Abstract

We demonstrated a 8×8 broadband optical switch on silicon for transverse-electrical polarization using a switch-and-selector architecture. The switch has a footprint of only 8 mm × 8 mm, minimum on-chip loss of about 4 dB, and a port-to-port insertion loss variation of only 0.8 dB near some spectral regions. The port-to-port isolation is above 30 dB over the entire 80-nm-wide spectral range or above 45 dB near the central 30 nm. We also demonstrated a switching power of less than 1.5 mW per element and a speed of 2 kHz, and estimated the upper bound of total power consumption to be less than 70 mW even without optimization of the default state of the individual switch elements.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Ma and G. S. Kuo, “Optical switching technology comparison: optical MEMS vs. other technologies,” IEEE Commun. Mag.41(11), 16–23 (2003).
  2. P. De Dobbelaere, K. Falta, L. Fan, S. Gloeckner, and S. Patra, “Digital MEMS for optical switching,” IEEE Commun. Mag., 40(3), 88–95 (2002).
    [CrossRef]
  3. T. Goh, A. Himeno, M. Okuno, H. Takahashi, and K. Hattori, “High-extinction ratio and low-loss silica-based 8times8 strictly nonblocking thermooptic matrix switch,” J. Lightwave Technol.17, 1192–1199 (1999).
    [CrossRef]
  4. T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, “Low-loss and high-extinction-ratio silica-based strictly nonblocking 16×16 thermooptic matrix switch,” IEEE Photon. Technol. Lett.10, 810–812 (1998).
    [CrossRef]
  5. R. Kasahara, M. Yanagisawa, T. Goh, A. Sugita, A. Himeno, M. Yasu, and S. Matsui, “New structure of silica-based planar lightwave circuits for low-power thermooptic switch and its application to 8×8 optical matrix switch,” J. Lightwave Technol.20, 993–1000 (2002).
    [CrossRef]
  6. H. W. Kogelnik, “Optical crossbar switching network,” U. S. Patent 4,013,000 (22March1977).
  7. S. Reinhorn, Y. Amitai, A. A. Friesem, A. W. Lohmann, and S. Gorodeisky, “Compact optical crossbar switch,” Appl. Opt.36, 1039–1044 (1997).
    [CrossRef] [PubMed]
  8. T. Shimoe, K. Hajikano, and K. Murakami, “A path-independent-insertion-loss optical space switching network,” in Tech. Dig. ISS-87 (1987), Vol. 4, pp. 999–1003.
  9. S. Nakamura, S. Takahashi, I. Ogura, J. Ushida, K. Kurata, T. Hino, H. Takeshita, A. Tajima, M. B. Yu, and G. Q. Lo, “High extinction ratio optical switching independently of temperature with silicon photonic 1×8 switch,” Optical Fiber Communication Conference, OSA Technical Digest, paper OTu2I.3 (2012).
  10. L. Chen, C. Doerr, Y. K. Chen, and T. Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides,” IEEE Photon. Technol. Lett.22, 1744–1746 (2010).
    [CrossRef]

2010 (1)

L. Chen, C. Doerr, Y. K. Chen, and T. Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides,” IEEE Photon. Technol. Lett.22, 1744–1746 (2010).
[CrossRef]

2003 (1)

X. Ma and G. S. Kuo, “Optical switching technology comparison: optical MEMS vs. other technologies,” IEEE Commun. Mag.41(11), 16–23 (2003).

2002 (2)

1999 (1)

1998 (1)

T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, “Low-loss and high-extinction-ratio silica-based strictly nonblocking 16×16 thermooptic matrix switch,” IEEE Photon. Technol. Lett.10, 810–812 (1998).
[CrossRef]

1997 (1)

1987 (1)

T. Shimoe, K. Hajikano, and K. Murakami, “A path-independent-insertion-loss optical space switching network,” in Tech. Dig. ISS-87 (1987), Vol. 4, pp. 999–1003.

Amitai, Y.

Chen, L.

L. Chen, C. Doerr, Y. K. Chen, and T. Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides,” IEEE Photon. Technol. Lett.22, 1744–1746 (2010).
[CrossRef]

Chen, Y. K.

L. Chen, C. Doerr, Y. K. Chen, and T. Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides,” IEEE Photon. Technol. Lett.22, 1744–1746 (2010).
[CrossRef]

De Dobbelaere, P.

P. De Dobbelaere, K. Falta, L. Fan, S. Gloeckner, and S. Patra, “Digital MEMS for optical switching,” IEEE Commun. Mag., 40(3), 88–95 (2002).
[CrossRef]

Doerr, C.

L. Chen, C. Doerr, Y. K. Chen, and T. Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides,” IEEE Photon. Technol. Lett.22, 1744–1746 (2010).
[CrossRef]

Falta, K.

P. De Dobbelaere, K. Falta, L. Fan, S. Gloeckner, and S. Patra, “Digital MEMS for optical switching,” IEEE Commun. Mag., 40(3), 88–95 (2002).
[CrossRef]

Fan, L.

P. De Dobbelaere, K. Falta, L. Fan, S. Gloeckner, and S. Patra, “Digital MEMS for optical switching,” IEEE Commun. Mag., 40(3), 88–95 (2002).
[CrossRef]

Friesem, A. A.

Gloeckner, S.

P. De Dobbelaere, K. Falta, L. Fan, S. Gloeckner, and S. Patra, “Digital MEMS for optical switching,” IEEE Commun. Mag., 40(3), 88–95 (2002).
[CrossRef]

Goh, T.

Gorodeisky, S.

Hajikano, K.

T. Shimoe, K. Hajikano, and K. Murakami, “A path-independent-insertion-loss optical space switching network,” in Tech. Dig. ISS-87 (1987), Vol. 4, pp. 999–1003.

Hattori, K.

T. Goh, A. Himeno, M. Okuno, H. Takahashi, and K. Hattori, “High-extinction ratio and low-loss silica-based 8times8 strictly nonblocking thermooptic matrix switch,” J. Lightwave Technol.17, 1192–1199 (1999).
[CrossRef]

T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, “Low-loss and high-extinction-ratio silica-based strictly nonblocking 16×16 thermooptic matrix switch,” IEEE Photon. Technol. Lett.10, 810–812 (1998).
[CrossRef]

Himeno, A.

Hino, T.

S. Nakamura, S. Takahashi, I. Ogura, J. Ushida, K. Kurata, T. Hino, H. Takeshita, A. Tajima, M. B. Yu, and G. Q. Lo, “High extinction ratio optical switching independently of temperature with silicon photonic 1×8 switch,” Optical Fiber Communication Conference, OSA Technical Digest, paper OTu2I.3 (2012).

Kasahara, R.

Kogelnik, H. W.

H. W. Kogelnik, “Optical crossbar switching network,” U. S. Patent 4,013,000 (22March1977).

Kuo, G. S.

X. Ma and G. S. Kuo, “Optical switching technology comparison: optical MEMS vs. other technologies,” IEEE Commun. Mag.41(11), 16–23 (2003).

Kurata, K.

S. Nakamura, S. Takahashi, I. Ogura, J. Ushida, K. Kurata, T. Hino, H. Takeshita, A. Tajima, M. B. Yu, and G. Q. Lo, “High extinction ratio optical switching independently of temperature with silicon photonic 1×8 switch,” Optical Fiber Communication Conference, OSA Technical Digest, paper OTu2I.3 (2012).

Liow, T. Y.

L. Chen, C. Doerr, Y. K. Chen, and T. Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides,” IEEE Photon. Technol. Lett.22, 1744–1746 (2010).
[CrossRef]

Lo, G. Q.

S. Nakamura, S. Takahashi, I. Ogura, J. Ushida, K. Kurata, T. Hino, H. Takeshita, A. Tajima, M. B. Yu, and G. Q. Lo, “High extinction ratio optical switching independently of temperature with silicon photonic 1×8 switch,” Optical Fiber Communication Conference, OSA Technical Digest, paper OTu2I.3 (2012).

Lohmann, A. W.

Ma, X.

X. Ma and G. S. Kuo, “Optical switching technology comparison: optical MEMS vs. other technologies,” IEEE Commun. Mag.41(11), 16–23 (2003).

Matsui, S.

Murakami, K.

T. Shimoe, K. Hajikano, and K. Murakami, “A path-independent-insertion-loss optical space switching network,” in Tech. Dig. ISS-87 (1987), Vol. 4, pp. 999–1003.

Nakamura, S.

S. Nakamura, S. Takahashi, I. Ogura, J. Ushida, K. Kurata, T. Hino, H. Takeshita, A. Tajima, M. B. Yu, and G. Q. Lo, “High extinction ratio optical switching independently of temperature with silicon photonic 1×8 switch,” Optical Fiber Communication Conference, OSA Technical Digest, paper OTu2I.3 (2012).

Ogura, I.

S. Nakamura, S. Takahashi, I. Ogura, J. Ushida, K. Kurata, T. Hino, H. Takeshita, A. Tajima, M. B. Yu, and G. Q. Lo, “High extinction ratio optical switching independently of temperature with silicon photonic 1×8 switch,” Optical Fiber Communication Conference, OSA Technical Digest, paper OTu2I.3 (2012).

Ohmori, Y.

T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, “Low-loss and high-extinction-ratio silica-based strictly nonblocking 16×16 thermooptic matrix switch,” IEEE Photon. Technol. Lett.10, 810–812 (1998).
[CrossRef]

Okuno, M.

T. Goh, A. Himeno, M. Okuno, H. Takahashi, and K. Hattori, “High-extinction ratio and low-loss silica-based 8times8 strictly nonblocking thermooptic matrix switch,” J. Lightwave Technol.17, 1192–1199 (1999).
[CrossRef]

T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, “Low-loss and high-extinction-ratio silica-based strictly nonblocking 16×16 thermooptic matrix switch,” IEEE Photon. Technol. Lett.10, 810–812 (1998).
[CrossRef]

Patra, S.

P. De Dobbelaere, K. Falta, L. Fan, S. Gloeckner, and S. Patra, “Digital MEMS for optical switching,” IEEE Commun. Mag., 40(3), 88–95 (2002).
[CrossRef]

Reinhorn, S.

Shimoe, T.

T. Shimoe, K. Hajikano, and K. Murakami, “A path-independent-insertion-loss optical space switching network,” in Tech. Dig. ISS-87 (1987), Vol. 4, pp. 999–1003.

Sugita, A.

Tajima, A.

S. Nakamura, S. Takahashi, I. Ogura, J. Ushida, K. Kurata, T. Hino, H. Takeshita, A. Tajima, M. B. Yu, and G. Q. Lo, “High extinction ratio optical switching independently of temperature with silicon photonic 1×8 switch,” Optical Fiber Communication Conference, OSA Technical Digest, paper OTu2I.3 (2012).

Takahashi, H.

Takahashi, S.

S. Nakamura, S. Takahashi, I. Ogura, J. Ushida, K. Kurata, T. Hino, H. Takeshita, A. Tajima, M. B. Yu, and G. Q. Lo, “High extinction ratio optical switching independently of temperature with silicon photonic 1×8 switch,” Optical Fiber Communication Conference, OSA Technical Digest, paper OTu2I.3 (2012).

Takeshita, H.

S. Nakamura, S. Takahashi, I. Ogura, J. Ushida, K. Kurata, T. Hino, H. Takeshita, A. Tajima, M. B. Yu, and G. Q. Lo, “High extinction ratio optical switching independently of temperature with silicon photonic 1×8 switch,” Optical Fiber Communication Conference, OSA Technical Digest, paper OTu2I.3 (2012).

Ushida, J.

S. Nakamura, S. Takahashi, I. Ogura, J. Ushida, K. Kurata, T. Hino, H. Takeshita, A. Tajima, M. B. Yu, and G. Q. Lo, “High extinction ratio optical switching independently of temperature with silicon photonic 1×8 switch,” Optical Fiber Communication Conference, OSA Technical Digest, paper OTu2I.3 (2012).

Yanagisawa, M.

Yasu, M.

R. Kasahara, M. Yanagisawa, T. Goh, A. Sugita, A. Himeno, M. Yasu, and S. Matsui, “New structure of silica-based planar lightwave circuits for low-power thermooptic switch and its application to 8×8 optical matrix switch,” J. Lightwave Technol.20, 993–1000 (2002).
[CrossRef]

T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, “Low-loss and high-extinction-ratio silica-based strictly nonblocking 16×16 thermooptic matrix switch,” IEEE Photon. Technol. Lett.10, 810–812 (1998).
[CrossRef]

Yu, M. B.

S. Nakamura, S. Takahashi, I. Ogura, J. Ushida, K. Kurata, T. Hino, H. Takeshita, A. Tajima, M. B. Yu, and G. Q. Lo, “High extinction ratio optical switching independently of temperature with silicon photonic 1×8 switch,” Optical Fiber Communication Conference, OSA Technical Digest, paper OTu2I.3 (2012).

Appl. Opt. (1)

IEEE Commun. Mag. (2)

X. Ma and G. S. Kuo, “Optical switching technology comparison: optical MEMS vs. other technologies,” IEEE Commun. Mag.41(11), 16–23 (2003).

P. De Dobbelaere, K. Falta, L. Fan, S. Gloeckner, and S. Patra, “Digital MEMS for optical switching,” IEEE Commun. Mag., 40(3), 88–95 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, “Low-loss and high-extinction-ratio silica-based strictly nonblocking 16×16 thermooptic matrix switch,” IEEE Photon. Technol. Lett.10, 810–812 (1998).
[CrossRef]

L. Chen, C. Doerr, Y. K. Chen, and T. Y. Liow, “Low-loss and broadband cantilever couplers between standard cleaved fibers and high-index-contrast Si3N4 or Si waveguides,” IEEE Photon. Technol. Lett.22, 1744–1746 (2010).
[CrossRef]

J. Lightwave Technol. (2)

Tech. Dig. ISS-87 (1)

T. Shimoe, K. Hajikano, and K. Murakami, “A path-independent-insertion-loss optical space switching network,” in Tech. Dig. ISS-87 (1987), Vol. 4, pp. 999–1003.

Other (2)

S. Nakamura, S. Takahashi, I. Ogura, J. Ushida, K. Kurata, T. Hino, H. Takeshita, A. Tajima, M. B. Yu, and G. Q. Lo, “High extinction ratio optical switching independently of temperature with silicon photonic 1×8 switch,” Optical Fiber Communication Conference, OSA Technical Digest, paper OTu2I.3 (2012).

H. W. Kogelnik, “Optical crossbar switching network,” U. S. Patent 4,013,000 (22March1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of an 8×8 switch on silicon based on the switch-and-select architecture.

Fig. 2
Fig. 2

Photos of a fabricated 8×8 optical switch chip on silicon: (a) Entire switch chip. (b) An 1×8 switch unit. (c) An 1×2 switch cell. (d) Part of the passive crossover network. (e–f) Examples of waveguide joints with tight bends.

Fig. 3
Fig. 3

Designs of waveguide crossings and joints. (a) Schematic of the waveguide crossing. (b) Fundamental TE mode of the ridge waveguide. (c) Schematic of the ridge-rib waveguide transition before joints. (d) Calculated crossing losses.

Fig. 4
Fig. 4

Fiber-to-fiber insertion loss for I1 –O1: (a) Spectrum. (b) Estimated loss breakdown.

Fig. 5
Fig. 5

(a) Transmission from I1 to O1–O8. (b) Characterization of port isolation.

Fig. 6
Fig. 6

Characterization of 1×2 switch cells: (a) Normalized optical transmission as a function of heater power at 1540 nm. (b) Temporal response of transmission during switch.

Fig. 7
Fig. 7

Change in optical transmission when a neighboring heater outside of the optical path is adjusted.

Tables (1)

Tables Icon

Table 1 Comparison of cross-bar and proposed N×N switches

Metrics