Abstract

In this paper, we derive a governing equation for spectral asymmetry in electromagnetically induced transparency (EIT). From the key parameters of asymmetry factor - namely dark mode quality factor Qd, and frequency separation between bright and dark mode Δωbd = (ωb - ωd) -, a logical pathway for the maximization of EIT asymmetry is identified. By taking the plasmonic metal-insulator-metal (MIM) waveguide as a platform, a plasmon-induced transparency (PIT) structure of tunable frequency separation Δωbd and dark mode quality factor Qd is suggested and analyzed. Compared to previous works on MIM-based plasmon modulators, an order of increase in the performance Fig. (12dB contrast at ~60% throughput) was achieved from the highly asymmetric, narrowband PIT spectra.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett.66(20), 2593–2596 (1991).
    [CrossRef] [PubMed]
  2. A. André, M. D. Eisaman, R. L. Walsworth, A. S. Zibrov, and M. D. Lukin, “Quantum control of light using electromagnetically induced transparency,” J. Phys. At. Mol. Opt. Phys.38(9), S589–S604 (2005).
    [CrossRef]
  3. A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: Propagation Dynamics,” Phys. Rev. Lett.74(13), 2447–2450 (1995).
    [CrossRef] [PubMed]
  4. A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature472(7341), 69–73 (2011).
    [CrossRef] [PubMed]
  5. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
    [CrossRef] [PubMed]
  6. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009).
    [CrossRef] [PubMed]
  7. C. L. Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys.70(1), 37–41 (2002).
    [CrossRef]
  8. D. D. Smith, H. Chang, K. A. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A69(6), 063804 (2004).
    [CrossRef]
  9. M. Tomita, K. Totsuka, R. Hanamura, and T. Matsumoto, “Tunable Fano interference effect in coupled microsphere resonator-induced transparency,” J. Opt. Soc. Am. B26(4), 813–818 (2009).
    [CrossRef]
  10. R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett.104(24), 243902 (2010).
    [CrossRef] [PubMed]
  11. Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett.99(14), 143117 (2011).
    [CrossRef]
  12. A. E. Çetin, A. Artar, M. Turkmen, A. A. Yanik, and H. Altug, “Plasmon induced transparency in cascaded π-shaped metamaterials,” Opt. Express19(23), 22607–22618 (2011).
    [CrossRef] [PubMed]
  13. P. Tassin, L. Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett.102(5), 053901 (2009).
    [CrossRef] [PubMed]
  14. N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission reponse mimicking electromagnetically induced transparency,” Appl. Phys. Lett.94(21), 211902 (2009).
    [CrossRef]
  15. H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoglu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett.70(25), 3455–3458 (1997).
    [CrossRef]
  16. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124(6), 1866–1878 (1961).
    [CrossRef]
  17. A. E. Miroshnichenko, S. Flach, and Y. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
    [CrossRef]
  18. V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett.11(7), 2835–2840 (2011).
    [CrossRef] [PubMed]
  19. Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano6(2), 1830–1838 (2012).
    [CrossRef] [PubMed]
  20. F. López-Tejeira, R. Paniagua-Dominguez, R. Rodriguez-Oliveros, and J. Sanchez-Gil, “Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna,” New J. Phys.14(2), 023035 (2012).
    [CrossRef]
  21. C. Argyropoulos, P.-Y. Chen, F. Monticone, G. D’Aguanno, and A. Alù, “Nonlinear plasmonics cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett.108(26), 263905 (2012).
    [CrossRef]
  22. N. A. Mirin, K. Bao, and P. Nordlander, “Fano resonances in plasmonic nanoparticle aggregates,” J. Phys. Chem. A113(16), 4028–4034 (2009).
    [CrossRef] [PubMed]
  23. C. Min and G. Veronis, “Absorption switches in metal-dielectric-metal plasmonic waveguides,” Opt. Express17(13), 10757–10766 (2009).
    [CrossRef] [PubMed]
  24. W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett.9(12), 4403–4411 (2009).
    [CrossRef] [PubMed]
  25. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, New Jersey, 1984).
  26. Q. Li, T. Wang, Y. Su, M. Yan, and M. Qiu, “Coupled mode theory analysis of mode-splitting in coupled cavity system,” Opt. Express18(8), 8367–8382 (2010).
    [CrossRef] [PubMed]
  27. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
    [CrossRef]
  28. X. Piao, S. Yu, S. Koo, K. Lee, and N. K. Park, “Fano-type spectral asymmetry and its control for plasmonic metal-insulator-metal stub structures,” Opt. Express19(11), 10907–10912 (2011).
    [CrossRef] [PubMed]

2012

Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano6(2), 1830–1838 (2012).
[CrossRef] [PubMed]

F. López-Tejeira, R. Paniagua-Dominguez, R. Rodriguez-Oliveros, and J. Sanchez-Gil, “Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna,” New J. Phys.14(2), 023035 (2012).
[CrossRef]

C. Argyropoulos, P.-Y. Chen, F. Monticone, G. D’Aguanno, and A. Alù, “Nonlinear plasmonics cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett.108(26), 263905 (2012).
[CrossRef]

2011

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature472(7341), 69–73 (2011).
[CrossRef] [PubMed]

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett.11(7), 2835–2840 (2011).
[CrossRef] [PubMed]

Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett.99(14), 143117 (2011).
[CrossRef]

X. Piao, S. Yu, S. Koo, K. Lee, and N. K. Park, “Fano-type spectral asymmetry and its control for plasmonic metal-insulator-metal stub structures,” Opt. Express19(11), 10907–10912 (2011).
[CrossRef] [PubMed]

A. E. Çetin, A. Artar, M. Turkmen, A. A. Yanik, and H. Altug, “Plasmon induced transparency in cascaded π-shaped metamaterials,” Opt. Express19(23), 22607–22618 (2011).
[CrossRef] [PubMed]

2010

A. E. Miroshnichenko, S. Flach, and Y. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett.104(24), 243902 (2010).
[CrossRef] [PubMed]

Q. Li, T. Wang, Y. Su, M. Yan, and M. Qiu, “Coupled mode theory analysis of mode-splitting in coupled cavity system,” Opt. Express18(8), 8367–8382 (2010).
[CrossRef] [PubMed]

2009

M. Tomita, K. Totsuka, R. Hanamura, and T. Matsumoto, “Tunable Fano interference effect in coupled microsphere resonator-induced transparency,” J. Opt. Soc. Am. B26(4), 813–818 (2009).
[CrossRef]

C. Min and G. Veronis, “Absorption switches in metal-dielectric-metal plasmonic waveguides,” Opt. Express17(13), 10757–10766 (2009).
[CrossRef] [PubMed]

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett.9(12), 4403–4411 (2009).
[CrossRef] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009).
[CrossRef] [PubMed]

N. A. Mirin, K. Bao, and P. Nordlander, “Fano resonances in plasmonic nanoparticle aggregates,” J. Phys. Chem. A113(16), 4028–4034 (2009).
[CrossRef] [PubMed]

P. Tassin, L. Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett.102(5), 053901 (2009).
[CrossRef] [PubMed]

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission reponse mimicking electromagnetically induced transparency,” Appl. Phys. Lett.94(21), 211902 (2009).
[CrossRef]

2008

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
[CrossRef] [PubMed]

2005

A. André, M. D. Eisaman, R. L. Walsworth, A. S. Zibrov, and M. D. Lukin, “Quantum control of light using electromagnetically induced transparency,” J. Phys. At. Mol. Opt. Phys.38(9), S589–S604 (2005).
[CrossRef]

2004

D. D. Smith, H. Chang, K. A. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A69(6), 063804 (2004).
[CrossRef]

2002

C. L. Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys.70(1), 37–41 (2002).
[CrossRef]

1997

H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoglu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett.70(25), 3455–3458 (1997).
[CrossRef]

1995

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: Propagation Dynamics,” Phys. Rev. Lett.74(13), 2447–2450 (1995).
[CrossRef] [PubMed]

1991

K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett.66(20), 2593–2596 (1991).
[CrossRef] [PubMed]

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

1961

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124(6), 1866–1878 (1961).
[CrossRef]

Alegre, T. P. M.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature472(7341), 69–73 (2011).
[CrossRef] [PubMed]

Altug, H.

Alù, A.

C. Argyropoulos, P.-Y. Chen, F. Monticone, G. D’Aguanno, and A. Alù, “Nonlinear plasmonics cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett.108(26), 263905 (2012).
[CrossRef]

Alzar, C. L.

C. L. Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys.70(1), 37–41 (2002).
[CrossRef]

Amrania, H.

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett.11(7), 2835–2840 (2011).
[CrossRef] [PubMed]

André, A.

A. André, M. D. Eisaman, R. L. Walsworth, A. S. Zibrov, and M. D. Lukin, “Quantum control of light using electromagnetically induced transparency,” J. Phys. At. Mol. Opt. Phys.38(9), S589–S604 (2005).
[CrossRef]

Argyropoulos, C.

C. Argyropoulos, P.-Y. Chen, F. Monticone, G. D’Aguanno, and A. Alù, “Nonlinear plasmonics cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett.108(26), 263905 (2012).
[CrossRef]

Artar, A.

Bao, K.

N. A. Mirin, K. Bao, and P. Nordlander, “Fano resonances in plasmonic nanoparticle aggregates,” J. Phys. Chem. A113(16), 4028–4034 (2009).
[CrossRef] [PubMed]

Barnard, E. S.

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett.104(24), 243902 (2010).
[CrossRef] [PubMed]

Boller, K. J.

K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett.66(20), 2593–2596 (1991).
[CrossRef] [PubMed]

Boyd, R. W.

D. D. Smith, H. Chang, K. A. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A69(6), 063804 (2004).
[CrossRef]

Brongersma, M. L.

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett.104(24), 243902 (2010).
[CrossRef] [PubMed]

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett.9(12), 4403–4411 (2009).
[CrossRef] [PubMed]

Cai, W.

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett.104(24), 243902 (2010).
[CrossRef] [PubMed]

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett.9(12), 4403–4411 (2009).
[CrossRef] [PubMed]

Campman, K. L.

H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoglu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett.70(25), 3455–3458 (1997).
[CrossRef]

Çetin, A. E.

Chan, J.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature472(7341), 69–73 (2011).
[CrossRef] [PubMed]

Chang, D. E.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature472(7341), 69–73 (2011).
[CrossRef] [PubMed]

Chang, H.

D. D. Smith, H. Chang, K. A. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A69(6), 063804 (2004).
[CrossRef]

Chen, P.-Y.

C. Argyropoulos, P.-Y. Chen, F. Monticone, G. D’Aguanno, and A. Alù, “Nonlinear plasmonics cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett.108(26), 263905 (2012).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

D’Aguanno, G.

C. Argyropoulos, P.-Y. Chen, F. Monticone, G. D’Aguanno, and A. Alù, “Nonlinear plasmonics cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett.108(26), 263905 (2012).
[CrossRef]

Economou, E. N.

P. Tassin, L. Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett.102(5), 053901 (2009).
[CrossRef] [PubMed]

Eichenfield, M.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature472(7341), 69–73 (2011).
[CrossRef] [PubMed]

Eisaman, M. D.

A. André, M. D. Eisaman, R. L. Walsworth, A. S. Zibrov, and M. D. Lukin, “Quantum control of light using electromagnetically induced transparency,” J. Phys. At. Mol. Opt. Phys.38(9), S589–S604 (2005).
[CrossRef]

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124(6), 1866–1878 (1961).
[CrossRef]

Fedotov, V. A.

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission reponse mimicking electromagnetically induced transparency,” Appl. Phys. Lett.94(21), 211902 (2009).
[CrossRef]

Flach, S.

A. E. Miroshnichenko, S. Flach, and Y. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009).
[CrossRef] [PubMed]

Francescato, Y.

Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano6(2), 1830–1838 (2012).
[CrossRef] [PubMed]

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett.11(7), 2835–2840 (2011).
[CrossRef] [PubMed]

Fu, Y. H.

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission reponse mimicking electromagnetically induced transparency,” Appl. Phys. Lett.94(21), 211902 (2009).
[CrossRef]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
[CrossRef] [PubMed]

Giannini, V.

Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano6(2), 1830–1838 (2012).
[CrossRef] [PubMed]

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett.11(7), 2835–2840 (2011).
[CrossRef] [PubMed]

Giessen, H.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009).
[CrossRef] [PubMed]

Gossard, A. C.

H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoglu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett.70(25), 3455–3458 (1997).
[CrossRef]

Hanamura, R.

Harris, S. E.

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: Propagation Dynamics,” Phys. Rev. Lett.74(13), 2447–2450 (1995).
[CrossRef] [PubMed]

K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett.66(20), 2593–2596 (1991).
[CrossRef] [PubMed]

Hill, J. T.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature472(7341), 69–73 (2011).
[CrossRef] [PubMed]

Huang, Y.

Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett.99(14), 143117 (2011).
[CrossRef]

Imamoglu, A.

H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoglu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett.70(25), 3455–3458 (1997).
[CrossRef]

Imamolu, A.

K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett.66(20), 2593–2596 (1991).
[CrossRef] [PubMed]

Jain, M.

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: Propagation Dynamics,” Phys. Rev. Lett.74(13), 2447–2450 (1995).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Kasapi, A.

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: Propagation Dynamics,” Phys. Rev. Lett.74(13), 2447–2450 (1995).
[CrossRef] [PubMed]

Kästel, J.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009).
[CrossRef] [PubMed]

Kekatpure, R. D.

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett.104(24), 243902 (2010).
[CrossRef] [PubMed]

Kivshar, Y.

A. E. Miroshnichenko, S. Flach, and Y. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

Koo, S.

Koschny, Th.

P. Tassin, L. Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett.102(5), 053901 (2009).
[CrossRef] [PubMed]

Langguth, L.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009).
[CrossRef] [PubMed]

Lee, K.

Li, Q.

Lin, Q.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature472(7341), 69–73 (2011).
[CrossRef] [PubMed]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
[CrossRef] [PubMed]

Liu, N.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009).
[CrossRef] [PubMed]

López-Tejeira, F.

F. López-Tejeira, R. Paniagua-Dominguez, R. Rodriguez-Oliveros, and J. Sanchez-Gil, “Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna,” New J. Phys.14(2), 023035 (2012).
[CrossRef]

Lukin, M. D.

A. André, M. D. Eisaman, R. L. Walsworth, A. S. Zibrov, and M. D. Lukin, “Quantum control of light using electromagnetically induced transparency,” J. Phys. At. Mol. Opt. Phys.38(9), S589–S604 (2005).
[CrossRef]

Maier, S. A.

Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano6(2), 1830–1838 (2012).
[CrossRef] [PubMed]

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett.11(7), 2835–2840 (2011).
[CrossRef] [PubMed]

Martinez, M. A. G.

C. L. Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys.70(1), 37–41 (2002).
[CrossRef]

Matsumoto, T.

Min, C.

Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett.99(14), 143117 (2011).
[CrossRef]

C. Min and G. Veronis, “Absorption switches in metal-dielectric-metal plasmonic waveguides,” Opt. Express17(13), 10757–10766 (2009).
[CrossRef] [PubMed]

Mirin, N. A.

N. A. Mirin, K. Bao, and P. Nordlander, “Fano resonances in plasmonic nanoparticle aggregates,” J. Phys. Chem. A113(16), 4028–4034 (2009).
[CrossRef] [PubMed]

Miroshnichenko, A. E.

A. E. Miroshnichenko, S. Flach, and Y. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

Monticone, F.

C. Argyropoulos, P.-Y. Chen, F. Monticone, G. D’Aguanno, and A. Alù, “Nonlinear plasmonics cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett.108(26), 263905 (2012).
[CrossRef]

Nordlander, P.

N. A. Mirin, K. Bao, and P. Nordlander, “Fano resonances in plasmonic nanoparticle aggregates,” J. Phys. Chem. A113(16), 4028–4034 (2009).
[CrossRef] [PubMed]

Nussenzveig, P.

C. L. Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys.70(1), 37–41 (2002).
[CrossRef]

Painter, O.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature472(7341), 69–73 (2011).
[CrossRef] [PubMed]

Paniagua-Dominguez, R.

F. López-Tejeira, R. Paniagua-Dominguez, R. Rodriguez-Oliveros, and J. Sanchez-Gil, “Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna,” New J. Phys.14(2), 023035 (2012).
[CrossRef]

Papasimakis, N.

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission reponse mimicking electromagnetically induced transparency,” Appl. Phys. Lett.94(21), 211902 (2009).
[CrossRef]

Park, N. K.

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009).
[CrossRef] [PubMed]

Phillips, C. C.

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett.11(7), 2835–2840 (2011).
[CrossRef] [PubMed]

Piao, X.

Prosvirnin, S. L.

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission reponse mimicking electromagnetically induced transparency,” Appl. Phys. Lett.94(21), 211902 (2009).
[CrossRef]

Qiu, M.

Rodriguez-Oliveros, R.

F. López-Tejeira, R. Paniagua-Dominguez, R. Rodriguez-Oliveros, and J. Sanchez-Gil, “Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna,” New J. Phys.14(2), 023035 (2012).
[CrossRef]

Rosenberger, K. A.

D. D. Smith, H. Chang, K. A. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A69(6), 063804 (2004).
[CrossRef]

Safavi-Naeini, A. H.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature472(7341), 69–73 (2011).
[CrossRef] [PubMed]

Sanchez-Gil, J.

F. López-Tejeira, R. Paniagua-Dominguez, R. Rodriguez-Oliveros, and J. Sanchez-Gil, “Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna,” New J. Phys.14(2), 023035 (2012).
[CrossRef]

Schmidt, H.

H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoglu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett.70(25), 3455–3458 (1997).
[CrossRef]

Smith, D. D.

D. D. Smith, H. Chang, K. A. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A69(6), 063804 (2004).
[CrossRef]

Soukoulis, C. M.

P. Tassin, L. Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett.102(5), 053901 (2009).
[CrossRef] [PubMed]

Su, Y.

Tassin, P.

P. Tassin, L. Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett.102(5), 053901 (2009).
[CrossRef] [PubMed]

Tomita, M.

Totsuka, K.

Tsai, D. P.

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission reponse mimicking electromagnetically induced transparency,” Appl. Phys. Lett.94(21), 211902 (2009).
[CrossRef]

Turkmen, M.

Veronis, G.

Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett.99(14), 143117 (2011).
[CrossRef]

C. Min and G. Veronis, “Absorption switches in metal-dielectric-metal plasmonic waveguides,” Opt. Express17(13), 10757–10766 (2009).
[CrossRef] [PubMed]

Walsworth, R. L.

A. André, M. D. Eisaman, R. L. Walsworth, A. S. Zibrov, and M. D. Lukin, “Quantum control of light using electromagnetically induced transparency,” J. Phys. At. Mol. Opt. Phys.38(9), S589–S604 (2005).
[CrossRef]

Wang, T.

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
[CrossRef] [PubMed]

Weiss, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009).
[CrossRef] [PubMed]

White, J. S.

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett.9(12), 4403–4411 (2009).
[CrossRef] [PubMed]

Winger, M.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature472(7341), 69–73 (2011).
[CrossRef] [PubMed]

Yan, M.

Yanik, A. A.

Yin, G. Y.

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: Propagation Dynamics,” Phys. Rev. Lett.74(13), 2447–2450 (1995).
[CrossRef] [PubMed]

Yu, S.

Zhang, L.

P. Tassin, L. Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett.102(5), 053901 (2009).
[CrossRef] [PubMed]

Zhang, S.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
[CrossRef] [PubMed]

Zhang, X.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
[CrossRef] [PubMed]

Zheludev, N. I.

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission reponse mimicking electromagnetically induced transparency,” Appl. Phys. Lett.94(21), 211902 (2009).
[CrossRef]

Zibrov, A. S.

A. André, M. D. Eisaman, R. L. Walsworth, A. S. Zibrov, and M. D. Lukin, “Quantum control of light using electromagnetically induced transparency,” J. Phys. At. Mol. Opt. Phys.38(9), S589–S604 (2005).
[CrossRef]

ACS Nano

Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano6(2), 1830–1838 (2012).
[CrossRef] [PubMed]

Am. J. Phys.

C. L. Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys.70(1), 37–41 (2002).
[CrossRef]

Appl. Phys. Lett.

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission reponse mimicking electromagnetically induced transparency,” Appl. Phys. Lett.94(21), 211902 (2009).
[CrossRef]

H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoglu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett.70(25), 3455–3458 (1997).
[CrossRef]

Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett.99(14), 143117 (2011).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. At. Mol. Opt. Phys.

A. André, M. D. Eisaman, R. L. Walsworth, A. S. Zibrov, and M. D. Lukin, “Quantum control of light using electromagnetically induced transparency,” J. Phys. At. Mol. Opt. Phys.38(9), S589–S604 (2005).
[CrossRef]

J. Phys. Chem. A

N. A. Mirin, K. Bao, and P. Nordlander, “Fano resonances in plasmonic nanoparticle aggregates,” J. Phys. Chem. A113(16), 4028–4034 (2009).
[CrossRef] [PubMed]

Nano Lett.

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett.9(12), 4403–4411 (2009).
[CrossRef] [PubMed]

V. Giannini, Y. Francescato, H. Amrania, C. C. Phillips, and S. A. Maier, “Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach,” Nano Lett.11(7), 2835–2840 (2011).
[CrossRef] [PubMed]

Nat. Mater.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater.8(9), 758–762 (2009).
[CrossRef] [PubMed]

Nature

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature472(7341), 69–73 (2011).
[CrossRef] [PubMed]

New J. Phys.

F. López-Tejeira, R. Paniagua-Dominguez, R. Rodriguez-Oliveros, and J. Sanchez-Gil, “Fano-like interference of plasmon resonances at a single rod-shaped nanoantenna,” New J. Phys.14(2), 023035 (2012).
[CrossRef]

Opt. Express

Phys. Rev.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124(6), 1866–1878 (1961).
[CrossRef]

Phys. Rev. A

D. D. Smith, H. Chang, K. A. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A69(6), 063804 (2004).
[CrossRef]

Phys. Rev. B

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett.

P. Tassin, L. Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett.102(5), 053901 (2009).
[CrossRef] [PubMed]

K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett.66(20), 2593–2596 (1991).
[CrossRef] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
[CrossRef] [PubMed]

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: Propagation Dynamics,” Phys. Rev. Lett.74(13), 2447–2450 (1995).
[CrossRef] [PubMed]

C. Argyropoulos, P.-Y. Chen, F. Monticone, G. D’Aguanno, and A. Alù, “Nonlinear plasmonics cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett.108(26), 263905 (2012).
[CrossRef]

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett.104(24), 243902 (2010).
[CrossRef] [PubMed]

Rev. Mod. Phys.

A. E. Miroshnichenko, S. Flach, and Y. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys.82(3), 2257–2298 (2010).
[CrossRef]

Other

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, New Jersey, 1984).

Supplementary Material (2)

» Media 1: AVI (6872 KB)     
» Media 2: AVI (6872 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematics of a generic EIT system, represented as coupled dark- and bright-mode resonators. (b) Definition of F (degree of spectral asymmetry) for EIT. (c) behavior of F as a function of the asymmetry factor ρ = Δωbd /(2κbd). Inset shows EIT transmittance at different values of ρ.

Fig. 2
Fig. 2

(a) MIM stub-pair PIT system. Field (Hz) distributions for the (b) symmetric bright mode (|Ψb>), and (c) anti-symmetric dark mode (|Ψd>). (d) Resonant frequency of |Ψb ± > and |Ψd>, as a function of w; ωb ± = mc/(neffL1 ± ) (red lines), and ωd = 2mc/(neffLtot) (black line). ΔL fixed at 20nm. L0 = mλspp (modal number m = 3/4) were used with the effective SPP (surface plasmon polariton) wavelength λspp calculated from λ0/neff, at λ0 = 1550nm. Insets: Ex intensity profiles for |Ψb ± > and |Ψd>.

Fig. 3
Fig. 3

Transmittance spectra from CMT (lines) and COMSOL (circles), for stub pair -waveguide PIT structures of; (a) ΔL = 0 and w = 40nm, (b) ΔL = 20nm and w = 40nm (c) ΔL = 20nm and w = 80nm. L ± = 5/4λspp ± ΔL. Insets show relative energy levels of |Ψb ± > and |Ψd> for each structure.

Fig. 4
Fig. 4

(a) Transmittance spectra from the modulator in on (black, V = 0) and off (blue, V = 2) states. The inset shows the structure of the modulator. The refractive index of electro-optic polymer in the stub region can be controlled with the overlaid electrodes [24]. Magnetic field amplitude distribution of the modulator in on (b), and off (c) states (w = 230nm, ΔL = 25nm, ΔV = 2). (d) Throughput and (e) FOM of the modulator as a function of w (30 ~300nm) and ΔL (5 ~40nm). Media 1 and Media 2 are provided for b, c respectively.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

T=1 1 1+ [ω ω b | κ bd | 2 /(ω ω d )] 2 / κ ib .
F(ρ)= ρ 2 +1 +ρ ρ 2 +1 ρ .
d a 0 dt =(j ω 0 p 1 τ p ) a 0 + p κ p s p+ ,
s p = s p+ + κ p * a 0 ,
d a d dt =(j ω d 1 τ d3 1 τ d4 ) a d + κ bd3 s 3 + κ bd4 s 4 ,and
s 3,4+ =( s 3,4 κ bd3,4 * a d ) e j φ 3,4 ,
s p(q)+ = (j(ω ω 0 )2/ τ d )( e j φ q +1) (j(ω ω 0 )+2/ τ d )( e j φ p + e j φ q +2 e j( φ p + φ q ) ) ,forp=3(4)andq=4(3).
t= κ * a 0 = κ * p κ p s p+ j(ω ω 0 )+ p 1/ τ p 2/ τ 0 ( s 1+ + s 2+ + s 3+ + s 4+ ) j(ω ω 0 )+4/ τ 0 1+ s 3+ + s 4+ 2 ,
T= | t | 2 = | j A d ( e j φ 3 + e j φ 4 + e j( φ 3 + φ 4 ) +1)+ e j( φ 3 + φ 4 ) 1 (j A d +1)( e j φ 3 + e j φ 4 +2 e j( φ 3 + φ 4 ) ) | 2 ,where A d =(ω ω d ) τ d /2.

Metrics