Abstract

Advances in fabrication of high-finesse optical resonators hold promise for the development of miniaturized, ultra-sensitive, wide-band optical sensors, based on resonance-shift detection. Many potential applications are foreseen for such sensors, among them highly sensitive detection in ultrasound and optoacoustic imaging. Traditionally, sensor interrogation is performed by tuning a narrow linewidth laser to the resonance wavelength. Despite the ubiquity of this method, its use has been mostly limited to lab conditions due to its vulnerability to environmental factors and the difficulty of multiplexing – a key factor in imaging applications. In this paper, we develop a new optical-resonator interrogation scheme based on wideband pulse interferometry, potentially capable of achieving high stability against environmental conditions without compromising sensitivity. Additionally, the method can enable multiplexing several sensors. The unique properties of the pulse-interferometry interrogation approach are studied theoretically and experimentally. Methods for noise reduction in the proposed scheme are presented and experimentally demonstrated, while the overall performance is validated for broadband optical detection of ultrasonic fields. The achieved sensitivity is equivalent to the theoretical limit of a 6 MHz narrow-line width laser, which is 40 times higher than what can be usually achieved by incoherent interferometry for the same optical resonator.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. A. Michelson and E. W. Morley, “On the relative motion of the earth and the luminiferous ether,” Am. J. Sci.34, 333–345 (1887).
  2. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensor,” J. Lightwave Technol.15(8), 1442–1463 (1997).
    [CrossRef]
  3. J. A. Bucaro, H. D. Dardy, and E. F. Carome, “Fiber-optic hydrophone,” J. Acoust. Soc. Am.62(5), 1302–1304 (1977).
    [CrossRef]
  4. T. T. Y. Lam, G. Gagliardi, M. Salza, J. H. Chow, and P. De Natale, “Optical fiber three-axis accelerometer based on lasers locked to π phase-shifted Bragg gratings,” Meas. Sci. Technol.21(9), 094010 (2010).
    [CrossRef]
  5. C. Fabry and A. Pérot, “On the fringes of thin silver plates and their application to the measurement of small layers of air,” Ann. Chim. Phys.12, 459–501 (1897).
  6. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987).
    [CrossRef] [PubMed]
  7. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol.15(6), 998–1005 (1997).
    [CrossRef]
  8. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection fiber fabrication,” Appl. Phys. Lett.32(10), 647–649 (1978).
    [CrossRef]
  9. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
    [CrossRef] [PubMed]
  10. A. Rosenthal, D. Razansky, and V. Ntziachristos, “High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating,” Opt. Lett.36(10), 1833–1835 (2011).
    [CrossRef] [PubMed]
  11. D. Gallego and H. Lamela, “High-sensitivity ultrasound interferometric single-mode polymer optical fiber sensors for biomedical applications,” Opt. Lett.34(12), 1807–1809 (2009).
    [CrossRef] [PubMed]
  12. P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am.125(6), 3611–3622 (2009).
    [CrossRef] [PubMed]
  13. E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt.47(4), 561–577 (2008).
    [CrossRef] [PubMed]
  14. S. W. Huang, S. L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett.92(19), 193509 (2008).
    [CrossRef] [PubMed]
  15. T. Ling, S. L. Chen, and L. J. Guo, “Fabrication and characterization of high Q polymer micro-ring resonator and its application as a sensitive ultrasonic detector,” Opt. Express19(2), 861–869 (2011).
    [CrossRef] [PubMed]
  16. D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Going deeper than microscopy with multi-spectral optoacoustic tomography of fluorescent proteins in-vivo,” Nat. Photonics3, 412–417 (2009).
    [CrossRef]
  17. V. Ntziachristos and D. Razansky, “Molecular imaging by means of multispectral optoacoustic tomography (MSOT),” Chem. Rev.110(5), 2783–2794 (2010).
    [CrossRef] [PubMed]
  18. D. Razansky, A. Buehler, and V. Ntziachristos, “Volumetric real-time multispectral optoacoustic tomography of biomarkers,” Nat. Protoc.6(8), 1121–1129 (2011).
    [CrossRef] [PubMed]
  19. D. Razansky, S. Kellnberger, and V. Ntziachristos, “Near-field radiofrequency thermoacoustic tomography with impulse excitation,” Med. Phys.37(9), 4602–4607 (2010).
    [CrossRef] [PubMed]
  20. B. Lissak, A. Arie, and M. Tur, “Highly sensitive dynamic strain measurements by locking lasers to fiber Bragg gratings,” Opt. Lett.23(24), 1930–1932 (1998).
    [CrossRef] [PubMed]
  21. J. H. Chow, I. C. M. Littler, D. E. Glenn de Vine, D. E. McClelland, and M. B. Gray, “Phase-sensitive interrogation of fiber Bragg grating resonators for sensing applications,” J. Lightwave Technol.23(5), 1881–1889 (2005).
    [CrossRef]
  22. J. H. Chow, I. C. Littler, D. E. McClelland, and M. B. Gray, “Laser frequency-noise-limited ultrahigh resolution remote fiber sensing,” Opt. Express14(11), 4617–4624 (2006).
    [CrossRef] [PubMed]
  23. J. H. Chow, D. E. McClelland, M. B. Gray, and I. C. M. Littler, “Demonstration of a passive subpicostrain fiber strain sensor,” Opt. Lett.30(15), 1923–1925 (2005).
    [CrossRef] [PubMed]
  24. G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science330(6007), 1081–1084 (2010).
    [CrossRef] [PubMed]
  25. T. T. Y. Lam, J. H. Chow, D. A. Shaddock, I. C. M. Littler, G. Gagliardi, M. B. Gray, and D. E. McClelland, “High-resolution absolute frequency referenced fiber optic sensor for quasi-static strain sensing,” Appl. Opt.49(21), 4029–4033 (2010).
    [CrossRef] [PubMed]
  26. S. Avino, J. A. Barnes, G. Gagliardi, X. Gu, D. Gutstein, J. R. Mester, C. Nicholaou, and H. P. Loock, “Musical instrument pickup based on a laser locked to an optical fiber resonator,” Opt. Express19(25), 25057–25065 (2011).
    [CrossRef] [PubMed]
  27. C. K. Kirkendall and A. Dandridge, “Overview of high performance fiber-optic sensing,” J. Phys. D Appl. Phys.37(18), R197–R216 (2004).
    [CrossRef]
  28. G. A. Cranch, P. J. Nash, and C. K. Kirkendall, “Large-scale remotely interrogated arrays of fiber-optic interferometric sensors for underwater acoustic applications,” IEEE Sens. J.3(1), 19–30 (2003).
    [CrossRef]
  29. I. C. M. Littler, M. B. Gray, J. H. Chow, D. A. Shaddock, and D. E. McClelland, “Pico-strain multiplexed fiber optic sensor array operating down to infra-sonic frequencies,” Opt. Express17(13), 11077–11087 (2009).
    [CrossRef] [PubMed]
  30. M. A. Yaseen, S. A. Ermilov, H. P. Brecht, R. Su, A. Conjusteau, M. Fronheiser, B. A. Bell, M. Motamedi, and A. A. Oraevsky, “Optoacoustic imaging of the prostate: development toward image-guided biopsy,” J. Biomed. Opt.15(2), 021310 (2010).
    [CrossRef] [PubMed]
  31. A. D. Kersey, D. A. Jackson, and M. Corke, “Passive compensation scheme suitable for use in the single-mode fiber interferometer,” Electron. Lett.18(9), 392–393 (1982).
    [CrossRef]
  32. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
    [CrossRef]
  33. A. T. Alavie, S. E. Karr, A. Othonos, and R. M. Measures, “A multiplexed Bragg grating fiber laser sensor system,” IEEE Photon. Technol. Lett.5(9), 1112–1114 (1993).
    [CrossRef]
  34. G. A. Cranch, G. M. H. Flockhart, and C. K. Kirkendall, “Distributed feedback fiber laser strain sensor,” IEEE Sens. J.8(7), 1161–1172 (2008).
    [CrossRef]
  35. K. P. Koo and A. D. Kersey, “Fiber laser sensor with ultrahigh strain resolution using interferometric interrogation,” Electron. Lett.31(14), 1180–1182 (1995).
    [CrossRef]
  36. L. Y. Shao, S. T. Lau, X. Dong, A. P. Zhang, H. L. W. Chan, H. Y. Tam, and S. He, “High-frequency ultrasonic hydrophone based on a cladding-etched DBR fiber laser,” IEEE Photon. Technol. Lett.20(8), 548–550 (2008).
    [CrossRef]
  37. C. C. Ye and R. P. Tatam, “Ultrasonic sensing using Yb3+/Er3+-codoped distributed feedback fiber grating lasers,” Smart Mater. Struct.14(1), 170–176 (2005).
    [CrossRef]
  38. B. Moslehi, “Noise power spectra of optical two-beam interferometers induced by the laser phase noise,” J. Lightwave Technol.4(11), 1704–1710 (1986).
    [CrossRef]
  39. G. Di Domenico, S. Schilt, and P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Opt.49(25), 4801–4807 (2010).
    [CrossRef] [PubMed]
  40. D. Gatti, G. Galzerano, D. Janner, S. Longhi, and P. Laporta, “Fiber strain sensor based on a pi-phase-shifted Bragg grating and the Pound-Drever-Hall technique,” Opt. Express16(3), 1945–1950 (2008).
    [CrossRef] [PubMed]
  41. D. A. Jackson, R. Priest, A. Dandridge, and A. B. Tveten, “Elimination of drift in a single-mode optical fiber interferometer using a piezoelectrically stretched coiled fiber,” Appl. Opt.19(17), 2926–2929 (1980).
    [CrossRef] [PubMed]
  42. R. S. Weis and B. L. Bachim, “Source-noise-induced resolution limits of interferometric fiber Bragg grating sensor demodulation systems,” Meas. Sci. Technol.12(7), 782–785 (2001).
    [CrossRef]
  43. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
    [CrossRef]

2011

2010

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science330(6007), 1081–1084 (2010).
[CrossRef] [PubMed]

T. T. Y. Lam, J. H. Chow, D. A. Shaddock, I. C. M. Littler, G. Gagliardi, M. B. Gray, and D. E. McClelland, “High-resolution absolute frequency referenced fiber optic sensor for quasi-static strain sensing,” Appl. Opt.49(21), 4029–4033 (2010).
[CrossRef] [PubMed]

D. Razansky, S. Kellnberger, and V. Ntziachristos, “Near-field radiofrequency thermoacoustic tomography with impulse excitation,” Med. Phys.37(9), 4602–4607 (2010).
[CrossRef] [PubMed]

M. A. Yaseen, S. A. Ermilov, H. P. Brecht, R. Su, A. Conjusteau, M. Fronheiser, B. A. Bell, M. Motamedi, and A. A. Oraevsky, “Optoacoustic imaging of the prostate: development toward image-guided biopsy,” J. Biomed. Opt.15(2), 021310 (2010).
[CrossRef] [PubMed]

V. Ntziachristos and D. Razansky, “Molecular imaging by means of multispectral optoacoustic tomography (MSOT),” Chem. Rev.110(5), 2783–2794 (2010).
[CrossRef] [PubMed]

T. T. Y. Lam, G. Gagliardi, M. Salza, J. H. Chow, and P. De Natale, “Optical fiber three-axis accelerometer based on lasers locked to π phase-shifted Bragg gratings,” Meas. Sci. Technol.21(9), 094010 (2010).
[CrossRef]

G. Di Domenico, S. Schilt, and P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Opt.49(25), 4801–4807 (2010).
[CrossRef] [PubMed]

2009

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Going deeper than microscopy with multi-spectral optoacoustic tomography of fluorescent proteins in-vivo,” Nat. Photonics3, 412–417 (2009).
[CrossRef]

D. Gallego and H. Lamela, “High-sensitivity ultrasound interferometric single-mode polymer optical fiber sensors for biomedical applications,” Opt. Lett.34(12), 1807–1809 (2009).
[CrossRef] [PubMed]

P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am.125(6), 3611–3622 (2009).
[CrossRef] [PubMed]

I. C. M. Littler, M. B. Gray, J. H. Chow, D. A. Shaddock, and D. E. McClelland, “Pico-strain multiplexed fiber optic sensor array operating down to infra-sonic frequencies,” Opt. Express17(13), 11077–11087 (2009).
[CrossRef] [PubMed]

2008

G. A. Cranch, G. M. H. Flockhart, and C. K. Kirkendall, “Distributed feedback fiber laser strain sensor,” IEEE Sens. J.8(7), 1161–1172 (2008).
[CrossRef]

E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt.47(4), 561–577 (2008).
[CrossRef] [PubMed]

S. W. Huang, S. L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett.92(19), 193509 (2008).
[CrossRef] [PubMed]

D. Gatti, G. Galzerano, D. Janner, S. Longhi, and P. Laporta, “Fiber strain sensor based on a pi-phase-shifted Bragg grating and the Pound-Drever-Hall technique,” Opt. Express16(3), 1945–1950 (2008).
[CrossRef] [PubMed]

L. Y. Shao, S. T. Lau, X. Dong, A. P. Zhang, H. L. W. Chan, H. Y. Tam, and S. He, “High-frequency ultrasonic hydrophone based on a cladding-etched DBR fiber laser,” IEEE Photon. Technol. Lett.20(8), 548–550 (2008).
[CrossRef]

2006

2005

2004

C. K. Kirkendall and A. Dandridge, “Overview of high performance fiber-optic sensing,” J. Phys. D Appl. Phys.37(18), R197–R216 (2004).
[CrossRef]

2003

G. A. Cranch, P. J. Nash, and C. K. Kirkendall, “Large-scale remotely interrogated arrays of fiber-optic interferometric sensors for underwater acoustic applications,” IEEE Sens. J.3(1), 19–30 (2003).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

2001

R. S. Weis and B. L. Bachim, “Source-noise-induced resolution limits of interferometric fiber Bragg grating sensor demodulation systems,” Meas. Sci. Technol.12(7), 782–785 (2001).
[CrossRef]

1998

1997

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensor,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol.15(6), 998–1005 (1997).
[CrossRef]

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
[CrossRef]

1995

K. P. Koo and A. D. Kersey, “Fiber laser sensor with ultrahigh strain resolution using interferometric interrogation,” Electron. Lett.31(14), 1180–1182 (1995).
[CrossRef]

1993

A. T. Alavie, S. E. Karr, A. Othonos, and R. M. Measures, “A multiplexed Bragg grating fiber laser sensor system,” IEEE Photon. Technol. Lett.5(9), 1112–1114 (1993).
[CrossRef]

1987

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

1986

B. Moslehi, “Noise power spectra of optical two-beam interferometers induced by the laser phase noise,” J. Lightwave Technol.4(11), 1704–1710 (1986).
[CrossRef]

1982

A. D. Kersey, D. A. Jackson, and M. Corke, “Passive compensation scheme suitable for use in the single-mode fiber interferometer,” Electron. Lett.18(9), 392–393 (1982).
[CrossRef]

1980

1978

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection fiber fabrication,” Appl. Phys. Lett.32(10), 647–649 (1978).
[CrossRef]

1977

J. A. Bucaro, H. D. Dardy, and E. F. Carome, “Fiber-optic hydrophone,” J. Acoust. Soc. Am.62(5), 1302–1304 (1977).
[CrossRef]

1897

C. Fabry and A. Pérot, “On the fringes of thin silver plates and their application to the measurement of small layers of air,” Ann. Chim. Phys.12, 459–501 (1897).

1887

A. A. Michelson and E. W. Morley, “On the relative motion of the earth and the luminiferous ether,” Am. J. Sci.34, 333–345 (1887).

Akahane, Y.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Alavie, A. T.

A. T. Alavie, S. E. Karr, A. Othonos, and R. M. Measures, “A multiplexed Bragg grating fiber laser sensor system,” IEEE Photon. Technol. Lett.5(9), 1112–1114 (1993).
[CrossRef]

Arie, A.

Asano, T.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Ashkenazi, S.

S. W. Huang, S. L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett.92(19), 193509 (2008).
[CrossRef] [PubMed]

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensor,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Avino, S.

Bachim, B. L.

R. S. Weis and B. L. Bachim, “Source-noise-induced resolution limits of interferometric fiber Bragg grating sensor demodulation systems,” Meas. Sci. Technol.12(7), 782–785 (2001).
[CrossRef]

Barnes, J. A.

Beard, P.

P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am.125(6), 3611–3622 (2009).
[CrossRef] [PubMed]

E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt.47(4), 561–577 (2008).
[CrossRef] [PubMed]

Bell, B. A.

M. A. Yaseen, S. A. Ermilov, H. P. Brecht, R. Su, A. Conjusteau, M. Fronheiser, B. A. Bell, M. Motamedi, and A. A. Oraevsky, “Optoacoustic imaging of the prostate: development toward image-guided biopsy,” J. Biomed. Opt.15(2), 021310 (2010).
[CrossRef] [PubMed]

Brecht, H. P.

M. A. Yaseen, S. A. Ermilov, H. P. Brecht, R. Su, A. Conjusteau, M. Fronheiser, B. A. Bell, M. Motamedi, and A. A. Oraevsky, “Optoacoustic imaging of the prostate: development toward image-guided biopsy,” J. Biomed. Opt.15(2), 021310 (2010).
[CrossRef] [PubMed]

Bucaro, J. A.

J. A. Bucaro, H. D. Dardy, and E. F. Carome, “Fiber-optic hydrophone,” J. Acoust. Soc. Am.62(5), 1302–1304 (1977).
[CrossRef]

Buehler, A.

D. Razansky, A. Buehler, and V. Ntziachristos, “Volumetric real-time multispectral optoacoustic tomography of biomarkers,” Nat. Protoc.6(8), 1121–1129 (2011).
[CrossRef] [PubMed]

Carome, E. F.

J. A. Bucaro, H. D. Dardy, and E. F. Carome, “Fiber-optic hydrophone,” J. Acoust. Soc. Am.62(5), 1302–1304 (1977).
[CrossRef]

Chan, H. L. W.

L. Y. Shao, S. T. Lau, X. Dong, A. P. Zhang, H. L. W. Chan, H. Y. Tam, and S. He, “High-frequency ultrasonic hydrophone based on a cladding-etched DBR fiber laser,” IEEE Photon. Technol. Lett.20(8), 548–550 (2008).
[CrossRef]

Chen, S. L.

T. Ling, S. L. Chen, and L. J. Guo, “Fabrication and characterization of high Q polymer micro-ring resonator and its application as a sensitive ultrasonic detector,” Opt. Express19(2), 861–869 (2011).
[CrossRef] [PubMed]

S. W. Huang, S. L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett.92(19), 193509 (2008).
[CrossRef] [PubMed]

Chow, J. H.

Chu, S. T.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol.15(6), 998–1005 (1997).
[CrossRef]

Conjusteau, A.

M. A. Yaseen, S. A. Ermilov, H. P. Brecht, R. Su, A. Conjusteau, M. Fronheiser, B. A. Bell, M. Motamedi, and A. A. Oraevsky, “Optoacoustic imaging of the prostate: development toward image-guided biopsy,” J. Biomed. Opt.15(2), 021310 (2010).
[CrossRef] [PubMed]

Corke, M.

A. D. Kersey, D. A. Jackson, and M. Corke, “Passive compensation scheme suitable for use in the single-mode fiber interferometer,” Electron. Lett.18(9), 392–393 (1982).
[CrossRef]

Cranch, G. A.

G. A. Cranch, G. M. H. Flockhart, and C. K. Kirkendall, “Distributed feedback fiber laser strain sensor,” IEEE Sens. J.8(7), 1161–1172 (2008).
[CrossRef]

G. A. Cranch, P. J. Nash, and C. K. Kirkendall, “Large-scale remotely interrogated arrays of fiber-optic interferometric sensors for underwater acoustic applications,” IEEE Sens. J.3(1), 19–30 (2003).
[CrossRef]

Dandridge, A.

Dardy, H. D.

J. A. Bucaro, H. D. Dardy, and E. F. Carome, “Fiber-optic hydrophone,” J. Acoust. Soc. Am.62(5), 1302–1304 (1977).
[CrossRef]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensor,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

De Natale, P.

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science330(6007), 1081–1084 (2010).
[CrossRef] [PubMed]

T. T. Y. Lam, G. Gagliardi, M. Salza, J. H. Chow, and P. De Natale, “Optical fiber three-axis accelerometer based on lasers locked to π phase-shifted Bragg gratings,” Meas. Sci. Technol.21(9), 094010 (2010).
[CrossRef]

Di Domenico, G.

Distel, M.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Going deeper than microscopy with multi-spectral optoacoustic tomography of fluorescent proteins in-vivo,” Nat. Photonics3, 412–417 (2009).
[CrossRef]

Dong, X.

L. Y. Shao, S. T. Lau, X. Dong, A. P. Zhang, H. L. W. Chan, H. Y. Tam, and S. He, “High-frequency ultrasonic hydrophone based on a cladding-etched DBR fiber laser,” IEEE Photon. Technol. Lett.20(8), 548–550 (2008).
[CrossRef]

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
[CrossRef]

Ermilov, S. A.

M. A. Yaseen, S. A. Ermilov, H. P. Brecht, R. Su, A. Conjusteau, M. Fronheiser, B. A. Bell, M. Motamedi, and A. A. Oraevsky, “Optoacoustic imaging of the prostate: development toward image-guided biopsy,” J. Biomed. Opt.15(2), 021310 (2010).
[CrossRef] [PubMed]

Fabry, C.

C. Fabry and A. Pérot, “On the fringes of thin silver plates and their application to the measurement of small layers of air,” Ann. Chim. Phys.12, 459–501 (1897).

Ferraro, P.

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science330(6007), 1081–1084 (2010).
[CrossRef] [PubMed]

Flockhart, G. M. H.

G. A. Cranch, G. M. H. Flockhart, and C. K. Kirkendall, “Distributed feedback fiber laser strain sensor,” IEEE Sens. J.8(7), 1161–1172 (2008).
[CrossRef]

Foresi, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol.15(6), 998–1005 (1997).
[CrossRef]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensor,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Fronheiser, M.

M. A. Yaseen, S. A. Ermilov, H. P. Brecht, R. Su, A. Conjusteau, M. Fronheiser, B. A. Bell, M. Motamedi, and A. A. Oraevsky, “Optoacoustic imaging of the prostate: development toward image-guided biopsy,” J. Biomed. Opt.15(2), 021310 (2010).
[CrossRef] [PubMed]

Fujii, Y.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection fiber fabrication,” Appl. Phys. Lett.32(10), 647–649 (1978).
[CrossRef]

Gagliardi, G.

S. Avino, J. A. Barnes, G. Gagliardi, X. Gu, D. Gutstein, J. R. Mester, C. Nicholaou, and H. P. Loock, “Musical instrument pickup based on a laser locked to an optical fiber resonator,” Opt. Express19(25), 25057–25065 (2011).
[CrossRef] [PubMed]

T. T. Y. Lam, J. H. Chow, D. A. Shaddock, I. C. M. Littler, G. Gagliardi, M. B. Gray, and D. E. McClelland, “High-resolution absolute frequency referenced fiber optic sensor for quasi-static strain sensing,” Appl. Opt.49(21), 4029–4033 (2010).
[CrossRef] [PubMed]

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science330(6007), 1081–1084 (2010).
[CrossRef] [PubMed]

T. T. Y. Lam, G. Gagliardi, M. Salza, J. H. Chow, and P. De Natale, “Optical fiber three-axis accelerometer based on lasers locked to π phase-shifted Bragg gratings,” Meas. Sci. Technol.21(9), 094010 (2010).
[CrossRef]

Gallego, D.

Galzerano, G.

Gatti, D.

Glenn de Vine, D. E.

Gray, M. B.

Gu, X.

Guo, L. J.

T. Ling, S. L. Chen, and L. J. Guo, “Fabrication and characterization of high Q polymer micro-ring resonator and its application as a sensitive ultrasonic detector,” Opt. Express19(2), 861–869 (2011).
[CrossRef] [PubMed]

S. W. Huang, S. L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett.92(19), 193509 (2008).
[CrossRef] [PubMed]

Gutstein, D.

Haus, H. A.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol.15(6), 998–1005 (1997).
[CrossRef]

He, S.

L. Y. Shao, S. T. Lau, X. Dong, A. P. Zhang, H. L. W. Chan, H. Y. Tam, and S. He, “High-frequency ultrasonic hydrophone based on a cladding-etched DBR fiber laser,” IEEE Photon. Technol. Lett.20(8), 548–550 (2008).
[CrossRef]

Hill, K. O.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection fiber fabrication,” Appl. Phys. Lett.32(10), 647–649 (1978).
[CrossRef]

Huang, S. W.

S. W. Huang, S. L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett.92(19), 193509 (2008).
[CrossRef] [PubMed]

Hurrell, A.

P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am.125(6), 3611–3622 (2009).
[CrossRef] [PubMed]

Jackson, D. A.

A. D. Kersey, D. A. Jackson, and M. Corke, “Passive compensation scheme suitable for use in the single-mode fiber interferometer,” Electron. Lett.18(9), 392–393 (1982).
[CrossRef]

D. A. Jackson, R. Priest, A. Dandridge, and A. B. Tveten, “Elimination of drift in a single-mode optical fiber interferometer using a piezoelectrically stretched coiled fiber,” Appl. Opt.19(17), 2926–2929 (1980).
[CrossRef] [PubMed]

Janner, D.

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Johnson, D. C.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection fiber fabrication,” Appl. Phys. Lett.32(10), 647–649 (1978).
[CrossRef]

Karr, S. E.

A. T. Alavie, S. E. Karr, A. Othonos, and R. M. Measures, “A multiplexed Bragg grating fiber laser sensor system,” IEEE Photon. Technol. Lett.5(9), 1112–1114 (1993).
[CrossRef]

Kawasaki, B. S.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection fiber fabrication,” Appl. Phys. Lett.32(10), 647–649 (1978).
[CrossRef]

Kellnberger, S.

D. Razansky, S. Kellnberger, and V. Ntziachristos, “Near-field radiofrequency thermoacoustic tomography with impulse excitation,” Med. Phys.37(9), 4602–4607 (2010).
[CrossRef] [PubMed]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensor,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

K. P. Koo and A. D. Kersey, “Fiber laser sensor with ultrahigh strain resolution using interferometric interrogation,” Electron. Lett.31(14), 1180–1182 (1995).
[CrossRef]

A. D. Kersey, D. A. Jackson, and M. Corke, “Passive compensation scheme suitable for use in the single-mode fiber interferometer,” Electron. Lett.18(9), 392–393 (1982).
[CrossRef]

Kirkendall, C. K.

G. A. Cranch, G. M. H. Flockhart, and C. K. Kirkendall, “Distributed feedback fiber laser strain sensor,” IEEE Sens. J.8(7), 1161–1172 (2008).
[CrossRef]

C. K. Kirkendall and A. Dandridge, “Overview of high performance fiber-optic sensing,” J. Phys. D Appl. Phys.37(18), R197–R216 (2004).
[CrossRef]

G. A. Cranch, P. J. Nash, and C. K. Kirkendall, “Large-scale remotely interrogated arrays of fiber-optic interferometric sensors for underwater acoustic applications,” IEEE Sens. J.3(1), 19–30 (2003).
[CrossRef]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensor,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

K. P. Koo and A. D. Kersey, “Fiber laser sensor with ultrahigh strain resolution using interferometric interrogation,” Electron. Lett.31(14), 1180–1182 (1995).
[CrossRef]

Köster, R. W.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Going deeper than microscopy with multi-spectral optoacoustic tomography of fluorescent proteins in-vivo,” Nat. Photonics3, 412–417 (2009).
[CrossRef]

Laine, J. P.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol.15(6), 998–1005 (1997).
[CrossRef]

Lam, T. T. Y.

T. T. Y. Lam, G. Gagliardi, M. Salza, J. H. Chow, and P. De Natale, “Optical fiber three-axis accelerometer based on lasers locked to π phase-shifted Bragg gratings,” Meas. Sci. Technol.21(9), 094010 (2010).
[CrossRef]

T. T. Y. Lam, J. H. Chow, D. A. Shaddock, I. C. M. Littler, G. Gagliardi, M. B. Gray, and D. E. McClelland, “High-resolution absolute frequency referenced fiber optic sensor for quasi-static strain sensing,” Appl. Opt.49(21), 4029–4033 (2010).
[CrossRef] [PubMed]

Lamela, H.

Laporta, P.

Lau, S. T.

L. Y. Shao, S. T. Lau, X. Dong, A. P. Zhang, H. L. W. Chan, H. Y. Tam, and S. He, “High-frequency ultrasonic hydrophone based on a cladding-etched DBR fiber laser,” IEEE Photon. Technol. Lett.20(8), 548–550 (2008).
[CrossRef]

Laufer, J.

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensor,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Ling, T.

T. Ling, S. L. Chen, and L. J. Guo, “Fabrication and characterization of high Q polymer micro-ring resonator and its application as a sensitive ultrasonic detector,” Opt. Express19(2), 861–869 (2011).
[CrossRef] [PubMed]

S. W. Huang, S. L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett.92(19), 193509 (2008).
[CrossRef] [PubMed]

Lissak, B.

Little, B. E.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol.15(6), 998–1005 (1997).
[CrossRef]

Littler, I. C.

Littler, I. C. M.

Longhi, S.

Loock, H. P.

Ma, R.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Going deeper than microscopy with multi-spectral optoacoustic tomography of fluorescent proteins in-vivo,” Nat. Photonics3, 412–417 (2009).
[CrossRef]

Maxwell, A.

S. W. Huang, S. L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett.92(19), 193509 (2008).
[CrossRef] [PubMed]

McClelland, D. E.

Measures, R. M.

A. T. Alavie, S. E. Karr, A. Othonos, and R. M. Measures, “A multiplexed Bragg grating fiber laser sensor system,” IEEE Photon. Technol. Lett.5(9), 1112–1114 (1993).
[CrossRef]

Mester, J. R.

Michelson, A. A.

A. A. Michelson and E. W. Morley, “On the relative motion of the earth and the luminiferous ether,” Am. J. Sci.34, 333–345 (1887).

Morley, E. W.

A. A. Michelson and E. W. Morley, “On the relative motion of the earth and the luminiferous ether,” Am. J. Sci.34, 333–345 (1887).

Morris, P.

P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am.125(6), 3611–3622 (2009).
[CrossRef] [PubMed]

Moslehi, B.

B. Moslehi, “Noise power spectra of optical two-beam interferometers induced by the laser phase noise,” J. Lightwave Technol.4(11), 1704–1710 (1986).
[CrossRef]

Motamedi, M.

M. A. Yaseen, S. A. Ermilov, H. P. Brecht, R. Su, A. Conjusteau, M. Fronheiser, B. A. Bell, M. Motamedi, and A. A. Oraevsky, “Optoacoustic imaging of the prostate: development toward image-guided biopsy,” J. Biomed. Opt.15(2), 021310 (2010).
[CrossRef] [PubMed]

Nash, P. J.

G. A. Cranch, P. J. Nash, and C. K. Kirkendall, “Large-scale remotely interrogated arrays of fiber-optic interferometric sensors for underwater acoustic applications,” IEEE Sens. J.3(1), 19–30 (2003).
[CrossRef]

Nicholaou, C.

Noda, S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Ntziachristos, V.

A. Rosenthal, D. Razansky, and V. Ntziachristos, “High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating,” Opt. Lett.36(10), 1833–1835 (2011).
[CrossRef] [PubMed]

D. Razansky, A. Buehler, and V. Ntziachristos, “Volumetric real-time multispectral optoacoustic tomography of biomarkers,” Nat. Protoc.6(8), 1121–1129 (2011).
[CrossRef] [PubMed]

V. Ntziachristos and D. Razansky, “Molecular imaging by means of multispectral optoacoustic tomography (MSOT),” Chem. Rev.110(5), 2783–2794 (2010).
[CrossRef] [PubMed]

D. Razansky, S. Kellnberger, and V. Ntziachristos, “Near-field radiofrequency thermoacoustic tomography with impulse excitation,” Med. Phys.37(9), 4602–4607 (2010).
[CrossRef] [PubMed]

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Going deeper than microscopy with multi-spectral optoacoustic tomography of fluorescent proteins in-vivo,” Nat. Photonics3, 412–417 (2009).
[CrossRef]

O’Donnell, M.

S. W. Huang, S. L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett.92(19), 193509 (2008).
[CrossRef] [PubMed]

Oraevsky, A. A.

M. A. Yaseen, S. A. Ermilov, H. P. Brecht, R. Su, A. Conjusteau, M. Fronheiser, B. A. Bell, M. Motamedi, and A. A. Oraevsky, “Optoacoustic imaging of the prostate: development toward image-guided biopsy,” J. Biomed. Opt.15(2), 021310 (2010).
[CrossRef] [PubMed]

Othonos, A.

A. T. Alavie, S. E. Karr, A. Othonos, and R. M. Measures, “A multiplexed Bragg grating fiber laser sensor system,” IEEE Photon. Technol. Lett.5(9), 1112–1114 (1993).
[CrossRef]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensor,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Pérot, A.

C. Fabry and A. Pérot, “On the fringes of thin silver plates and their application to the measurement of small layers of air,” Ann. Chim. Phys.12, 459–501 (1897).

Perrimon, N.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Going deeper than microscopy with multi-spectral optoacoustic tomography of fluorescent proteins in-vivo,” Nat. Photonics3, 412–417 (2009).
[CrossRef]

Priest, R.

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensor,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Razansky, D.

D. Razansky, A. Buehler, and V. Ntziachristos, “Volumetric real-time multispectral optoacoustic tomography of biomarkers,” Nat. Protoc.6(8), 1121–1129 (2011).
[CrossRef] [PubMed]

A. Rosenthal, D. Razansky, and V. Ntziachristos, “High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating,” Opt. Lett.36(10), 1833–1835 (2011).
[CrossRef] [PubMed]

D. Razansky, S. Kellnberger, and V. Ntziachristos, “Near-field radiofrequency thermoacoustic tomography with impulse excitation,” Med. Phys.37(9), 4602–4607 (2010).
[CrossRef] [PubMed]

V. Ntziachristos and D. Razansky, “Molecular imaging by means of multispectral optoacoustic tomography (MSOT),” Chem. Rev.110(5), 2783–2794 (2010).
[CrossRef] [PubMed]

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Going deeper than microscopy with multi-spectral optoacoustic tomography of fluorescent proteins in-vivo,” Nat. Photonics3, 412–417 (2009).
[CrossRef]

Rosenthal, A.

Salza, M.

T. T. Y. Lam, G. Gagliardi, M. Salza, J. H. Chow, and P. De Natale, “Optical fiber three-axis accelerometer based on lasers locked to π phase-shifted Bragg gratings,” Meas. Sci. Technol.21(9), 094010 (2010).
[CrossRef]

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science330(6007), 1081–1084 (2010).
[CrossRef] [PubMed]

Schilt, S.

Shaddock, D. A.

Shao, L. Y.

L. Y. Shao, S. T. Lau, X. Dong, A. P. Zhang, H. L. W. Chan, H. Y. Tam, and S. He, “High-frequency ultrasonic hydrophone based on a cladding-etched DBR fiber laser,” IEEE Photon. Technol. Lett.20(8), 548–550 (2008).
[CrossRef]

Shaw, A.

P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am.125(6), 3611–3622 (2009).
[CrossRef] [PubMed]

Song, B. S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Su, R.

M. A. Yaseen, S. A. Ermilov, H. P. Brecht, R. Su, A. Conjusteau, M. Fronheiser, B. A. Bell, M. Motamedi, and A. A. Oraevsky, “Optoacoustic imaging of the prostate: development toward image-guided biopsy,” J. Biomed. Opt.15(2), 021310 (2010).
[CrossRef] [PubMed]

Tam, H. Y.

L. Y. Shao, S. T. Lau, X. Dong, A. P. Zhang, H. L. W. Chan, H. Y. Tam, and S. He, “High-frequency ultrasonic hydrophone based on a cladding-etched DBR fiber laser,” IEEE Photon. Technol. Lett.20(8), 548–550 (2008).
[CrossRef]

Tatam, R. P.

C. C. Ye and R. P. Tatam, “Ultrasonic sensing using Yb3+/Er3+-codoped distributed feedback fiber grating lasers,” Smart Mater. Struct.14(1), 170–176 (2005).
[CrossRef]

Thomann, P.

Tur, M.

Tveten, A. B.

Vinegoni, C.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Going deeper than microscopy with multi-spectral optoacoustic tomography of fluorescent proteins in-vivo,” Nat. Photonics3, 412–417 (2009).
[CrossRef]

Weis, R. S.

R. S. Weis and B. L. Bachim, “Source-noise-induced resolution limits of interferometric fiber Bragg grating sensor demodulation systems,” Meas. Sci. Technol.12(7), 782–785 (2001).
[CrossRef]

Yaseen, M. A.

M. A. Yaseen, S. A. Ermilov, H. P. Brecht, R. Su, A. Conjusteau, M. Fronheiser, B. A. Bell, M. Motamedi, and A. A. Oraevsky, “Optoacoustic imaging of the prostate: development toward image-guided biopsy,” J. Biomed. Opt.15(2), 021310 (2010).
[CrossRef] [PubMed]

Ye, C. C.

C. C. Ye and R. P. Tatam, “Ultrasonic sensing using Yb3+/Er3+-codoped distributed feedback fiber grating lasers,” Smart Mater. Struct.14(1), 170–176 (2005).
[CrossRef]

Zhang, A. P.

L. Y. Shao, S. T. Lau, X. Dong, A. P. Zhang, H. L. W. Chan, H. Y. Tam, and S. He, “High-frequency ultrasonic hydrophone based on a cladding-etched DBR fiber laser,” IEEE Photon. Technol. Lett.20(8), 548–550 (2008).
[CrossRef]

Zhang, E.

P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am.125(6), 3611–3622 (2009).
[CrossRef] [PubMed]

E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt.47(4), 561–577 (2008).
[CrossRef] [PubMed]

Am. J. Sci.

A. A. Michelson and E. W. Morley, “On the relative motion of the earth and the luminiferous ether,” Am. J. Sci.34, 333–345 (1887).

Ann. Chim. Phys.

C. Fabry and A. Pérot, “On the fringes of thin silver plates and their application to the measurement of small layers of air,” Ann. Chim. Phys.12, 459–501 (1897).

Appl. Opt.

Appl. Phys. Lett.

S. W. Huang, S. L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett.92(19), 193509 (2008).
[CrossRef] [PubMed]

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection fiber fabrication,” Appl. Phys. Lett.32(10), 647–649 (1978).
[CrossRef]

Chem. Rev.

V. Ntziachristos and D. Razansky, “Molecular imaging by means of multispectral optoacoustic tomography (MSOT),” Chem. Rev.110(5), 2783–2794 (2010).
[CrossRef] [PubMed]

Electron. Lett.

A. D. Kersey, D. A. Jackson, and M. Corke, “Passive compensation scheme suitable for use in the single-mode fiber interferometer,” Electron. Lett.18(9), 392–393 (1982).
[CrossRef]

K. P. Koo and A. D. Kersey, “Fiber laser sensor with ultrahigh strain resolution using interferometric interrogation,” Electron. Lett.31(14), 1180–1182 (1995).
[CrossRef]

IEEE Photon. Technol. Lett.

L. Y. Shao, S. T. Lau, X. Dong, A. P. Zhang, H. L. W. Chan, H. Y. Tam, and S. He, “High-frequency ultrasonic hydrophone based on a cladding-etched DBR fiber laser,” IEEE Photon. Technol. Lett.20(8), 548–550 (2008).
[CrossRef]

A. T. Alavie, S. E. Karr, A. Othonos, and R. M. Measures, “A multiplexed Bragg grating fiber laser sensor system,” IEEE Photon. Technol. Lett.5(9), 1112–1114 (1993).
[CrossRef]

IEEE Sens. J.

G. A. Cranch, G. M. H. Flockhart, and C. K. Kirkendall, “Distributed feedback fiber laser strain sensor,” IEEE Sens. J.8(7), 1161–1172 (2008).
[CrossRef]

G. A. Cranch, P. J. Nash, and C. K. Kirkendall, “Large-scale remotely interrogated arrays of fiber-optic interferometric sensors for underwater acoustic applications,” IEEE Sens. J.3(1), 19–30 (2003).
[CrossRef]

J. Acoust. Soc. Am.

P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am.125(6), 3611–3622 (2009).
[CrossRef] [PubMed]

J. A. Bucaro, H. D. Dardy, and E. F. Carome, “Fiber-optic hydrophone,” J. Acoust. Soc. Am.62(5), 1302–1304 (1977).
[CrossRef]

J. Biomed. Opt.

M. A. Yaseen, S. A. Ermilov, H. P. Brecht, R. Su, A. Conjusteau, M. Fronheiser, B. A. Bell, M. Motamedi, and A. A. Oraevsky, “Optoacoustic imaging of the prostate: development toward image-guided biopsy,” J. Biomed. Opt.15(2), 021310 (2010).
[CrossRef] [PubMed]

J. Lightwave Technol.

B. Moslehi, “Noise power spectra of optical two-beam interferometers induced by the laser phase noise,” J. Lightwave Technol.4(11), 1704–1710 (1986).
[CrossRef]

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensor,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol.15(6), 998–1005 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

J. H. Chow, I. C. M. Littler, D. E. Glenn de Vine, D. E. McClelland, and M. B. Gray, “Phase-sensitive interrogation of fiber Bragg grating resonators for sensing applications,” J. Lightwave Technol.23(5), 1881–1889 (2005).
[CrossRef]

J. Phys. D Appl. Phys.

C. K. Kirkendall and A. Dandridge, “Overview of high performance fiber-optic sensing,” J. Phys. D Appl. Phys.37(18), R197–R216 (2004).
[CrossRef]

Meas. Sci. Technol.

T. T. Y. Lam, G. Gagliardi, M. Salza, J. H. Chow, and P. De Natale, “Optical fiber three-axis accelerometer based on lasers locked to π phase-shifted Bragg gratings,” Meas. Sci. Technol.21(9), 094010 (2010).
[CrossRef]

R. S. Weis and B. L. Bachim, “Source-noise-induced resolution limits of interferometric fiber Bragg grating sensor demodulation systems,” Meas. Sci. Technol.12(7), 782–785 (2001).
[CrossRef]

Med. Phys.

D. Razansky, S. Kellnberger, and V. Ntziachristos, “Near-field radiofrequency thermoacoustic tomography with impulse excitation,” Med. Phys.37(9), 4602–4607 (2010).
[CrossRef] [PubMed]

Nat. Photonics

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Going deeper than microscopy with multi-spectral optoacoustic tomography of fluorescent proteins in-vivo,” Nat. Photonics3, 412–417 (2009).
[CrossRef]

Nat. Protoc.

D. Razansky, A. Buehler, and V. Ntziachristos, “Volumetric real-time multispectral optoacoustic tomography of biomarkers,” Nat. Protoc.6(8), 1121–1129 (2011).
[CrossRef] [PubMed]

Nature

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Science

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science330(6007), 1081–1084 (2010).
[CrossRef] [PubMed]

Smart Mater. Struct.

C. C. Ye and R. P. Tatam, “Ultrasonic sensing using Yb3+/Er3+-codoped distributed feedback fiber grating lasers,” Smart Mater. Struct.14(1), 170–176 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

A schematic description of (a-c) narrowband and (d-f) wideband CW interrogation and (g-i) wideband pulse interrogation of an optical bandpass filter. The first column shows the source’s spectrum (red) and the resonance’s spectrum for two possible central frequencies. The two additional columns show the spectrum of the source after passing through each of the respective resonance spectra.

Fig. 2
Fig. 2

The schematic of the system used for pulse-interferometry interrogation of a π-phase-shifted FBG in (a) transmission and (b) reflection. EDFA is erbium-doped fiber amplifier; OPD is optical path difference; PZ is piezo-electric element, and FBG is fiber Bragg grating.

Fig. 3
Fig. 3

(a-c) The output of the MZ interferometer when the optical path of one of the arms is modulated with a 25Hz sine signal. (a) transmission measurement with pulsed source; (b) reflection measurement with pulsed source achieved by spectral inversion; (c) transmission measurement with wideband CW source. The signals were obtained at the output of the differential detector (solid-blue curve), and are also presented with the offset obtained when the measurement was performed for a single interferometer arm (dashed-red curve). The higher SNR achieved by pulse-interferometry is clearly visible. The high visibility of the interference pattern in the reflection measurement reveals that spectral inversion of the reflection spectrum was achieved. (d) The grating response to an ultrasound wave with an approximate amplitude and duration of 175 kPa and 67 ns, respectively, obtained in reflection (solid-blue curve) and transmission (dashed-red curve). Because the inverted reflection spectrum follows the transmission, no meaningful difference was obtained between the two ultrasound measurements.

Fig. 4
Fig. 4

(a) The schematic of the system used to evaluate the effect of ASE on the noise in the detection scheme. The visibility and noise level were measured for OPDs varying from 0 to 15 mm (b) The noise at the differential amplifier for wideband pulsed (blue square markers) and CW (red circle markers) sources as function of OPD obtained when the source is filtered to a bandwidth of 0.3 nm. The noise at OPD = 0 was mostly a result of electronic noise and was similar for both optical sources. (c) the noise data of Fig. 4(b) scaled to the same level for better visualization displayed with the measured fringe visibility (dashed curve). The similar dependency of noise for both cases indicates that the ASE noise is dominant in the pulse interferometry scheme. (d) The system used to test the effect of ASE rejection on noise reduction in the pulse interferometry setup. The saturable absorber (SA) added to the system had a transmission approximately 2.8 higher for the pulses compared to CW. (e) The noise recorded with the SA (solid-blue curve) and with an attenuator replacing the SA to ensure the same signal level (dashed-red curve). A reduction of 2.3 in the noise was observed, in correspondence with the SA rejection ratio.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

| u out (t) | 2 P 0 [ 3 4 + 27 8Δν f(t) ].
SNR= π Δ ν c f d v 0 .
SNR= 2πΔν e 2 f dv Δν ,
u in ( t )=[ n= A n ( t )δ( t n Δ ν s ) ] e i[ 2π ν 1 t+ϕ( t ) ] +n( t ),
u n ( t )= t g ( t ){ 0 t A n ( t' ) e iϕ( t' )+ t' τ g dt't< T g 0 T p A n ( t' ) e iϕ( t' )+ t' τ g dt' t T g ,
r g (k) k 2κ e κL ik
t g (k) 2iκ e κL 2κ e κL ik ,

Metrics