Abstract

We present Fourier-domain/spectral-domain optical coherence tomography (FD/SD-OCT) using a single spectrometer with dual illumination and interlaced detection at 830 nm, which can provide anterior segment and retinal tomograms simultaneously. Two orthogonal polarization components were used so that both parallel and focused beams could simultaneously be made incident on the eye. This configuration with a polarization-separated sample arm enables us to acquire images from the anterior segment and retina effectively with minimum loss of sample information. In the detector arm, a single spectrometer is illuminated via an ultrafast optical switch for interlaced detection. A graphical user interface (GUI) was built to control the optical switch for imaging the anterior segment and retina either simultaneously or individually. In addition, we implemented an off-pivot complex conjugate removal technique to double the imaging depth for anterior segment imaging. The axial resolution of our FD/SD-OCT system was measured to be ~6.7 μm in air, which corresponds to 4.9 μm in tissue (n = 1.35). The sensitivity was approximately 90 dB for both anterior segment and retina imaging when the acquisition speed was 35,000 A-scans per second and the depth position was near 120 μm from the zero-depth location. Finally, we demonstrated the feasibility of our system for simultaneous in vivo imaging of both the anterior segment and retina of a healthy human volunteer.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. A. F. Fercher, C. K. Hitzenberger, K. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
    [CrossRef]
  3. R. Leitgeb, C. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-8-889 .
    [CrossRef] [PubMed]
  4. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-18-2183 .
    [CrossRef] [PubMed]
  5. S. Yun, G. Tearney, B. Bouma, B. Park, and J. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 µm wavelength,” Opt. Express11(26), 3598–3604 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-26-3598 .
    [CrossRef] [PubMed]
  6. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett.31(20), 2975–2977 (2006), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-20-2975 .
    [CrossRef] [PubMed]
  7. W. Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett.35(17), 2919–2921 (2010), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-35-17-2919 .
    [CrossRef] [PubMed]
  8. R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, “Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second,” Opt. Lett.32(14), 2049–2051 (2007), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-32-14-2049 .
    [CrossRef] [PubMed]
  9. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett.24(17), 1221–1223 (1999), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-24-17-1221 .
    [CrossRef] [PubMed]
  10. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med.7(4), 502–507 (2001).
    [CrossRef] [PubMed]
  11. B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. Fercher, W. Drexler, C. Schubert, P. Ahnelt, M. Mei, R. Holzwarth, W. Wadsworth, J. Knight, and P. S. Russell, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Opt. Express11(17), 1980–1986 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-17-1980 .
    [CrossRef] [PubMed]
  12. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12(11), 2404–2422 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-11-2404 .
    [CrossRef] [PubMed]
  13. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-19-15149 .
    [CrossRef] [PubMed]
  14. L. An, P. Li, T. T. Shen, and R. K. Wang, “High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A‑lines per second,” Biomed. Opt. Express2(10), 2770–2783 (2011), http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-10-2770 .
    [CrossRef] [PubMed]
  15. M. R. Hee, C. A. Puliafito, C. Wong, J. S. Duker, E. Reichel, B. Rutledge, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Quantitative assessment of macular edema with optical coherence tomography,” Arch. Ophthalmol.113(8), 1019–1029 (1995).
    [CrossRef] [PubMed]
  16. C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology102(2), 217–229 (1995).
    [PubMed]
  17. J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Optical coherence tomography: a new tool for glaucoma diagnosis,” Curr. Opin. Ophthalmol.6(2), 89–95 (1995).
    [CrossRef] [PubMed]
  18. M. R. Hee, C. A. Puliafito, J. S. Duker, E. Reichel, J. G. Coker, J. R. Wilkins, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Topography of diabetic macular edema with optical coherence tomography,” Ophthalmology105(2), 360–370 (1998).
    [CrossRef] [PubMed]
  19. W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, “Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography,” Arch. Ophthalmol.121(5), 695–706 (2003).
    [CrossRef] [PubMed]
  20. V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol.125(8), 1027–1035 (2007).
    [CrossRef] [PubMed]
  21. R. N. Khurana, Y. Li, M. Tang, M. M. Lai, and D. Huang, “High-speed optical coherence tomography of corneal opacities,” Ophthalmology114(7), 1278–1285 (2007).
    [CrossRef] [PubMed]
  22. B. J. Kaluzny, A. Szkulmowska, M. Szkulmowski, T. Bajraszewski, A. Wawrocka, M. R. Krawczynski, A. Kowalczyk, and M. Wojtkowski, “Granular corneal dystrophy in 830-nm spectral optical coherence tomography,” Cornea27(7), 830–832 (2008).
    [CrossRef] [PubMed]
  23. C. K. Leung, W. M. Chan, C. Y. Ko, S. I. Chui, J. Woo, M. K. Tsang, and R. K. Tse, “Visualization of anterior chamber angle dynamics using optical coherence tomography,” Ophthalmology112(6), 980–984 (2005).
    [CrossRef] [PubMed]
  24. C. Dai, C. Zhou, S. Fan, Z. Chen, X. Chai, Q. Ren, and S. Jiao, “Optical coherence tomography for whole eye segment imaging,” Opt. Express20(6), 6109–6115 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-6-6109 .
    [CrossRef] [PubMed]
  25. H.-W. Jeong and B.-M. Kim, “High-speed spectral domain optical coherence tomography with dual detection of the retina and the cornea,” in Proceedings of IQEC/CLEO Pacific Rim, K. Baldwin, ed. (Australian Optical Society, Australia, 2011), pp. 691–692.
  26. A.-H. Dhalla, D. Nankivil, T. Bustamante, A. Kuo, and J. A. Izatt, “Simultaneous swept source optical coherence tomography of the anterior segment and retina using coherence revival,” Opt. Lett.37(11), 1883–1885 (2012), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-37-11-1883 .
    [CrossRef] [PubMed]
  27. M. Ruggeri, S. R. Uhlhorn, C. De Freitas, A. Ho, F. Manns, and J.-M. Parel, “Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch,” Biomed. Opt. Express3(7), 1506–1520 (2012), http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-7-1506 .
    [CrossRef]
  28. S.-W. Lee, H.-W. Jeong, and B.-M. Kim, “High-speed spectral domain polarization- sensitive optical coherence tomography using a single camera and an optical switch at 1.3 microm,” J. Biomed. Opt.15(1), 010501 (2010).
    [CrossRef] [PubMed]
  29. R. K. Wang, “In vivo full range complex Fourier domain optical coherence tomography,” Appl. Phys. Lett.90(5), 054103 (2007).
    [CrossRef]
  30. B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Full range complex spectral domain optical coherence tomography without additional phase shifters,” Opt. Express15(20), 13375–13387 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-20-13375 .
    [CrossRef] [PubMed]
  31. R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, “Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning,” Opt. Lett.32(23), 3453–3455 (2007), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-32-23-3453 .
    [CrossRef] [PubMed]
  32. T. J. Eom, Y. C. Ahn, C. S. Kim, and Z. Chen, “Calibration and characterization protocol for spectral-domain optical coherence tomography using fiber Bragg gratings,” J. Biomed. Opt.16(3), 030501 (2011).
    [CrossRef] [PubMed]
  33. ANSI Z 136.1, Safe Use of Lasers, (American National Standard Institute, 2007).
  34. N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express12(3), 367–376 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-3-367 .
    [CrossRef] [PubMed]
  35. B. A. Bower, M. Zhao, R. J. Zawadzki, and J. A. Izatt, “Real-time spectral domain Doppler optical coherence tomography and investigation of human retinal vessel autoregulation,” J. Biomed. Opt.12(4), 041214 (2007).
    [CrossRef] [PubMed]
  36. L. Sang-Won, J. Hyun-Woo, A. Yeh-Chan, J. Woonggyu, C. Zhongping, and K. Beop-Min, “Optimization for axial resolution, depth range, and sensitivity of spectral domain optical coherence tomography at 1.3 μm,” J. Korean Phys. Soc.55(6), 2354–2360 (2009).
    [CrossRef]
  37. T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express19(4), 3044–3062 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-4-3044 .
    [CrossRef] [PubMed]
  38. A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol.49(7), 1277–1294 (2004).
    [CrossRef] [PubMed]
  39. V. Westphal, A. M. Rollins, S. Radhakrishnan, and J. A. Izatt, “Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat’s principle,” Opt. Express10(9), 397–404 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-9-397 .
    [PubMed]
  40. B. Baumann, E. Götzinger, M. Pircher, and C. K. Hitzenberger, “Single camera based spectral domain polarization sensitive optical coherence tomography,” Opt. Express15(3), 1054–1063 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-3-1054 .
    [CrossRef] [PubMed]
  41. B. Cense, M. Mujat, T. C. Chen, B. H. Park, and J. F. de Boer, “Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera,” Opt. Express15(5), 2421–2431 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-5-2421 .
    [CrossRef] [PubMed]

2012 (3)

2011 (3)

2010 (2)

W. Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett.35(17), 2919–2921 (2010), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-35-17-2919 .
[CrossRef] [PubMed]

S.-W. Lee, H.-W. Jeong, and B.-M. Kim, “High-speed spectral domain polarization- sensitive optical coherence tomography using a single camera and an optical switch at 1.3 microm,” J. Biomed. Opt.15(1), 010501 (2010).
[CrossRef] [PubMed]

2009 (1)

L. Sang-Won, J. Hyun-Woo, A. Yeh-Chan, J. Woonggyu, C. Zhongping, and K. Beop-Min, “Optimization for axial resolution, depth range, and sensitivity of spectral domain optical coherence tomography at 1.3 μm,” J. Korean Phys. Soc.55(6), 2354–2360 (2009).
[CrossRef]

2008 (2)

B. J. Kaluzny, A. Szkulmowska, M. Szkulmowski, T. Bajraszewski, A. Wawrocka, M. R. Krawczynski, A. Kowalczyk, and M. Wojtkowski, “Granular corneal dystrophy in 830-nm spectral optical coherence tomography,” Cornea27(7), 830–832 (2008).
[CrossRef] [PubMed]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-19-15149 .
[CrossRef] [PubMed]

2007 (9)

B. Baumann, E. Götzinger, M. Pircher, and C. K. Hitzenberger, “Single camera based spectral domain polarization sensitive optical coherence tomography,” Opt. Express15(3), 1054–1063 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-3-1054 .
[CrossRef] [PubMed]

B. Cense, M. Mujat, T. C. Chen, B. H. Park, and J. F. de Boer, “Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera,” Opt. Express15(5), 2421–2431 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-5-2421 .
[CrossRef] [PubMed]

R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, “Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second,” Opt. Lett.32(14), 2049–2051 (2007), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-32-14-2049 .
[CrossRef] [PubMed]

B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Full range complex spectral domain optical coherence tomography without additional phase shifters,” Opt. Express15(20), 13375–13387 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-20-13375 .
[CrossRef] [PubMed]

R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, “Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning,” Opt. Lett.32(23), 3453–3455 (2007), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-32-23-3453 .
[CrossRef] [PubMed]

R. K. Wang, “In vivo full range complex Fourier domain optical coherence tomography,” Appl. Phys. Lett.90(5), 054103 (2007).
[CrossRef]

B. A. Bower, M. Zhao, R. J. Zawadzki, and J. A. Izatt, “Real-time spectral domain Doppler optical coherence tomography and investigation of human retinal vessel autoregulation,” J. Biomed. Opt.12(4), 041214 (2007).
[CrossRef] [PubMed]

V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol.125(8), 1027–1035 (2007).
[CrossRef] [PubMed]

R. N. Khurana, Y. Li, M. Tang, M. M. Lai, and D. Huang, “High-speed optical coherence tomography of corneal opacities,” Ophthalmology114(7), 1278–1285 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (1)

C. K. Leung, W. M. Chan, C. Y. Ko, S. I. Chui, J. Woo, M. K. Tsang, and R. K. Tse, “Visualization of anterior chamber angle dynamics using optical coherence tomography,” Ophthalmology112(6), 980–984 (2005).
[CrossRef] [PubMed]

2004 (3)

2003 (5)

M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-18-2183 .
[CrossRef] [PubMed]

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, “Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography,” Arch. Ophthalmol.121(5), 695–706 (2003).
[CrossRef] [PubMed]

R. Leitgeb, C. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-8-889 .
[CrossRef] [PubMed]

B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. Fercher, W. Drexler, C. Schubert, P. Ahnelt, M. Mei, R. Holzwarth, W. Wadsworth, J. Knight, and P. S. Russell, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Opt. Express11(17), 1980–1986 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-17-1980 .
[CrossRef] [PubMed]

S. Yun, G. Tearney, B. Bouma, B. Park, and J. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 µm wavelength,” Opt. Express11(26), 3598–3604 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-26-3598 .
[CrossRef] [PubMed]

2002 (1)

2001 (1)

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med.7(4), 502–507 (2001).
[CrossRef] [PubMed]

1999 (1)

1998 (1)

M. R. Hee, C. A. Puliafito, J. S. Duker, E. Reichel, J. G. Coker, J. R. Wilkins, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Topography of diabetic macular edema with optical coherence tomography,” Ophthalmology105(2), 360–370 (1998).
[CrossRef] [PubMed]

1995 (4)

A. F. Fercher, C. K. Hitzenberger, K. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
[CrossRef]

M. R. Hee, C. A. Puliafito, C. Wong, J. S. Duker, E. Reichel, B. Rutledge, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Quantitative assessment of macular edema with optical coherence tomography,” Arch. Ophthalmol.113(8), 1019–1029 (1995).
[CrossRef] [PubMed]

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology102(2), 217–229 (1995).
[PubMed]

J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Optical coherence tomography: a new tool for glaucoma diagnosis,” Curr. Opin. Ophthalmol.6(2), 89–95 (1995).
[CrossRef] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Adler, D. C.

Ahn, Y. C.

T. J. Eom, Y. C. Ahn, C. S. Kim, and Z. Chen, “Calibration and characterization protocol for spectral-domain optical coherence tomography using fiber Bragg gratings,” J. Biomed. Opt.16(3), 030501 (2011).
[CrossRef] [PubMed]

Ahnelt, P.

An, L.

Arya, A. V.

J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Optical coherence tomography: a new tool for glaucoma diagnosis,” Curr. Opin. Ophthalmol.6(2), 89–95 (1995).
[CrossRef] [PubMed]

Bajraszewski, T.

B. J. Kaluzny, A. Szkulmowska, M. Szkulmowski, T. Bajraszewski, A. Wawrocka, M. R. Krawczynski, A. Kowalczyk, and M. Wojtkowski, “Granular corneal dystrophy in 830-nm spectral optical coherence tomography,” Cornea27(7), 830–832 (2008).
[CrossRef] [PubMed]

Baumann, B.

Beop-Min, K.

L. Sang-Won, J. Hyun-Woo, A. Yeh-Chan, J. Woonggyu, C. Zhongping, and K. Beop-Min, “Optimization for axial resolution, depth range, and sensitivity of spectral domain optical coherence tomography at 1.3 μm,” J. Korean Phys. Soc.55(6), 2354–2360 (2009).
[CrossRef]

Biedermann, B. R.

Bizheva, K.

Boppart, S. A.

Bouma, B.

Bouma, B. E.

Bower, B. A.

B. A. Bower, M. Zhao, R. J. Zawadzki, and J. A. Izatt, “Real-time spectral domain Doppler optical coherence tomography and investigation of human retinal vessel autoregulation,” J. Biomed. Opt.12(4), 041214 (2007).
[CrossRef] [PubMed]

Bustamante, T.

Cable, A.

Cense, B.

Chai, X.

Chan, W. M.

C. K. Leung, W. M. Chan, C. Y. Ko, S. I. Chui, J. Woo, M. K. Tsang, and R. K. Tse, “Visualization of anterior chamber angle dynamics using optical coherence tomography,” Ophthalmology112(6), 980–984 (2005).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Charalambous, I.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol.49(7), 1277–1294 (2004).
[CrossRef] [PubMed]

Chen, T.

Chen, T. C.

Chen, Y.

Chen, Z.

C. Dai, C. Zhou, S. Fan, Z. Chen, X. Chai, Q. Ren, and S. Jiao, “Optical coherence tomography for whole eye segment imaging,” Opt. Express20(6), 6109–6115 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-6-6109 .
[CrossRef] [PubMed]

T. J. Eom, Y. C. Ahn, C. S. Kim, and Z. Chen, “Calibration and characterization protocol for spectral-domain optical coherence tomography using fiber Bragg gratings,” J. Biomed. Opt.16(3), 030501 (2011).
[CrossRef] [PubMed]

Choma, M.

Christopoulos, V.

V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol.125(8), 1027–1035 (2007).
[CrossRef] [PubMed]

Chui, S. I.

C. K. Leung, W. M. Chan, C. Y. Ko, S. I. Chui, J. Woo, M. K. Tsang, and R. K. Tse, “Visualization of anterior chamber angle dynamics using optical coherence tomography,” Ophthalmology112(6), 980–984 (2005).
[CrossRef] [PubMed]

Coker, J. G.

M. R. Hee, C. A. Puliafito, J. S. Duker, E. Reichel, J. G. Coker, J. R. Wilkins, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Topography of diabetic macular edema with optical coherence tomography,” Ophthalmology105(2), 360–370 (1998).
[CrossRef] [PubMed]

Dai, C.

de Boer, J.

de Boer, J. F.

De Freitas, C.

Dhaliwal, D. K.

V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol.125(8), 1027–1035 (2007).
[CrossRef] [PubMed]

Dhalla, A.-H.

Dogariu, A.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol.49(7), 1277–1294 (2004).
[CrossRef] [PubMed]

Drexler, W.

Duker, J.

Duker, J. S.

V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol.125(8), 1027–1035 (2007).
[CrossRef] [PubMed]

M. R. Hee, C. A. Puliafito, J. S. Duker, E. Reichel, J. G. Coker, J. R. Wilkins, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Topography of diabetic macular edema with optical coherence tomography,” Ophthalmology105(2), 360–370 (1998).
[CrossRef] [PubMed]

M. R. Hee, C. A. Puliafito, C. Wong, J. S. Duker, E. Reichel, B. Rutledge, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Quantitative assessment of macular edema with optical coherence tomography,” Arch. Ophthalmol.113(8), 1019–1029 (1995).
[CrossRef] [PubMed]

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology102(2), 217–229 (1995).
[PubMed]

Eigenwillig, C. M.

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, K. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
[CrossRef]

Eom, T. J.

T. J. Eom, Y. C. Ahn, C. S. Kim, and Z. Chen, “Calibration and characterization protocol for spectral-domain optical coherence tomography using fiber Bragg gratings,” J. Biomed. Opt.16(3), 030501 (2011).
[CrossRef] [PubMed]

Fan, S.

Fercher, A.

Fercher, A. F.

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, “Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography,” Arch. Ophthalmol.121(5), 695–706 (2003).
[CrossRef] [PubMed]

R. Leitgeb, C. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-8-889 .
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, K. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
[CrossRef]

Findl, O.

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, “Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography,” Arch. Ophthalmol.121(5), 695–706 (2003).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J.

Fujimoto, J. G.

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-19-15149 .
[CrossRef] [PubMed]

V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol.125(8), 1027–1035 (2007).
[CrossRef] [PubMed]

R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, “Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second,” Opt. Lett.32(14), 2049–2051 (2007), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-32-14-2049 .
[CrossRef] [PubMed]

R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett.31(20), 2975–2977 (2006), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-20-2975 .
[CrossRef] [PubMed]

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, “Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography,” Arch. Ophthalmol.121(5), 695–706 (2003).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med.7(4), 502–507 (2001).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett.24(17), 1221–1223 (1999), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-24-17-1221 .
[CrossRef] [PubMed]

M. R. Hee, C. A. Puliafito, J. S. Duker, E. Reichel, J. G. Coker, J. R. Wilkins, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Topography of diabetic macular edema with optical coherence tomography,” Ophthalmology105(2), 360–370 (1998).
[CrossRef] [PubMed]

J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Optical coherence tomography: a new tool for glaucoma diagnosis,” Curr. Opin. Ophthalmol.6(2), 89–95 (1995).
[CrossRef] [PubMed]

M. R. Hee, C. A. Puliafito, C. Wong, J. S. Duker, E. Reichel, B. Rutledge, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Quantitative assessment of macular edema with optical coherence tomography,” Arch. Ophthalmol.113(8), 1019–1029 (1995).
[CrossRef] [PubMed]

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology102(2), 217–229 (1995).
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gabriele, M. L.

V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol.125(8), 1027–1035 (2007).
[CrossRef] [PubMed]

Ghanta, R. K.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med.7(4), 502–507 (2001).
[CrossRef] [PubMed]

Gorczynska, I.

Götzinger, E.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hee, M. R.

M. R. Hee, C. A. Puliafito, J. S. Duker, E. Reichel, J. G. Coker, J. R. Wilkins, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Topography of diabetic macular edema with optical coherence tomography,” Ophthalmology105(2), 360–370 (1998).
[CrossRef] [PubMed]

J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Optical coherence tomography: a new tool for glaucoma diagnosis,” Curr. Opin. Ophthalmol.6(2), 89–95 (1995).
[CrossRef] [PubMed]

M. R. Hee, C. A. Puliafito, C. Wong, J. S. Duker, E. Reichel, B. Rutledge, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Quantitative assessment of macular edema with optical coherence tomography,” Arch. Ophthalmol.113(8), 1019–1029 (1995).
[CrossRef] [PubMed]

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology102(2), 217–229 (1995).
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hermann, B.

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, “Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography,” Arch. Ophthalmol.121(5), 695–706 (2003).
[CrossRef] [PubMed]

B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. Fercher, W. Drexler, C. Schubert, P. Ahnelt, M. Mei, R. Holzwarth, W. Wadsworth, J. Knight, and P. S. Russell, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Opt. Express11(17), 1980–1986 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-17-1980 .
[CrossRef] [PubMed]

Hitzenberger, C.

Hitzenberger, C. K.

Ho, A.

Holzwarth, R.

Huang, D.

R. N. Khurana, Y. Li, M. Tang, M. M. Lai, and D. Huang, “High-speed optical coherence tomography of corneal opacities,” Ophthalmology114(7), 1278–1285 (2007).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Huber, R.

Hyun-Woo, J.

L. Sang-Won, J. Hyun-Woo, A. Yeh-Chan, J. Woonggyu, C. Zhongping, and K. Beop-Min, “Optimization for axial resolution, depth range, and sensitivity of spectral domain optical coherence tomography at 1.3 μm,” J. Korean Phys. Soc.55(6), 2354–2360 (2009).
[CrossRef]

Ippen, E. P.

Ishikawa, H.

V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol.125(8), 1027–1035 (2007).
[CrossRef] [PubMed]

Izatt, J.

Izatt, J. A.

A.-H. Dhalla, D. Nankivil, T. Bustamante, A. Kuo, and J. A. Izatt, “Simultaneous swept source optical coherence tomography of the anterior segment and retina using coherence revival,” Opt. Lett.37(11), 1883–1885 (2012), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-37-11-1883 .
[CrossRef] [PubMed]

B. A. Bower, M. Zhao, R. J. Zawadzki, and J. A. Izatt, “Real-time spectral domain Doppler optical coherence tomography and investigation of human retinal vessel autoregulation,” J. Biomed. Opt.12(4), 041214 (2007).
[CrossRef] [PubMed]

V. Westphal, A. M. Rollins, S. Radhakrishnan, and J. A. Izatt, “Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat’s principle,” Opt. Express10(9), 397–404 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-9-397 .
[PubMed]

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology102(2), 217–229 (1995).
[PubMed]

Jeong, H.-W.

S.-W. Lee, H.-W. Jeong, and B.-M. Kim, “High-speed spectral domain polarization- sensitive optical coherence tomography using a single camera and an optical switch at 1.3 microm,” J. Biomed. Opt.15(1), 010501 (2010).
[CrossRef] [PubMed]

Jiang, J.

Jiao, S.

Kagemann, L.

V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol.125(8), 1027–1035 (2007).
[CrossRef] [PubMed]

Kaluzny, B. J.

B. J. Kaluzny, A. Szkulmowska, M. Szkulmowski, T. Bajraszewski, A. Wawrocka, M. R. Krawczynski, A. Kowalczyk, and M. Wojtkowski, “Granular corneal dystrophy in 830-nm spectral optical coherence tomography,” Cornea27(7), 830–832 (2008).
[CrossRef] [PubMed]

Kamp, K.

A. F. Fercher, C. K. Hitzenberger, K. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
[CrossRef]

Kärtner, F. X.

Khurana, R. N.

R. N. Khurana, Y. Li, M. Tang, M. M. Lai, and D. Huang, “High-speed optical coherence tomography of corneal opacities,” Ophthalmology114(7), 1278–1285 (2007).
[CrossRef] [PubMed]

Kim, B.-M.

S.-W. Lee, H.-W. Jeong, and B.-M. Kim, “High-speed spectral domain polarization- sensitive optical coherence tomography using a single camera and an optical switch at 1.3 microm,” J. Biomed. Opt.15(1), 010501 (2010).
[CrossRef] [PubMed]

Kim, C. S.

T. J. Eom, Y. C. Ahn, C. S. Kim, and Z. Chen, “Calibration and characterization protocol for spectral-domain optical coherence tomography using fiber Bragg gratings,” J. Biomed. Opt.16(3), 030501 (2011).
[CrossRef] [PubMed]

Klein, T.

Knight, J.

Ko, C. Y.

C. K. Leung, W. M. Chan, C. Y. Ko, S. I. Chui, J. Woo, M. K. Tsang, and R. K. Tse, “Visualization of anterior chamber angle dynamics using optical coherence tomography,” Ophthalmology112(6), 980–984 (2005).
[CrossRef] [PubMed]

Ko, T.

Ko, T. H.

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, “Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography,” Arch. Ophthalmol.121(5), 695–706 (2003).
[CrossRef] [PubMed]

Kowalczyk, A.

B. J. Kaluzny, A. Szkulmowska, M. Szkulmowski, T. Bajraszewski, A. Wawrocka, M. R. Krawczynski, A. Kowalczyk, and M. Wojtkowski, “Granular corneal dystrophy in 830-nm spectral optical coherence tomography,” Cornea27(7), 830–832 (2008).
[CrossRef] [PubMed]

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12(11), 2404–2422 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-11-2404 .
[CrossRef] [PubMed]

Krawczynski, M. R.

B. J. Kaluzny, A. Szkulmowska, M. Szkulmowski, T. Bajraszewski, A. Wawrocka, M. R. Krawczynski, A. Kowalczyk, and M. Wojtkowski, “Granular corneal dystrophy in 830-nm spectral optical coherence tomography,” Cornea27(7), 830–832 (2008).
[CrossRef] [PubMed]

Kuo, A.

Lai, M. M.

R. N. Khurana, Y. Li, M. Tang, M. M. Lai, and D. Huang, “High-speed optical coherence tomography of corneal opacities,” Ophthalmology114(7), 1278–1285 (2007).
[CrossRef] [PubMed]

Lasser, T.

Lee, S.-W.

S.-W. Lee, H.-W. Jeong, and B.-M. Kim, “High-speed spectral domain polarization- sensitive optical coherence tomography using a single camera and an optical switch at 1.3 microm,” J. Biomed. Opt.15(1), 010501 (2010).
[CrossRef] [PubMed]

Leitgeb, R.

Leitgeb, R. A.

Leung, C. K.

C. K. Leung, W. M. Chan, C. Y. Ko, S. I. Chui, J. Woo, M. K. Tsang, and R. K. Tse, “Visualization of anterior chamber angle dynamics using optical coherence tomography,” Ophthalmology112(6), 980–984 (2005).
[CrossRef] [PubMed]

Li, P.

Li, X. D.

Li, Y.

R. N. Khurana, Y. Li, M. Tang, M. M. Lai, and D. Huang, “High-speed optical coherence tomography of corneal opacities,” Ophthalmology114(7), 1278–1285 (2007).
[CrossRef] [PubMed]

Lin, C. P.

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology102(2), 217–229 (1995).
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Manns, F.

Mei, M.

Michaely, R.

Morgner, U.

Mujat, M.

Nankivil, D.

Nassif, N.

Oh, W. Y.

Parel, J.-M.

Park, B.

Park, B. H.

Pedut-Kloizman, T.

J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Optical coherence tomography: a new tool for glaucoma diagnosis,” Curr. Opin. Ophthalmol.6(2), 89–95 (1995).
[CrossRef] [PubMed]

Pierce, M.

Pircher, M.

Pitris, C.

Plesea, L.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol.49(7), 1277–1294 (2004).
[CrossRef] [PubMed]

Podoleanu, A.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol.49(7), 1277–1294 (2004).
[CrossRef] [PubMed]

Potsaid, B.

Povazay, B.

Puliafito, C. A.

M. R. Hee, C. A. Puliafito, J. S. Duker, E. Reichel, J. G. Coker, J. R. Wilkins, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Topography of diabetic macular edema with optical coherence tomography,” Ophthalmology105(2), 360–370 (1998).
[CrossRef] [PubMed]

J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Optical coherence tomography: a new tool for glaucoma diagnosis,” Curr. Opin. Ophthalmol.6(2), 89–95 (1995).
[CrossRef] [PubMed]

M. R. Hee, C. A. Puliafito, C. Wong, J. S. Duker, E. Reichel, B. Rutledge, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Quantitative assessment of macular edema with optical coherence tomography,” Arch. Ophthalmol.113(8), 1019–1029 (1995).
[CrossRef] [PubMed]

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology102(2), 217–229 (1995).
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Radhakrishnan, S.

Reichel, E.

M. R. Hee, C. A. Puliafito, J. S. Duker, E. Reichel, J. G. Coker, J. R. Wilkins, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Topography of diabetic macular edema with optical coherence tomography,” Ophthalmology105(2), 360–370 (1998).
[CrossRef] [PubMed]

M. R. Hee, C. A. Puliafito, C. Wong, J. S. Duker, E. Reichel, B. Rutledge, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Quantitative assessment of macular edema with optical coherence tomography,” Arch. Ophthalmol.113(8), 1019–1029 (1995).
[CrossRef] [PubMed]

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology102(2), 217–229 (1995).
[PubMed]

Ren, Q.

Rollins, A. M.

Rosen, R.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol.49(7), 1277–1294 (2004).
[CrossRef] [PubMed]

Ruggeri, M.

Russell, P. S.

Rutledge, B.

M. R. Hee, C. A. Puliafito, C. Wong, J. S. Duker, E. Reichel, B. Rutledge, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Quantitative assessment of macular edema with optical coherence tomography,” Arch. Ophthalmol.113(8), 1019–1029 (1995).
[CrossRef] [PubMed]

Sang-Won, L.

L. Sang-Won, J. Hyun-Woo, A. Yeh-Chan, J. Woonggyu, C. Zhongping, and K. Beop-Min, “Optimization for axial resolution, depth range, and sensitivity of spectral domain optical coherence tomography at 1.3 μm,” J. Korean Phys. Soc.55(6), 2354–2360 (2009).
[CrossRef]

Sarunic, M.

Sattmann, H.

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, “Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography,” Arch. Ophthalmol.121(5), 695–706 (2003).
[CrossRef] [PubMed]

B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. Fercher, W. Drexler, C. Schubert, P. Ahnelt, M. Mei, R. Holzwarth, W. Wadsworth, J. Knight, and P. S. Russell, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Opt. Express11(17), 1980–1986 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-17-1980 .
[CrossRef] [PubMed]

Scholda, C.

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, “Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography,” Arch. Ophthalmol.121(5), 695–706 (2003).
[CrossRef] [PubMed]

Schubert, C.

Schuman, J. S.

V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol.125(8), 1027–1035 (2007).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med.7(4), 502–507 (2001).
[CrossRef] [PubMed]

M. R. Hee, C. A. Puliafito, J. S. Duker, E. Reichel, J. G. Coker, J. R. Wilkins, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Topography of diabetic macular edema with optical coherence tomography,” Ophthalmology105(2), 360–370 (1998).
[CrossRef] [PubMed]

M. R. Hee, C. A. Puliafito, C. Wong, J. S. Duker, E. Reichel, B. Rutledge, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Quantitative assessment of macular edema with optical coherence tomography,” Arch. Ophthalmol.113(8), 1019–1029 (1995).
[CrossRef] [PubMed]

J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Optical coherence tomography: a new tool for glaucoma diagnosis,” Curr. Opin. Ophthalmol.6(2), 89–95 (1995).
[CrossRef] [PubMed]

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology102(2), 217–229 (1995).
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Sekhar, S. C.

Shen, T. T.

Shishkov, M.

Srinivasan, V.

V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol.125(8), 1027–1035 (2007).
[CrossRef] [PubMed]

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12(11), 2404–2422 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-11-2404 .
[CrossRef] [PubMed]

Srinivasan, V. J.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Stur, M.

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, “Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography,” Arch. Ophthalmol.121(5), 695–706 (2003).
[CrossRef] [PubMed]

Swanson, E. A.

M. R. Hee, C. A. Puliafito, J. S. Duker, E. Reichel, J. G. Coker, J. R. Wilkins, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Topography of diabetic macular edema with optical coherence tomography,” Ophthalmology105(2), 360–370 (1998).
[CrossRef] [PubMed]

M. R. Hee, C. A. Puliafito, C. Wong, J. S. Duker, E. Reichel, B. Rutledge, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Quantitative assessment of macular edema with optical coherence tomography,” Arch. Ophthalmol.113(8), 1019–1029 (1995).
[CrossRef] [PubMed]

J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Optical coherence tomography: a new tool for glaucoma diagnosis,” Curr. Opin. Ophthalmol.6(2), 89–95 (1995).
[CrossRef] [PubMed]

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology102(2), 217–229 (1995).
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Szkulmowska, A.

B. J. Kaluzny, A. Szkulmowska, M. Szkulmowski, T. Bajraszewski, A. Wawrocka, M. R. Krawczynski, A. Kowalczyk, and M. Wojtkowski, “Granular corneal dystrophy in 830-nm spectral optical coherence tomography,” Cornea27(7), 830–832 (2008).
[CrossRef] [PubMed]

Szkulmowski, M.

B. J. Kaluzny, A. Szkulmowska, M. Szkulmowski, T. Bajraszewski, A. Wawrocka, M. R. Krawczynski, A. Kowalczyk, and M. Wojtkowski, “Granular corneal dystrophy in 830-nm spectral optical coherence tomography,” Cornea27(7), 830–832 (2008).
[CrossRef] [PubMed]

Tang, M.

R. N. Khurana, Y. Li, M. Tang, M. M. Lai, and D. Huang, “High-speed optical coherence tomography of corneal opacities,” Ophthalmology114(7), 1278–1285 (2007).
[CrossRef] [PubMed]

Tearney, G.

Tearney, G. J.

Tsang, M. K.

C. K. Leung, W. M. Chan, C. Y. Ko, S. I. Chui, J. Woo, M. K. Tsang, and R. K. Tse, “Visualization of anterior chamber angle dynamics using optical coherence tomography,” Ophthalmology112(6), 980–984 (2005).
[CrossRef] [PubMed]

Tse, R. K.

C. K. Leung, W. M. Chan, C. Y. Ko, S. I. Chui, J. Woo, M. K. Tsang, and R. K. Tse, “Visualization of anterior chamber angle dynamics using optical coherence tomography,” Ophthalmology112(6), 980–984 (2005).
[CrossRef] [PubMed]

Uhlhorn, S. R.

Unterhuber, A.

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, “Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography,” Arch. Ophthalmol.121(5), 695–706 (2003).
[CrossRef] [PubMed]

B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. Fercher, W. Drexler, C. Schubert, P. Ahnelt, M. Mei, R. Holzwarth, W. Wadsworth, J. Knight, and P. S. Russell, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Opt. Express11(17), 1980–1986 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-17-1980 .
[CrossRef] [PubMed]

Vakoc, B. J.

Wadsworth, W.

Wang, R. K.

Wawrocka, A.

B. J. Kaluzny, A. Szkulmowska, M. Szkulmowski, T. Bajraszewski, A. Wawrocka, M. R. Krawczynski, A. Kowalczyk, and M. Wojtkowski, “Granular corneal dystrophy in 830-nm spectral optical coherence tomography,” Cornea27(7), 830–832 (2008).
[CrossRef] [PubMed]

Westphal, V.

Wieser, W.

Wilkins, J. R.

M. R. Hee, C. A. Puliafito, J. S. Duker, E. Reichel, J. G. Coker, J. R. Wilkins, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Topography of diabetic macular edema with optical coherence tomography,” Ophthalmology105(2), 360–370 (1998).
[CrossRef] [PubMed]

Wirtitsch, M.

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, “Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography,” Arch. Ophthalmol.121(5), 695–706 (2003).
[CrossRef] [PubMed]

Wojtkowski, M.

B. J. Kaluzny, A. Szkulmowska, M. Szkulmowski, T. Bajraszewski, A. Wawrocka, M. R. Krawczynski, A. Kowalczyk, and M. Wojtkowski, “Granular corneal dystrophy in 830-nm spectral optical coherence tomography,” Cornea27(7), 830–832 (2008).
[CrossRef] [PubMed]

V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol.125(8), 1027–1035 (2007).
[CrossRef] [PubMed]

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12(11), 2404–2422 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-11-2404 .
[CrossRef] [PubMed]

Wollstein, G.

V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol.125(8), 1027–1035 (2007).
[CrossRef] [PubMed]

Wong, C.

M. R. Hee, C. A. Puliafito, C. Wong, J. S. Duker, E. Reichel, B. Rutledge, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Quantitative assessment of macular edema with optical coherence tomography,” Arch. Ophthalmol.113(8), 1019–1029 (1995).
[CrossRef] [PubMed]

Woo, J.

C. K. Leung, W. M. Chan, C. Y. Ko, S. I. Chui, J. Woo, M. K. Tsang, and R. K. Tse, “Visualization of anterior chamber angle dynamics using optical coherence tomography,” Ophthalmology112(6), 980–984 (2005).
[CrossRef] [PubMed]

Woonggyu, J.

L. Sang-Won, J. Hyun-Woo, A. Yeh-Chan, J. Woonggyu, C. Zhongping, and K. Beop-Min, “Optimization for axial resolution, depth range, and sensitivity of spectral domain optical coherence tomography at 1.3 μm,” J. Korean Phys. Soc.55(6), 2354–2360 (2009).
[CrossRef]

Yang, C.

Yeh-Chan, A.

L. Sang-Won, J. Hyun-Woo, A. Yeh-Chan, J. Woonggyu, C. Zhongping, and K. Beop-Min, “Optimization for axial resolution, depth range, and sensitivity of spectral domain optical coherence tomography at 1.3 μm,” J. Korean Phys. Soc.55(6), 2354–2360 (2009).
[CrossRef]

Yun, S.

Zawadzki, R. J.

B. A. Bower, M. Zhao, R. J. Zawadzki, and J. A. Izatt, “Real-time spectral domain Doppler optical coherence tomography and investigation of human retinal vessel autoregulation,” J. Biomed. Opt.12(4), 041214 (2007).
[CrossRef] [PubMed]

Zhao, M.

B. A. Bower, M. Zhao, R. J. Zawadzki, and J. A. Izatt, “Real-time spectral domain Doppler optical coherence tomography and investigation of human retinal vessel autoregulation,” J. Biomed. Opt.12(4), 041214 (2007).
[CrossRef] [PubMed]

Zhongping, C.

L. Sang-Won, J. Hyun-Woo, A. Yeh-Chan, J. Woonggyu, C. Zhongping, and K. Beop-Min, “Optimization for axial resolution, depth range, and sensitivity of spectral domain optical coherence tomography at 1.3 μm,” J. Korean Phys. Soc.55(6), 2354–2360 (2009).
[CrossRef]

Zhou, C.

Appl. Phys. Lett. (1)

R. K. Wang, “In vivo full range complex Fourier domain optical coherence tomography,” Appl. Phys. Lett.90(5), 054103 (2007).
[CrossRef]

Arch. Ophthalmol. (3)

M. R. Hee, C. A. Puliafito, C. Wong, J. S. Duker, E. Reichel, B. Rutledge, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Quantitative assessment of macular edema with optical coherence tomography,” Arch. Ophthalmol.113(8), 1019–1029 (1995).
[CrossRef] [PubMed]

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, “Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography,” Arch. Ophthalmol.121(5), 695–706 (2003).
[CrossRef] [PubMed]

V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol.125(8), 1027–1035 (2007).
[CrossRef] [PubMed]

Biomed. Opt. Express (2)

Cornea (1)

B. J. Kaluzny, A. Szkulmowska, M. Szkulmowski, T. Bajraszewski, A. Wawrocka, M. R. Krawczynski, A. Kowalczyk, and M. Wojtkowski, “Granular corneal dystrophy in 830-nm spectral optical coherence tomography,” Cornea27(7), 830–832 (2008).
[CrossRef] [PubMed]

Curr. Opin. Ophthalmol. (1)

J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Optical coherence tomography: a new tool for glaucoma diagnosis,” Curr. Opin. Ophthalmol.6(2), 89–95 (1995).
[CrossRef] [PubMed]

J. Biomed. Opt. (3)

S.-W. Lee, H.-W. Jeong, and B.-M. Kim, “High-speed spectral domain polarization- sensitive optical coherence tomography using a single camera and an optical switch at 1.3 microm,” J. Biomed. Opt.15(1), 010501 (2010).
[CrossRef] [PubMed]

T. J. Eom, Y. C. Ahn, C. S. Kim, and Z. Chen, “Calibration and characterization protocol for spectral-domain optical coherence tomography using fiber Bragg gratings,” J. Biomed. Opt.16(3), 030501 (2011).
[CrossRef] [PubMed]

B. A. Bower, M. Zhao, R. J. Zawadzki, and J. A. Izatt, “Real-time spectral domain Doppler optical coherence tomography and investigation of human retinal vessel autoregulation,” J. Biomed. Opt.12(4), 041214 (2007).
[CrossRef] [PubMed]

J. Korean Phys. Soc. (1)

L. Sang-Won, J. Hyun-Woo, A. Yeh-Chan, J. Woonggyu, C. Zhongping, and K. Beop-Min, “Optimization for axial resolution, depth range, and sensitivity of spectral domain optical coherence tomography at 1.3 μm,” J. Korean Phys. Soc.55(6), 2354–2360 (2009).
[CrossRef]

Nat. Med. (1)

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med.7(4), 502–507 (2001).
[CrossRef] [PubMed]

Ophthalmology (4)

C. K. Leung, W. M. Chan, C. Y. Ko, S. I. Chui, J. Woo, M. K. Tsang, and R. K. Tse, “Visualization of anterior chamber angle dynamics using optical coherence tomography,” Ophthalmology112(6), 980–984 (2005).
[CrossRef] [PubMed]

M. R. Hee, C. A. Puliafito, J. S. Duker, E. Reichel, J. G. Coker, J. R. Wilkins, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Topography of diabetic macular edema with optical coherence tomography,” Ophthalmology105(2), 360–370 (1998).
[CrossRef] [PubMed]

R. N. Khurana, Y. Li, M. Tang, M. M. Lai, and D. Huang, “High-speed optical coherence tomography of corneal opacities,” Ophthalmology114(7), 1278–1285 (2007).
[CrossRef] [PubMed]

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology102(2), 217–229 (1995).
[PubMed]

Opt. Commun. (1)

A. F. Fercher, C. K. Hitzenberger, K. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995).
[CrossRef]

Opt. Express (13)

B. Baumann, E. Götzinger, M. Pircher, and C. K. Hitzenberger, “Single camera based spectral domain polarization sensitive optical coherence tomography,” Opt. Express15(3), 1054–1063 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-3-1054 .
[CrossRef] [PubMed]

B. Cense, M. Mujat, T. C. Chen, B. H. Park, and J. F. de Boer, “Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera,” Opt. Express15(5), 2421–2431 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-5-2421 .
[CrossRef] [PubMed]

B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Full range complex spectral domain optical coherence tomography without additional phase shifters,” Opt. Express15(20), 13375–13387 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-20-13375 .
[CrossRef] [PubMed]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-19-15149 .
[CrossRef] [PubMed]

V. Westphal, A. M. Rollins, S. Radhakrishnan, and J. A. Izatt, “Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat’s principle,” Opt. Express10(9), 397–404 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-9-397 .
[PubMed]

R. Leitgeb, C. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-8-889 .
[CrossRef] [PubMed]

B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. Fercher, W. Drexler, C. Schubert, P. Ahnelt, M. Mei, R. Holzwarth, W. Wadsworth, J. Knight, and P. S. Russell, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Opt. Express11(17), 1980–1986 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-17-1980 .
[CrossRef] [PubMed]

S. Yun, G. Tearney, B. Bouma, B. Park, and J. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 µm wavelength,” Opt. Express11(26), 3598–3604 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-26-3598 .
[CrossRef] [PubMed]

N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express12(3), 367–376 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-3-367 .
[CrossRef] [PubMed]

M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-18-2183 .
[CrossRef] [PubMed]

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12(11), 2404–2422 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-11-2404 .
[CrossRef] [PubMed]

C. Dai, C. Zhou, S. Fan, Z. Chen, X. Chai, Q. Ren, and S. Jiao, “Optical coherence tomography for whole eye segment imaging,” Opt. Express20(6), 6109–6115 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-6-6109 .
[CrossRef] [PubMed]

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express19(4), 3044–3062 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-4-3044 .
[CrossRef] [PubMed]

Opt. Lett. (6)

A.-H. Dhalla, D. Nankivil, T. Bustamante, A. Kuo, and J. A. Izatt, “Simultaneous swept source optical coherence tomography of the anterior segment and retina using coherence revival,” Opt. Lett.37(11), 1883–1885 (2012), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-37-11-1883 .
[CrossRef] [PubMed]

R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett.31(20), 2975–2977 (2006), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-20-2975 .
[CrossRef] [PubMed]

W. Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett.35(17), 2919–2921 (2010), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-35-17-2919 .
[CrossRef] [PubMed]

R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, “Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning,” Opt. Lett.32(23), 3453–3455 (2007), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-32-23-3453 .
[CrossRef] [PubMed]

R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, “Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second,” Opt. Lett.32(14), 2049–2051 (2007), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-32-14-2049 .
[CrossRef] [PubMed]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett.24(17), 1221–1223 (1999), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-24-17-1221 .
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol.49(7), 1277–1294 (2004).
[CrossRef] [PubMed]

Other (3)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

ANSI Z 136.1, Safe Use of Lasers, (American National Standard Institute, 2007).

H.-W. Jeong and B.-M. Kim, “High-speed spectral domain optical coherence tomography with dual detection of the retina and the cornea,” in Proceedings of IQEC/CLEO Pacific Rim, K. Baldwin, ed. (Australian Optical Society, Australia, 2011), pp. 691–692.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of dual imaging SD-OCT system at 830 nm designed to acquire in vivo images of the anterior segment and the retina of the eye simultaneously. FC: fiber coupler, PC: polarization controller, CL: collimation lens, PBS: polarization beam splitter, NDF: neutral density filter, DC: dispersion compensation unit, L1–L3: lens.

Fig. 2
Fig. 2

Synchronized signals for line-scan camera (blue), optical switch (green), and fast-axis galvanometer (red). (a) Simultaneous imaging mode; (b) magnified signals for the camera and optical switch in simultaneous imaging mode, where each interference signal from the anterior segment and the retina is transferred to the camera by the optical switch for interlaced detection; (c) single imaging mode for the anterior segment; and (d) single imaging mode for the retina.

Fig. 3
Fig. 3

Sensitivity curves of retinal (a) and anterior segment imaging paths (b) as a function of depth. The anterior segment imaging depth was increased by the complex conjugate removal algorithm and was double the retinal imaging depth.

Fig. 4
Fig. 4

Measured point spread function of axial resolution at 120 μm from zero-depth location (a) and changes in axial resolution as function of depth (b).

Fig. 5
Fig. 5

Acquired images of the anterior segment of a human volunteer’s eye with mirror artifacts (a) and without mirror artifacts (b) corrected using off-pivot based complex conjugate removal implementation. The images consist of 2048 (axial) × 1500 (lateral) pixels. The image size is 6.0 mm (axial) × 12.5 mm (lateral).

Fig. 6
Fig. 6

Simultaneous images of the anterior segment and the retina (Media 1). The anterior segment and retinal images consist of 2048 (axial) × 1500 (lateral) pixels and 1024 (axial) × 1500 (lateral) pixels, respectively. The image size is 6.0 mm (axial) × 14 mm (lateral) for the anterior segment and 3.0 mm (axial) × 5.6 mm (lateral) for the retina.

Fig. 7
Fig. 7

Images of human retina (single imaging mode) around the macular (a) and the optic disk (b) with ROI of 600 (axial) × 1500 (lateral) pixels taken at an acquisition speed of 70 kHz; (c) magnification of the apex region of the macular (red box). The image size of each image is 3.0 mm (axial) × 7.8 mm (lateral). NFL: nerve fiber layer, IPL: inner plexiform layer, INL: inner nuclear layer, OPL: outer plexiform layer, ONL: outer nuclear layer, ELM: external limiting membrane, IS/OS: photoreceptor inner segment/outer segment junction, PR OS: photoreceptor outer segments, RPE: retinal pigment epithelium, and CH: choroid

Metrics