Abstract

A metal-insulator-metal vertical nanocavity is proposed to be integrated at the center of a plasmonic lens. Utilizing cavity resonance effect, the light intensity at the center of the integrated plasmonic lens gets enhancement up to 5500 times compared to that without the cavity, and the light field is tightly confined into a spot as small as 6.0 × 10−3λ02. The Purcell factor of the cavity reaches up to 1400, ensuring greatly enhanced light-matter interaction inside the cavity. Moreover, the proposed structure takes advantage of linearly polarized light excitation and easy fabrication.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  2. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
    [CrossRef] [PubMed]
  3. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1(11), 641–648 (2007).
    [CrossRef]
  4. B. A. Liu, D. X. Wang, C. Shi, K. B. Crozier, and T. Yang, “Vertical optical antennas integrated with spiral ring gratings for large local electric field enhancement and directional radiation,” Opt. Express19(11), 10049–10056 (2011).
    [CrossRef] [PubMed]
  5. J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
    [CrossRef] [PubMed]
  6. S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics3(7), 388–394 (2009).
    [CrossRef]
  7. P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature459(7245), 410–413 (2009).
    [CrossRef] [PubMed]
  8. Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett.5(9), 1726–1729 (2005).
    [CrossRef] [PubMed]
  9. Z. Y. Fang, Q. Peng, W. T. Song, F. H. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett.11(2), 893–897 (2011).
    [CrossRef] [PubMed]
  10. H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett.10(2), 529–536 (2010).
    [CrossRef] [PubMed]
  11. A. Normatov, P. Ginzburg, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Efficient coupling and field enhancement for the nano-scale: plasmonic needle,” Opt. Express18(13), 14079–14086 (2010).
    [CrossRef] [PubMed]
  12. G. H. Rui, W. B. Chen, Y. H. Lu, P. Wang, H. Ming, and Q. W. Zhan, “Plasmonic near-field probe using the combination of concentric rings and conical tip under radial polarization illumination,” J. Opt.12(3), 035004 (2010).
    [CrossRef]
  13. P. Ginzburg, A. Nevet, N. Berkovitch, A. Normatov, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Plasmonic resonance effects for tandem receiving-transmitting nanoantennas,” Nano Lett.11(1), 220–224 (2011).
    [CrossRef] [PubMed]
  14. Y. X. Cui and S. L. He, “Enhancing extraordinary transmission of light through a metallic nanoslit with a nanocavity antenna,” Opt. Lett.34(1), 16–18 (2009).
    [CrossRef] [PubMed]
  15. M. J. Weber, Handbook of Optical Materials (CRC Press, 2003).
  16. G. Veronis and S. H. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett.30(24), 3359–3361 (2005).
    [CrossRef] [PubMed]
  17. J. M. Steele, Z. W. Liu, Y. Wang, and X. Zhang, “Resonant and non-resonant generation and focusing of surface plasmons with circular gratings,” Opt. Express14(12), 5664–5670 (2006).
    [CrossRef] [PubMed]
  18. X. L. Zhu, Y. Zhang, J. S. Zhang, J. Xu, Y. Ma, Z. Y. Li, and D. P. Yu, “Ultrafine and smooth full metal nanostructures for plasmonics,” Adv. Mater. (Deerfield Beach Fla.)22(39), 4345–4349 (2010).
    [CrossRef] [PubMed]
  19. X. L. Zhu, J. S. Zhang, J. Xu, and D. P. Yu, “Vertical plasmonic resonant nanocavities,” Nano Lett.11(3), 1117–1121 (2011).
    [CrossRef] [PubMed]

2011 (4)

Z. Y. Fang, Q. Peng, W. T. Song, F. H. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett.11(2), 893–897 (2011).
[CrossRef] [PubMed]

P. Ginzburg, A. Nevet, N. Berkovitch, A. Normatov, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Plasmonic resonance effects for tandem receiving-transmitting nanoantennas,” Nano Lett.11(1), 220–224 (2011).
[CrossRef] [PubMed]

X. L. Zhu, J. S. Zhang, J. Xu, and D. P. Yu, “Vertical plasmonic resonant nanocavities,” Nano Lett.11(3), 1117–1121 (2011).
[CrossRef] [PubMed]

B. A. Liu, D. X. Wang, C. Shi, K. B. Crozier, and T. Yang, “Vertical optical antennas integrated with spiral ring gratings for large local electric field enhancement and directional radiation,” Opt. Express19(11), 10049–10056 (2011).
[CrossRef] [PubMed]

2010 (5)

X. L. Zhu, Y. Zhang, J. S. Zhang, J. Xu, Y. Ma, Z. Y. Li, and D. P. Yu, “Ultrafine and smooth full metal nanostructures for plasmonics,” Adv. Mater. (Deerfield Beach Fla.)22(39), 4345–4349 (2010).
[CrossRef] [PubMed]

A. Normatov, P. Ginzburg, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Efficient coupling and field enhancement for the nano-scale: plasmonic needle,” Opt. Express18(13), 14079–14086 (2010).
[CrossRef] [PubMed]

H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett.10(2), 529–536 (2010).
[CrossRef] [PubMed]

G. H. Rui, W. B. Chen, Y. H. Lu, P. Wang, H. Ming, and Q. W. Zhan, “Plasmonic near-field probe using the combination of concentric rings and conical tip under radial polarization illumination,” J. Opt.12(3), 035004 (2010).
[CrossRef]

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

2009 (3)

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics3(7), 388–394 (2009).
[CrossRef]

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature459(7245), 410–413 (2009).
[CrossRef] [PubMed]

Y. X. Cui and S. L. He, “Enhancing extraordinary transmission of light through a metallic nanoslit with a nanocavity antenna,” Opt. Lett.34(1), 16–18 (2009).
[CrossRef] [PubMed]

2007 (1)

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1(11), 641–648 (2007).
[CrossRef]

2006 (2)

2005 (2)

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett.5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

G. Veronis and S. H. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett.30(24), 3359–3361 (2005).
[CrossRef] [PubMed]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Berkovitch, N.

P. Ginzburg, A. Nevet, N. Berkovitch, A. Normatov, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Plasmonic resonance effects for tandem receiving-transmitting nanoantennas,” Nano Lett.11(1), 220–224 (2011).
[CrossRef] [PubMed]

A. Normatov, P. Ginzburg, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Efficient coupling and field enhancement for the nano-scale: plasmonic needle,” Opt. Express18(13), 14079–14086 (2010).
[CrossRef] [PubMed]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Cai, W. S.

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Chen, W. B.

G. H. Rui, W. B. Chen, Y. H. Lu, P. Wang, H. Ming, and Q. W. Zhan, “Plasmonic near-field probe using the combination of concentric rings and conical tip under radial polarization illumination,” J. Opt.12(3), 035004 (2010).
[CrossRef]

Cho, S. W.

H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett.10(2), 529–536 (2010).
[CrossRef] [PubMed]

Chon, J. W. M.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature459(7245), 410–413 (2009).
[CrossRef] [PubMed]

Crozier, K. B.

Cui, Y. X.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Fan, S. H.

Fang, Z. Y.

Z. Y. Fang, Q. Peng, W. T. Song, F. H. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett.11(2), 893–897 (2011).
[CrossRef] [PubMed]

Ginzburg, P.

P. Ginzburg, A. Nevet, N. Berkovitch, A. Normatov, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Plasmonic resonance effects for tandem receiving-transmitting nanoantennas,” Nano Lett.11(1), 220–224 (2011).
[CrossRef] [PubMed]

A. Normatov, P. Ginzburg, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Efficient coupling and field enhancement for the nano-scale: plasmonic needle,” Opt. Express18(13), 14079–14086 (2010).
[CrossRef] [PubMed]

Gu, M.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature459(7245), 410–413 (2009).
[CrossRef] [PubMed]

Halas, N. J.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1(11), 641–648 (2007).
[CrossRef]

Hao, F. H.

Z. Y. Fang, Q. Peng, W. T. Song, F. H. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett.11(2), 893–897 (2011).
[CrossRef] [PubMed]

He, S. L.

Inouye, Y.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics3(7), 388–394 (2009).
[CrossRef]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Kang, M.

H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett.10(2), 529–536 (2010).
[CrossRef] [PubMed]

Kawata, S.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics3(7), 388–394 (2009).
[CrossRef]

Kim, H.

H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett.10(2), 529–536 (2010).
[CrossRef] [PubMed]

Lal, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1(11), 641–648 (2007).
[CrossRef]

Lee, B.

H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett.10(2), 529–536 (2010).
[CrossRef] [PubMed]

Lee, S. Y.

H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett.10(2), 529–536 (2010).
[CrossRef] [PubMed]

Lerman, G. M.

P. Ginzburg, A. Nevet, N. Berkovitch, A. Normatov, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Plasmonic resonance effects for tandem receiving-transmitting nanoantennas,” Nano Lett.11(1), 220–224 (2011).
[CrossRef] [PubMed]

A. Normatov, P. Ginzburg, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Efficient coupling and field enhancement for the nano-scale: plasmonic needle,” Opt. Express18(13), 14079–14086 (2010).
[CrossRef] [PubMed]

Levy, U.

P. Ginzburg, A. Nevet, N. Berkovitch, A. Normatov, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Plasmonic resonance effects for tandem receiving-transmitting nanoantennas,” Nano Lett.11(1), 220–224 (2011).
[CrossRef] [PubMed]

A. Normatov, P. Ginzburg, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Efficient coupling and field enhancement for the nano-scale: plasmonic needle,” Opt. Express18(13), 14079–14086 (2010).
[CrossRef] [PubMed]

Li, Z. Y.

X. L. Zhu, Y. Zhang, J. S. Zhang, J. Xu, Y. Ma, Z. Y. Li, and D. P. Yu, “Ultrafine and smooth full metal nanostructures for plasmonics,” Adv. Mater. (Deerfield Beach Fla.)22(39), 4345–4349 (2010).
[CrossRef] [PubMed]

Link, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1(11), 641–648 (2007).
[CrossRef]

Liu, B. A.

Liu, Z. W.

J. M. Steele, Z. W. Liu, Y. Wang, and X. Zhang, “Resonant and non-resonant generation and focusing of surface plasmons with circular gratings,” Opt. Express14(12), 5664–5670 (2006).
[CrossRef] [PubMed]

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett.5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Lu, Y. H.

G. H. Rui, W. B. Chen, Y. H. Lu, P. Wang, H. Ming, and Q. W. Zhan, “Plasmonic near-field probe using the combination of concentric rings and conical tip under radial polarization illumination,” J. Opt.12(3), 035004 (2010).
[CrossRef]

Ma, Y.

X. L. Zhu, Y. Zhang, J. S. Zhang, J. Xu, Y. Ma, Z. Y. Li, and D. P. Yu, “Ultrafine and smooth full metal nanostructures for plasmonics,” Adv. Mater. (Deerfield Beach Fla.)22(39), 4345–4349 (2010).
[CrossRef] [PubMed]

Ming, H.

G. H. Rui, W. B. Chen, Y. H. Lu, P. Wang, H. Ming, and Q. W. Zhan, “Plasmonic near-field probe using the combination of concentric rings and conical tip under radial polarization illumination,” J. Opt.12(3), 035004 (2010).
[CrossRef]

Nevet, A.

P. Ginzburg, A. Nevet, N. Berkovitch, A. Normatov, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Plasmonic resonance effects for tandem receiving-transmitting nanoantennas,” Nano Lett.11(1), 220–224 (2011).
[CrossRef] [PubMed]

Nordlander, P.

Z. Y. Fang, Q. Peng, W. T. Song, F. H. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett.11(2), 893–897 (2011).
[CrossRef] [PubMed]

Normatov, A.

P. Ginzburg, A. Nevet, N. Berkovitch, A. Normatov, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Plasmonic resonance effects for tandem receiving-transmitting nanoantennas,” Nano Lett.11(1), 220–224 (2011).
[CrossRef] [PubMed]

A. Normatov, P. Ginzburg, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Efficient coupling and field enhancement for the nano-scale: plasmonic needle,” Opt. Express18(13), 14079–14086 (2010).
[CrossRef] [PubMed]

Orenstein, M.

P. Ginzburg, A. Nevet, N. Berkovitch, A. Normatov, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Plasmonic resonance effects for tandem receiving-transmitting nanoantennas,” Nano Lett.11(1), 220–224 (2011).
[CrossRef] [PubMed]

A. Normatov, P. Ginzburg, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Efficient coupling and field enhancement for the nano-scale: plasmonic needle,” Opt. Express18(13), 14079–14086 (2010).
[CrossRef] [PubMed]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Park, J.

H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett.10(2), 529–536 (2010).
[CrossRef] [PubMed]

Peng, Q.

Z. Y. Fang, Q. Peng, W. T. Song, F. H. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett.11(2), 893–897 (2011).
[CrossRef] [PubMed]

Pikus, Y.

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett.5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Rui, G. H.

G. H. Rui, W. B. Chen, Y. H. Lu, P. Wang, H. Ming, and Q. W. Zhan, “Plasmonic near-field probe using the combination of concentric rings and conical tip under radial polarization illumination,” J. Opt.12(3), 035004 (2010).
[CrossRef]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Shi, C.

Song, W. T.

Z. Y. Fang, Q. Peng, W. T. Song, F. H. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett.11(2), 893–897 (2011).
[CrossRef] [PubMed]

Srituravanich, W.

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett.5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Steele, J. M.

J. M. Steele, Z. W. Liu, Y. Wang, and X. Zhang, “Resonant and non-resonant generation and focusing of surface plasmons with circular gratings,” Opt. Express14(12), 5664–5670 (2006).
[CrossRef] [PubMed]

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett.5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Sun, C.

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett.5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Verma, P.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics3(7), 388–394 (2009).
[CrossRef]

Veronis, G.

Wang, D. X.

Wang, J.

Z. Y. Fang, Q. Peng, W. T. Song, F. H. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett.11(2), 893–897 (2011).
[CrossRef] [PubMed]

Wang, P.

G. H. Rui, W. B. Chen, Y. H. Lu, P. Wang, H. Ming, and Q. W. Zhan, “Plasmonic near-field probe using the combination of concentric rings and conical tip under radial polarization illumination,” J. Opt.12(3), 035004 (2010).
[CrossRef]

Wang, Y.

White, J. S.

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Xu, J.

X. L. Zhu, J. S. Zhang, J. Xu, and D. P. Yu, “Vertical plasmonic resonant nanocavities,” Nano Lett.11(3), 1117–1121 (2011).
[CrossRef] [PubMed]

X. L. Zhu, Y. Zhang, J. S. Zhang, J. Xu, Y. Ma, Z. Y. Li, and D. P. Yu, “Ultrafine and smooth full metal nanostructures for plasmonics,” Adv. Mater. (Deerfield Beach Fla.)22(39), 4345–4349 (2010).
[CrossRef] [PubMed]

Yanai, A.

P. Ginzburg, A. Nevet, N. Berkovitch, A. Normatov, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Plasmonic resonance effects for tandem receiving-transmitting nanoantennas,” Nano Lett.11(1), 220–224 (2011).
[CrossRef] [PubMed]

A. Normatov, P. Ginzburg, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Efficient coupling and field enhancement for the nano-scale: plasmonic needle,” Opt. Express18(13), 14079–14086 (2010).
[CrossRef] [PubMed]

Yang, T.

Yu, D. P.

X. L. Zhu, J. S. Zhang, J. Xu, and D. P. Yu, “Vertical plasmonic resonant nanocavities,” Nano Lett.11(3), 1117–1121 (2011).
[CrossRef] [PubMed]

X. L. Zhu, Y. Zhang, J. S. Zhang, J. Xu, Y. Ma, Z. Y. Li, and D. P. Yu, “Ultrafine and smooth full metal nanostructures for plasmonics,” Adv. Mater. (Deerfield Beach Fla.)22(39), 4345–4349 (2010).
[CrossRef] [PubMed]

Zhan, Q. W.

G. H. Rui, W. B. Chen, Y. H. Lu, P. Wang, H. Ming, and Q. W. Zhan, “Plasmonic near-field probe using the combination of concentric rings and conical tip under radial polarization illumination,” J. Opt.12(3), 035004 (2010).
[CrossRef]

Zhang, J. S.

X. L. Zhu, J. S. Zhang, J. Xu, and D. P. Yu, “Vertical plasmonic resonant nanocavities,” Nano Lett.11(3), 1117–1121 (2011).
[CrossRef] [PubMed]

X. L. Zhu, Y. Zhang, J. S. Zhang, J. Xu, Y. Ma, Z. Y. Li, and D. P. Yu, “Ultrafine and smooth full metal nanostructures for plasmonics,” Adv. Mater. (Deerfield Beach Fla.)22(39), 4345–4349 (2010).
[CrossRef] [PubMed]

Zhang, X.

J. M. Steele, Z. W. Liu, Y. Wang, and X. Zhang, “Resonant and non-resonant generation and focusing of surface plasmons with circular gratings,” Opt. Express14(12), 5664–5670 (2006).
[CrossRef] [PubMed]

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett.5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Zhang, Y.

X. L. Zhu, Y. Zhang, J. S. Zhang, J. Xu, Y. Ma, Z. Y. Li, and D. P. Yu, “Ultrafine and smooth full metal nanostructures for plasmonics,” Adv. Mater. (Deerfield Beach Fla.)22(39), 4345–4349 (2010).
[CrossRef] [PubMed]

Zhu, X.

Z. Y. Fang, Q. Peng, W. T. Song, F. H. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett.11(2), 893–897 (2011).
[CrossRef] [PubMed]

Zhu, X. L.

X. L. Zhu, J. S. Zhang, J. Xu, and D. P. Yu, “Vertical plasmonic resonant nanocavities,” Nano Lett.11(3), 1117–1121 (2011).
[CrossRef] [PubMed]

X. L. Zhu, Y. Zhang, J. S. Zhang, J. Xu, Y. Ma, Z. Y. Li, and D. P. Yu, “Ultrafine and smooth full metal nanostructures for plasmonics,” Adv. Mater. (Deerfield Beach Fla.)22(39), 4345–4349 (2010).
[CrossRef] [PubMed]

Zijlstra, P.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature459(7245), 410–413 (2009).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (1)

X. L. Zhu, Y. Zhang, J. S. Zhang, J. Xu, Y. Ma, Z. Y. Li, and D. P. Yu, “Ultrafine and smooth full metal nanostructures for plasmonics,” Adv. Mater. (Deerfield Beach Fla.)22(39), 4345–4349 (2010).
[CrossRef] [PubMed]

J. Opt. (1)

G. H. Rui, W. B. Chen, Y. H. Lu, P. Wang, H. Ming, and Q. W. Zhan, “Plasmonic near-field probe using the combination of concentric rings and conical tip under radial polarization illumination,” J. Opt.12(3), 035004 (2010).
[CrossRef]

Nano Lett. (5)

P. Ginzburg, A. Nevet, N. Berkovitch, A. Normatov, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Plasmonic resonance effects for tandem receiving-transmitting nanoantennas,” Nano Lett.11(1), 220–224 (2011).
[CrossRef] [PubMed]

Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett.5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Z. Y. Fang, Q. Peng, W. T. Song, F. H. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett.11(2), 893–897 (2011).
[CrossRef] [PubMed]

H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett.10(2), 529–536 (2010).
[CrossRef] [PubMed]

X. L. Zhu, J. S. Zhang, J. Xu, and D. P. Yu, “Vertical plasmonic resonant nanocavities,” Nano Lett.11(3), 1117–1121 (2011).
[CrossRef] [PubMed]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Nat. Photonics (2)

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics3(7), 388–394 (2009).
[CrossRef]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1(11), 641–648 (2007).
[CrossRef]

Nature (2)

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature459(7245), 410–413 (2009).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Science (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Other (1)

M. J. Weber, Handbook of Optical Materials (CRC Press, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the integrated structure, a rectangular shallow groove locates at the center of a PL. The incident light is linearly polarized along the X direction, and converging SPPs are supposed to excite the MIM waveguide mode in the central groove, which will be reflected back and forth to form a vertical cavity.

Fig. 2
Fig. 2

(a) Light intensity (|E|2) enhancement with respect to the geometric parameters of the central groove, green diamonds, black squares, red circles and blue triangles correspond to grooves with a length of 150 nm, 200 nm, 350 nm and 500 nm, respectively. Arrows marked by b and c correspond to the first and second peak in the L350 nm-curve. Field distribution (|E|) corresponds to cross sections along the yz-plane for a groove with a depth of (b) 90 nm and (c) 345 nm, showing the first and second order resonance mode. (d) Field distribution (|E|) corresponds to cross section along the xz-plane for a groove with the length of 350nm and depth of 90 nm, showing the accumulated charges at the sharp corners of the vertical cavity. White arrows indicate the electric field distribution.

Fig. 3
Fig. 3

Effective refractive index neff of the symmetric MIM waveguide mode for different groove length L, with a given groove width g of 20 nm. Stars mark the data correspond to the grooves with a length L of 200 nm, 350 nm and 500 nm, respectively. Inset shows the geometry of the simulated rectangular MIM waveguide.

Fig. 4
Fig. 4

Light intensity distribution (|E|2) 10 nm above the Au film along the (a) X- and (b) Y-directions. Solid curves stand for the PL with dimension-optimized cavity, and dashed curves stand for the conventional PL under radial polarization excitation. Insets show the schematic.

Fig. 5
Fig. 5

Normalized spectrum response of the geometry-optimized cavity.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

4πh/ λ SPP + θ 1 + θ 2 = 2πN
F p = 3 4 π 2 ( λ c n ) 3 ( Q V m )

Metrics