Abstract

We generated a 2.3-cycle, 5.9-fs, 56-μJ ultrashort optical-vortex pulse (ranging from ∼650 to ∼950 nm) in few-cycle regime, by optical parametric amplification. It was performed even by using passive elements (a pair of prisms and chirped mirrors) for chirp compensation. Spectrally-resolved interferograms and intensity profiles showed that the obtained pulses have no spatial or topological-charge dispersion during the amplification process. To the best of our knowledge, it is the first generation of optical-vortex pulses in few-cycle regime. They can be powerful tools for ultrabroadband and/or ultrafast spectroscopy and experiments of high-intensity field physics.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature (London)412, 313–316 (2001).
    [CrossRef]
  2. T. Omatsu, K. Chujo, K. Miyamoto, M. Okida, K. Nakamura, N. Aoki, and R. Morita, “Metal microneedle fabrication using twisted light with spin,” Opt. Express18, 17967–17973 (2010).
    [CrossRef] [PubMed]
  3. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun.207, 169–175 (2002).
    [CrossRef]
  4. F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys.81, 163–234 (2009).
    [CrossRef]
  5. Y. Tokizane, K. Shimatake, Y. Toda, K. Oka, M. Tsubota, S. Tanda, and R. Morita, “Global evaluation of closed-loop electron dynamics in quasi-one-dimensional conductors using polarization vortices,” Opt. Express17, 24198–24207 (2009).
    [CrossRef]
  6. A. Matos-Abiague and J. Berakdar, “Photoinduced charge currents in mesoscopic rings,” Phys. Rev. Lett.94, 166801 (2005).
    [CrossRef] [PubMed]
  7. G. F. Quinteiro and J. Berakdar, “Electric currents induced by twisted light in Quantum Rings,” Opt. Express17, 20465–20475 (2009).
    [CrossRef] [PubMed]
  8. Y-S. Lee, Principles of Terahertz Science and Technology (Springer, Berlin, 2009).
  9. V. G. Shvedov, C. Hnatovsky, W. Krolikowski, and A. V. Rode, “Efficient beam converter for the generation of high-power femtosecond vortices,” Opt. Lett.35, 2660–2662 (2010).
    [CrossRef] [PubMed]
  10. S. Shiffler, P. Polynkin, and J. Moloney, “Self-focusing of femtosecond diffraction-resistant vortex beams in water,” Opt. Lett.36, 3834–3836 (2011).
    [CrossRef] [PubMed]
  11. M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun.96, 123–132 (1993).
    [CrossRef]
  12. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun.112, 321–327 (1994).
    [CrossRef]
  13. K. Sueda, G. Miyaji, N. Miyanaga, and M. Nakatsuka, “Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses,” Opt. Express12, 3548–3553 (2004).
    [CrossRef] [PubMed]
  14. A. V. Volyar and T. A. Fadeeva, “Laguerre-Gaussian beams with complex and real arguments in a uniaxial crystal,” Opt. Spectrosc.101, 450–457 (2006).
    [CrossRef]
  15. I. G. Mariyenko, J. Strohaber, and C. J. G. J. Uiterwaal, “Creation of optical vortices in femtosecond pulses,” Opt. Express13, 7599–7608 (2005).
    [CrossRef] [PubMed]
  16. I. Zeylikovich, H. I. Sztul, V. Kartazaev, T. Le, and R. R. Alfano, “Ultrashort Laguerre-Gaussian pulses with angular and group velocity dispersion compensation,” Opt. Lett.32, 2025–2027 (2007).
    [CrossRef] [PubMed]
  17. Y. Tokizane, K. Oka, and R. Morita, “Supercontinuum optical vortex pulse generation without spatial or topological-charge dispersion,” Opt. Express17, 14517–14525 (2009).
    [CrossRef] [PubMed]
  18. A. M. Siddiqui, G. Cirmi, D. Brida, F. X. Kärtner, and G. Cerullo, “Generation of <7 fs pulses at 800 nm from a blue-pumped optical parametric amplifier at degeneracy,” Opt. Lett.34, 3592–3594 (2009).
    [CrossRef] [PubMed]
  19. J. R. Birge, R. Ell, and F. X. Kärtner, “Two-dimensional spectral shearing interferometry for few-cycle pulse characterization,” Opt. Lett.31, 2063–2065 (2006).
    [CrossRef] [PubMed]
  20. C. Iaconis and I. A. Walmsley, “Self-referencing spectral interferometry for measuring ultrashort optical pulses,” IEEE J. Quantum Electron.35, 501–509 (1999).
    [CrossRef]
  21. K. Yamane, M. Katayose, and M. Yamashita, “Spectral phase characterization of two-octave bandwidth pulses by two-dimensional spectral shearing interferometry based on noncollinear phase matching with external pulse pair,” IEEE Photon. Technol. Lett.23, 1130–1132 (2011).
    [CrossRef]
  22. F. Verluise, V. Laude, Z. Cheng, Ch. Spielmann, and P. Tournois, “Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping,” Opt. Lett.25, 575–577 (2000).
    [CrossRef]
  23. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum.71, 1929–1960 (2000).
    [CrossRef]
  24. K. Yamane, Z. Zhang, K. Oka, R. Morita, M. Yamashita, and A. Suguro, “Optical pulse compression to 3.4fs in the monocycle region by feedback phase compensation,” Opt. Lett.28, 2258–2260 (2003).
    [CrossRef] [PubMed]

2011 (2)

K. Yamane, M. Katayose, and M. Yamashita, “Spectral phase characterization of two-octave bandwidth pulses by two-dimensional spectral shearing interferometry based on noncollinear phase matching with external pulse pair,” IEEE Photon. Technol. Lett.23, 1130–1132 (2011).
[CrossRef]

S. Shiffler, P. Polynkin, and J. Moloney, “Self-focusing of femtosecond diffraction-resistant vortex beams in water,” Opt. Lett.36, 3834–3836 (2011).
[CrossRef] [PubMed]

2010 (2)

2009 (5)

2007 (1)

2006 (2)

J. R. Birge, R. Ell, and F. X. Kärtner, “Two-dimensional spectral shearing interferometry for few-cycle pulse characterization,” Opt. Lett.31, 2063–2065 (2006).
[CrossRef] [PubMed]

A. V. Volyar and T. A. Fadeeva, “Laguerre-Gaussian beams with complex and real arguments in a uniaxial crystal,” Opt. Spectrosc.101, 450–457 (2006).
[CrossRef]

2005 (2)

2004 (1)

2003 (1)

2002 (1)

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun.207, 169–175 (2002).
[CrossRef]

2001 (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature (London)412, 313–316 (2001).
[CrossRef]

2000 (2)

1999 (1)

C. Iaconis and I. A. Walmsley, “Self-referencing spectral interferometry for measuring ultrashort optical pulses,” IEEE J. Quantum Electron.35, 501–509 (1999).
[CrossRef]

1994 (1)

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun.112, 321–327 (1994).
[CrossRef]

1993 (1)

M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun.96, 123–132 (1993).
[CrossRef]

Alfano, R. R.

Allen, L.

M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun.96, 123–132 (1993).
[CrossRef]

Aoki, N.

Beijersbergen, M. W.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun.112, 321–327 (1994).
[CrossRef]

M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun.96, 123–132 (1993).
[CrossRef]

Berakdar, J.

G. F. Quinteiro and J. Berakdar, “Electric currents induced by twisted light in Quantum Rings,” Opt. Express17, 20465–20475 (2009).
[CrossRef] [PubMed]

A. Matos-Abiague and J. Berakdar, “Photoinduced charge currents in mesoscopic rings,” Phys. Rev. Lett.94, 166801 (2005).
[CrossRef] [PubMed]

Birge, J. R.

Brida, D.

Cerullo, G.

Cheng, Z.

Chujo, K.

Cirmi, G.

Coerwinkel, R. P. C.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun.112, 321–327 (1994).
[CrossRef]

Curtis, J. E.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun.207, 169–175 (2002).
[CrossRef]

Ell, R.

Fadeeva, T. A.

A. V. Volyar and T. A. Fadeeva, “Laguerre-Gaussian beams with complex and real arguments in a uniaxial crystal,” Opt. Spectrosc.101, 450–457 (2006).
[CrossRef]

Grier, D. G.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun.207, 169–175 (2002).
[CrossRef]

Hnatovsky, C.

Iaconis, C.

C. Iaconis and I. A. Walmsley, “Self-referencing spectral interferometry for measuring ultrashort optical pulses,” IEEE J. Quantum Electron.35, 501–509 (1999).
[CrossRef]

Ivanov, M.

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys.81, 163–234 (2009).
[CrossRef]

Kartazaev, V.

Kärtner, F. X.

Katayose, M.

K. Yamane, M. Katayose, and M. Yamashita, “Spectral phase characterization of two-octave bandwidth pulses by two-dimensional spectral shearing interferometry based on noncollinear phase matching with external pulse pair,” IEEE Photon. Technol. Lett.23, 1130–1132 (2011).
[CrossRef]

Koss, B. A.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun.207, 169–175 (2002).
[CrossRef]

Krausz, F.

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys.81, 163–234 (2009).
[CrossRef]

Kristensen, M.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun.112, 321–327 (1994).
[CrossRef]

Krolikowski, W.

Laude, V.

Le, T.

Lee, Y-S.

Y-S. Lee, Principles of Terahertz Science and Technology (Springer, Berlin, 2009).

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature (London)412, 313–316 (2001).
[CrossRef]

Mariyenko, I. G.

Matos-Abiague, A.

A. Matos-Abiague and J. Berakdar, “Photoinduced charge currents in mesoscopic rings,” Phys. Rev. Lett.94, 166801 (2005).
[CrossRef] [PubMed]

Miyaji, G.

Miyamoto, K.

Miyanaga, N.

Moloney, J.

Morita, R.

Nakamura, K.

Nakatsuka, M.

Oka, K.

Okida, M.

Omatsu, T.

Polynkin, P.

Quinteiro, G. F.

Rode, A. V.

Shiffler, S.

Shimatake, K.

Shvedov, V. G.

Siddiqui, A. M.

Spielmann, Ch.

Strohaber, J.

Sueda, K.

Suguro, A.

Sztul, H. I.

Tanda, S.

Toda, Y.

Tokizane, Y.

Tournois, P.

Tsubota, M.

Uiterwaal, C. J. G. J.

van der Veen, H. E. L. O.

M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun.96, 123–132 (1993).
[CrossRef]

Vaziri, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature (London)412, 313–316 (2001).
[CrossRef]

Verluise, F.

Volyar, A. V.

A. V. Volyar and T. A. Fadeeva, “Laguerre-Gaussian beams with complex and real arguments in a uniaxial crystal,” Opt. Spectrosc.101, 450–457 (2006).
[CrossRef]

Walmsley, I. A.

C. Iaconis and I. A. Walmsley, “Self-referencing spectral interferometry for measuring ultrashort optical pulses,” IEEE J. Quantum Electron.35, 501–509 (1999).
[CrossRef]

Weihs, G.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature (London)412, 313–316 (2001).
[CrossRef]

Weiner, A. M.

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum.71, 1929–1960 (2000).
[CrossRef]

Woerdman, J. P.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun.112, 321–327 (1994).
[CrossRef]

M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun.96, 123–132 (1993).
[CrossRef]

Yamane, K.

K. Yamane, M. Katayose, and M. Yamashita, “Spectral phase characterization of two-octave bandwidth pulses by two-dimensional spectral shearing interferometry based on noncollinear phase matching with external pulse pair,” IEEE Photon. Technol. Lett.23, 1130–1132 (2011).
[CrossRef]

K. Yamane, Z. Zhang, K. Oka, R. Morita, M. Yamashita, and A. Suguro, “Optical pulse compression to 3.4fs in the monocycle region by feedback phase compensation,” Opt. Lett.28, 2258–2260 (2003).
[CrossRef] [PubMed]

Yamashita, M.

K. Yamane, M. Katayose, and M. Yamashita, “Spectral phase characterization of two-octave bandwidth pulses by two-dimensional spectral shearing interferometry based on noncollinear phase matching with external pulse pair,” IEEE Photon. Technol. Lett.23, 1130–1132 (2011).
[CrossRef]

K. Yamane, Z. Zhang, K. Oka, R. Morita, M. Yamashita, and A. Suguro, “Optical pulse compression to 3.4fs in the monocycle region by feedback phase compensation,” Opt. Lett.28, 2258–2260 (2003).
[CrossRef] [PubMed]

Zeilinger, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature (London)412, 313–316 (2001).
[CrossRef]

Zeylikovich, I.

Zhang, Z.

IEEE J. Quantum Electron. (1)

C. Iaconis and I. A. Walmsley, “Self-referencing spectral interferometry for measuring ultrashort optical pulses,” IEEE J. Quantum Electron.35, 501–509 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. Yamane, M. Katayose, and M. Yamashita, “Spectral phase characterization of two-octave bandwidth pulses by two-dimensional spectral shearing interferometry based on noncollinear phase matching with external pulse pair,” IEEE Photon. Technol. Lett.23, 1130–1132 (2011).
[CrossRef]

Nature (London) (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature (London)412, 313–316 (2001).
[CrossRef]

Opt. Commun. (3)

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun.207, 169–175 (2002).
[CrossRef]

M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun.96, 123–132 (1993).
[CrossRef]

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun.112, 321–327 (1994).
[CrossRef]

Opt. Express (6)

Opt. Lett. (7)

Opt. Spectrosc. (1)

A. V. Volyar and T. A. Fadeeva, “Laguerre-Gaussian beams with complex and real arguments in a uniaxial crystal,” Opt. Spectrosc.101, 450–457 (2006).
[CrossRef]

Phys. Rev. Lett. (1)

A. Matos-Abiague and J. Berakdar, “Photoinduced charge currents in mesoscopic rings,” Phys. Rev. Lett.94, 166801 (2005).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys.81, 163–234 (2009).
[CrossRef]

Rev. Sci. Instrum. (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum.71, 1929–1960 (2000).
[CrossRef]

Other (1)

Y-S. Lee, Principles of Terahertz Science and Technology (Springer, Berlin, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Optical-vortex converter consisting of an axially-symmetric half-wave plate (ASWP) and achromatic quarter-wave plates (AQWP1, 2).

Fig. 2
Fig. 2

Schematic of experimental setup for parametric amplification of broadband optical-vortex pulses. AQWP1 and AQWP2: achromatic quarter-wave plates for 1200–1650 nm and 700–1000 nm, respectively.

Fig. 3
Fig. 3

Spectrally-resolved, folded self-referenced interferograms (co-centered interferograms between =±1 beams) of seeding optical-vortex pulses after band-pass filtering at the center wavelengths of (a) 650, (b) 800 and (c) 950 nm.

Fig. 4
Fig. 4

(a)–(c) Beam profiles and (d)–(e) folded self-referenced interferograms (co-centered interferograms between =±1 beams) of amplified optical-vortex pulses after band-pass filtering at the center wavelengths of 650 ((a) and (d)), 800 ((b) and (e)) and 950 nm ((c) and (f)).

Fig. 5
Fig. 5

The interferograms of the generated ultrabroadband optical-vortex pulses after parametric amplification and chirp compensation (a) without and (b) with prism pair. They were measured by 2DSI under the following conditions: spectral shear; (a) 65 rad/ps, (b) 22 rad/ps, spectral shift by chirped reference pulses; (a) 2.35 rad/fs, (b) 2.46 rad/fs.

Fig. 6
Fig. 6

(a) Measured spectral intensity and retrieved spectral phase of the generated ultra-short optical-vortex pulses. (b) The temporal profile of the reconstructed pulse, together with that of the corresponding Fourier-transform-limited pulse.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Q ( θ ) = i 2 ( 1 icos 2 θ isin 2 θ isin 2 θ 1 + icos 2 θ ) ,
A = ( cos ϕ sin ϕ sin ϕ cos ϕ )
T = Q ( π 4 ) A Q ( π 4 ) = i ( 0 e i ϕ e i ϕ 0 ) .

Metrics