Design Theory of Dielectric-Coated Circular Metallic Waveguides for Infrared Transmission,” J. Lightwave Technol.2(2), 116–126 (1984).
[CrossRef]

1982

K. F. Ross and R. E. Gordon, “Water in malignant tissue, measured by cell refractometry and nuclear magnetic resonance,” J. Microsc.128(1), 7–21 (1982).
[CrossRef] [PubMed]

1981

Adam, A. J. L.

Aníbal Fernández, F.

O. Mitrofanov, R. James, F. Aníbal Fernández, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” THz. Technol.1(1), 2159547 (2011).

Anthony, J.

Argyros, A.

Bang, O.

Barat, R.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005).
[CrossRef]

Beere, H. E.

M. S. Vitiello, J.-H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys.110, 063112 (2011).
[CrossRef]

Beltram, F.

M. S. Vitiello, J.-H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys.110, 063112 (2011).
[CrossRef]

Bowden, B.

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett.93(18), 181104 (2008).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett.32(20), 2945–2947 (2007).
[CrossRef] [PubMed]

Chan, W. L.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys.70(8), 1325–1379 (2007).
[CrossRef]

Chang, H.-C.

Chen, H.

Chen, I.-J.

Deibel, J.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys.70(8), 1325–1379 (2007).
[CrossRef]

Doradla, P.

P. Doradla, C. S. Joseph, J. Kumar, and R. H. Giles, “Propagation Loss Optimization in Metal/Dielectric Coated Hollow Flexible Teradhertz Waveguides,” Proc. SPIE8261, 82601P1–82610P10 (2012).

Dubois, C.

Dupuis, A.

Federici, J. F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005).
[CrossRef]

Gary, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005).
[CrossRef]

George, R.

Giles, R. H.

P. Doradla, C. S. Joseph, J. Kumar, and R. H. Giles, “Propagation Loss Optimization in Metal/Dielectric Coated Hollow Flexible Teradhertz Waveguides,” Proc. SPIE8261, 82601P1–82610P10 (2012).

Gordon, R. E.

K. F. Ross and R. E. Gordon, “Water in malignant tissue, measured by cell refractometry and nuclear magnetic resonance,” J. Microsc.128(1), 7–21 (1982).
[CrossRef] [PubMed]

Harrington, J. A.

O. Mitrofanov, R. James, F. Aníbal Fernández, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” THz. Technol.1(1), 2159547 (2011).

M. S. Vitiello, J.-H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys.110, 063112 (2011).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett.93(18), 181104 (2008).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett.32(20), 2945–2947 (2007).
[CrossRef] [PubMed]

R. George and J. A. Harrington, “Infrared transmissive, hollow plastic waveguides with inner Ag-AgI coatings,” Appl. Opt.44(30), 6449–6455 (2005).
[CrossRef] [PubMed]

J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express12(21), 5263–5268 (2004).
[CrossRef] [PubMed]

R. K. Nubling and J. A. Harrington, “Launch conditions and mode coupling in hollow glass waveguides,” Opt. Eng.37(9), 2454–2458 (1998).
[CrossRef]

Hsueh, Y. C.

Huang, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005).
[CrossRef]

Huang, Y. R.

Hwang, Y. J.

Hwang, Y.-J.

Ito, H.

Ito, T.

Iwai, K.

K. Iwai, Y. W. Shi, M. Miyagi, and Y. Matsuura, “Improved coating method for uniform polymer layer in infrared hollow fiber,” Opt. Laser Technol.39(8), 1528–1531 (2007).
[CrossRef]

James, R.

O. Mitrofanov, R. James, F. Aníbal Fernández, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” THz. Technol.1(1), 2159547 (2011).

Jepsen, P. U.

Joseph, C. S.

P. Doradla, C. S. Joseph, J. Kumar, and R. H. Giles, “Propagation Loss Optimization in Metal/Dielectric Coated Hollow Flexible Teradhertz Waveguides,” Proc. SPIE8261, 82601P1–82610P10 (2012).

Kawakami, S.

M. Miyagi and S. Kawakami, “Design Theory of Dielectric-Coated Circular Metallic Waveguides for Infrared Transmission,” J. Lightwave Technol.2(2), 116–126 (1984).
[CrossRef]

M. Miyagi and S. Kawakami, “Losses and phase constant changes caused by bends in the general class of hollow waveguides for the infrared,” Appl. Opt.20(24), 4221–4226 (1981).
[CrossRef] [PubMed]

Kumar, J.

P. Doradla, C. S. Joseph, J. Kumar, and R. H. Giles, “Propagation Loss Optimization in Metal/Dielectric Coated Hollow Flexible Teradhertz Waveguides,” Proc. SPIE8261, 82601P1–82610P10 (2012).

Lai, C.-H.

Leonhardt, R.

Leon-Saval, S. G.

Lu, J. T.

Lu, J.-T.

Lu, J.-Y.

Matsuura, Y.

Mavrogordatos, T. K.

O. Mitrofanov, R. James, F. Aníbal Fernández, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” THz. Technol.1(1), 2159547 (2011).

Minamide, H.

Mitrofanov, O.

O. Mitrofanov, R. James, F. Aníbal Fernández, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” THz. Technol.1(1), 2159547 (2011).

M. S. Vitiello, J.-H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys.110, 063112 (2011).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett.93(18), 181104 (2008).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett.32(20), 2945–2947 (2007).
[CrossRef] [PubMed]

Mittleman, D. M.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys.70(8), 1325–1379 (2007).
[CrossRef]

Miyagi, M.

K. Iwai, Y. W. Shi, M. Miyagi, and Y. Matsuura, “Improved coating method for uniform polymer layer in infrared hollow fiber,” Opt. Laser Technol.39(8), 1528–1531 (2007).
[CrossRef]

T. Ito, M. Miyagi, H. Minamide, H. Ito, and Y. Matsuura, “Flexible terahertz fiber optics with low bend-induced losses,” J. Opt. Soc. Am. B24(5), 1230–1235 (2007).
[CrossRef]

M. Miyagi and S. Kawakami, “Design Theory of Dielectric-Coated Circular Metallic Waveguides for Infrared Transmission,” J. Lightwave Technol.2(2), 116–126 (1984).
[CrossRef]

M. Miyagi and S. Kawakami, “Losses and phase constant changes caused by bends in the general class of hollow waveguides for the infrared,” Appl. Opt.20(24), 4221–4226 (1981).
[CrossRef] [PubMed]

Mueller, E.

Nielsen, K.

Nubling, R. K.

R. K. Nubling and J. A. Harrington, “Launch conditions and mode coupling in hollow glass waveguides,” Opt. Eng.37(9), 2454–2458 (1998).
[CrossRef]

Oliveira, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005).
[CrossRef]

Pedersen, P.

Planken, P. C. M.

Rasmussen, H. K.

Ritchie, D. A.

M. S. Vitiello, J.-H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys.110, 063112 (2011).
[CrossRef]

Ross, K. F.

K. F. Ross and R. E. Gordon, “Water in malignant tissue, measured by cell refractometry and nuclear magnetic resonance,” J. Microsc.128(1), 7–21 (1982).
[CrossRef] [PubMed]

Schulkin, B.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005).
[CrossRef]

Shi, Y. W.

K. Iwai, Y. W. Shi, M. Miyagi, and Y. Matsuura, “Improved coating method for uniform polymer layer in infrared hollow fiber,” Opt. Laser Technol.39(8), 1528–1531 (2007).
[CrossRef]

Shimabukuro, F.

Siegel, P. H.

Skorobogatiy, M.

Stoeffler, K.

Sun, C. K.

Sun, C.-K.

Takeda, E.

Tredicucci, A.

M. S. Vitiello, J.-H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys.110, 063112 (2011).
[CrossRef]

Tsai, Y.-F.

Tseng, T.-F.

Ung, B.

Vitiello, M. S.

M. S. Vitiello, J.-H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys.110, 063112 (2011).
[CrossRef]

Xu, J.-H.

M. S. Vitiello, J.-H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys.110, 063112 (2011).
[CrossRef]

Yeh, C.

Zimdars, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings,” Appl. Phys. Lett.93(18), 181104 (2008).
[CrossRef]

J. Appl. Phys.

M. S. Vitiello, J.-H. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys.110, 063112 (2011).
[CrossRef]

J. Lightwave Technol.

M. Miyagi and S. Kawakami, “Design Theory of Dielectric-Coated Circular Metallic Waveguides for Infrared Transmission,” J. Lightwave Technol.2(2), 116–126 (1984).
[CrossRef]

J. Microsc.

K. F. Ross and R. E. Gordon, “Water in malignant tissue, measured by cell refractometry and nuclear magnetic resonance,” J. Microsc.128(1), 7–21 (1982).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B

Opt. Eng.

R. K. Nubling and J. A. Harrington, “Launch conditions and mode coupling in hollow glass waveguides,” Opt. Eng.37(9), 2454–2458 (1998).
[CrossRef]

Opt. Express

Opt. Laser Technol.

K. Iwai, Y. W. Shi, M. Miyagi, and Y. Matsuura, “Improved coating method for uniform polymer layer in infrared hollow fiber,” Opt. Laser Technol.39(8), 1528–1531 (2007).
[CrossRef]

Opt. Lett.

Proc. SPIE

P. Doradla, C. S. Joseph, J. Kumar, and R. H. Giles, “Propagation Loss Optimization in Metal/Dielectric Coated Hollow Flexible Teradhertz Waveguides,” Proc. SPIE8261, 82601P1–82610P10 (2012).

Rep. Prog. Phys.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys.70(8), 1325–1379 (2007).
[CrossRef]

Semicond. Sci. Technol.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol.20(7), S266–S280 (2005).
[CrossRef]

THz. Technol.

O. Mitrofanov, R. James, F. Aníbal Fernández, T. K. Mavrogordatos, and J. A. Harrington, “Reducing transmission losses in hollow THz waveguides,” THz. Technol.1(1), 2159547 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of experimental layout for the measurement of total loss in bent metal coated waveguides. Insets show straight loss measurement and cross sectional SEM images of Ag/PS waveguides at different PS coating times.

Fig. 2
Fig. 2

Experimental and theoretical attenuation coefficients as a function of bore diameter for silver, gold, and silver/polystyrene coated terahertz waveguides.

Fig. 3
Fig. 3

Total attenuation coefficient as a function of bending angle for the silver coated waveguides of a) 3 mm inner diameter at various bending radii, b) different bore diameters with 6.4 cm bend radius.

Fig. 4
Fig. 4

The spatial intensity distribution of input for (a) 4-mm Ag, (b) 3-mm Ag, (c) 2-mm Ag, (d) 3-mm Ag/PS and the output from (e) 4-mm Ag, (f) 3-mm Ag, (g) 2-mm Ag, and (h) 3-mm Ag/PS coated straight terahertz waveguides.

Fig. 5
Fig. 5

Spatial profile of output from Ag coated waveguides of bore diameters (a) 4-mm, θ = 60°, (b) 3-mm, θ = 60°, (c) 2-mm, θ = 60°, (d) 4-mm, θ = 120°, (e) 3-mm, θ = 120°, and (f) 2-mm, θ = 120° with 6.4 cm bending radius.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

α tot = α pq L+ α θ L R
α( T E pq )=10 u 4 u 2 p 2 n n 2 + κ 2 ( 1 k 0 2 r 3 + p 2 u 4 r )
α= 10 L log( P in P out ) dB m
α( H E pq )=10 u 2 ( n 0 k 0 ) 2 r 3 [ n n 2 + κ 2 ] 1 2 ( 1+ n d 2 n d 2 1 ) 2
α tot = α pq L+ α θ L R = α pq L+( C r 3 R )( Rθ )= α pq L+C r 3 θ
α tot / r 3 =( α pq L+ α θ L R )/ r 3 =( ( C 1 r 3 )L+( C r 3 R )Rθ )/ r 3 = C 1 ( L r 6 )+C( θ )

Metrics