Abstract

We propose a near-field optical transducer using a triangular antenna and a thin film structure (wing) to efficiently generate an optical near-field near a magnetic head. A finite-difference time-domain calculation showed that the near-field was efficiently generated at the apex of the antenna when the dimensions of the wing were optimized for efficient delivery of the surface plasmon excited on the wing to the antenna. The calculated light utilization efficiency (ratio between the absorbed power in the recording medium and the input power) was 8%. The temperature distribution on the medium, magnetic field distribution, and magnetization pattern were calculated; the proposed recording head may be capable of an areal recording density of 2.5 Tb/in.2.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Saga, H. Nemoto, H. Sukeda, and M. Takahashi, “New recording method combining thermo-magnetic writing and flux detection,” Jpn. J. Appl. Phys.38(Part 1, No. 3B), 1839–1840 (1999).
    [CrossRef]
  2. M. Ohtsu, ed., Near-Field Nano/Atom optics and Technology (Springer-Verlag, Tokyo, 1998).
  3. X. Shi, L. Hesselink, and R. L. Thornton, “Ultrahigh light transmission through a C-shaped nanoaperture,” Opt. Lett.28(15), 1320–1322 (2003).
    [CrossRef] [PubMed]
  4. B. C. Stipe, T. Strand, C. Poon, H. Balamane, T. Boone, J. Katine, J. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics4(7), 484–488 (2010).
    [CrossRef]
  5. W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics3(4), 220–224 (2009).
    [CrossRef]
  6. T. Matsumoto, T. Shimano, H. Saga, H. Sukeda, and M. Kiguchi, “Highly efficient probe with a wedge-shaped metallic plate for high density near-field optical recording,” J. Appl. Phys.95(8), 3901–3906 (2004).
    [CrossRef]
  7. T. Matsumoto, Y. Anzai, T. Shintani, K. Nakamura, and T. Nishida, “Writing 40 nm marks by using a beaked metallic plate near-field optical probe,” Opt. Lett.31(2), 259–261 (2006).
    [CrossRef] [PubMed]
  8. T. Matsumoto, K. Nakamura, T. Nishida, H. Hieda, A. Kikitsu, K. Naito, and T. Koda, “Thermally assisted magnetic recording on a bit-patterned medium by using a near-field optical head with a beaked metallic plate,” Appl. Phys. Lett.93(3), 031108 (2008).
    [CrossRef]
  9. T. Matsumoto, M. Mochizuki, F. Akagi, Y. Iwanabe, H. Takei, H. Nemoto, H. Miyamoto, and B. Stipe, “Integrated head design for thermally assisted magnetic recording,” IEEE International Magnetics Conference (Taipei, 2011), AE-01 (2011).
  10. H. Raether, Surface Plasmons (Springer-Verlag, Berlin, 1988).
  11. Lumerical by Lumerical Solutions, Inc., Vancouver, Canada.
  12. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
    [CrossRef]
  13. ASTC Technical Documents, “ASTC HAMR reference media stack for NFT modeling,” (The International Disk Drive Equipment and Materials Association, 2011). http://idema-cloud.smartsite.net/?page_id=2269 .
  14. L. Zhang, Y. K. Takahashi, A. Perumal, and K. Hono, “L10-ordered high coercivity (FePt) Ag–C granular thin films for perpendicular recording,” J. Magn. Magn. Mater.322(18), 2658–2664 (2010).
    [CrossRef]
  15. O. Mosendz, S. Pisana, J. W. Reiner, B. Stipe, and D. Weller, “Ultra-high coercivity small-grain FePt media for thermally assisted recording,” J. Appl. Phys.111(7), 07B729 (2012).
    [CrossRef]
  16. T. Q. Qiu and C. L. Tien, “Size effects on nonequilibrium laser heating of metal films,” J. Heat Transfer115(4), 842–847 (1993).
    [CrossRef]
  17. A. A. Balandin, “Thermal properties of graphene and nanostructured carbon materials,” Nat. Mater.10(8), 569–581 (2011).
    [CrossRef] [PubMed]

2012

O. Mosendz, S. Pisana, J. W. Reiner, B. Stipe, and D. Weller, “Ultra-high coercivity small-grain FePt media for thermally assisted recording,” J. Appl. Phys.111(7), 07B729 (2012).
[CrossRef]

2011

A. A. Balandin, “Thermal properties of graphene and nanostructured carbon materials,” Nat. Mater.10(8), 569–581 (2011).
[CrossRef] [PubMed]

2010

B. C. Stipe, T. Strand, C. Poon, H. Balamane, T. Boone, J. Katine, J. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics4(7), 484–488 (2010).
[CrossRef]

L. Zhang, Y. K. Takahashi, A. Perumal, and K. Hono, “L10-ordered high coercivity (FePt) Ag–C granular thin films for perpendicular recording,” J. Magn. Magn. Mater.322(18), 2658–2664 (2010).
[CrossRef]

2009

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics3(4), 220–224 (2009).
[CrossRef]

2008

T. Matsumoto, K. Nakamura, T. Nishida, H. Hieda, A. Kikitsu, K. Naito, and T. Koda, “Thermally assisted magnetic recording on a bit-patterned medium by using a near-field optical head with a beaked metallic plate,” Appl. Phys. Lett.93(3), 031108 (2008).
[CrossRef]

2006

2004

T. Matsumoto, T. Shimano, H. Saga, H. Sukeda, and M. Kiguchi, “Highly efficient probe with a wedge-shaped metallic plate for high density near-field optical recording,” J. Appl. Phys.95(8), 3901–3906 (2004).
[CrossRef]

2003

1999

H. Saga, H. Nemoto, H. Sukeda, and M. Takahashi, “New recording method combining thermo-magnetic writing and flux detection,” Jpn. J. Appl. Phys.38(Part 1, No. 3B), 1839–1840 (1999).
[CrossRef]

1993

T. Q. Qiu and C. L. Tien, “Size effects on nonequilibrium laser heating of metal films,” J. Heat Transfer115(4), 842–847 (1993).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Albrecht, T.

B. C. Stipe, T. Strand, C. Poon, H. Balamane, T. Boone, J. Katine, J. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics4(7), 484–488 (2010).
[CrossRef]

Anzai, Y.

Balamane, H.

B. C. Stipe, T. Strand, C. Poon, H. Balamane, T. Boone, J. Katine, J. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics4(7), 484–488 (2010).
[CrossRef]

Balandin, A. A.

A. A. Balandin, “Thermal properties of graphene and nanostructured carbon materials,” Nat. Mater.10(8), 569–581 (2011).
[CrossRef] [PubMed]

Boone, T.

B. C. Stipe, T. Strand, C. Poon, H. Balamane, T. Boone, J. Katine, J. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics4(7), 484–488 (2010).
[CrossRef]

Challener, W. A.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics3(4), 220–224 (2009).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Dobisz, E.

B. C. Stipe, T. Strand, C. Poon, H. Balamane, T. Boone, J. Katine, J. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics4(7), 484–488 (2010).
[CrossRef]

Gage, E. C.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics3(4), 220–224 (2009).
[CrossRef]

Gokemeijer, N. J.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics3(4), 220–224 (2009).
[CrossRef]

Hellwig, O.

B. C. Stipe, T. Strand, C. Poon, H. Balamane, T. Boone, J. Katine, J. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics4(7), 484–488 (2010).
[CrossRef]

Hesselink, L.

Hieda, H.

T. Matsumoto, K. Nakamura, T. Nishida, H. Hieda, A. Kikitsu, K. Naito, and T. Koda, “Thermally assisted magnetic recording on a bit-patterned medium by using a near-field optical head with a beaked metallic plate,” Appl. Phys. Lett.93(3), 031108 (2008).
[CrossRef]

Hirotsune, A.

B. C. Stipe, T. Strand, C. Poon, H. Balamane, T. Boone, J. Katine, J. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics4(7), 484–488 (2010).
[CrossRef]

Hono, K.

L. Zhang, Y. K. Takahashi, A. Perumal, and K. Hono, “L10-ordered high coercivity (FePt) Ag–C granular thin films for perpendicular recording,” J. Magn. Magn. Mater.322(18), 2658–2664 (2010).
[CrossRef]

Hsia, Y.-T.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics3(4), 220–224 (2009).
[CrossRef]

Itagi, A. V.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics3(4), 220–224 (2009).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Ju, G.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics3(4), 220–224 (2009).
[CrossRef]

Karns, D.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics3(4), 220–224 (2009).
[CrossRef]

Katine, J.

B. C. Stipe, T. Strand, C. Poon, H. Balamane, T. Boone, J. Katine, J. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics4(7), 484–488 (2010).
[CrossRef]

Kercher, D. S.

B. C. Stipe, T. Strand, C. Poon, H. Balamane, T. Boone, J. Katine, J. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics4(7), 484–488 (2010).
[CrossRef]

Kiguchi, M.

T. Matsumoto, T. Shimano, H. Saga, H. Sukeda, and M. Kiguchi, “Highly efficient probe with a wedge-shaped metallic plate for high density near-field optical recording,” J. Appl. Phys.95(8), 3901–3906 (2004).
[CrossRef]

Kikitsu, A.

T. Matsumoto, K. Nakamura, T. Nishida, H. Hieda, A. Kikitsu, K. Naito, and T. Koda, “Thermally assisted magnetic recording on a bit-patterned medium by using a near-field optical head with a beaked metallic plate,” Appl. Phys. Lett.93(3), 031108 (2008).
[CrossRef]

Koda, T.

T. Matsumoto, K. Nakamura, T. Nishida, H. Hieda, A. Kikitsu, K. Naito, and T. Koda, “Thermally assisted magnetic recording on a bit-patterned medium by using a near-field optical head with a beaked metallic plate,” Appl. Phys. Lett.93(3), 031108 (2008).
[CrossRef]

Li, J.

B. C. Stipe, T. Strand, C. Poon, H. Balamane, T. Boone, J. Katine, J. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics4(7), 484–488 (2010).
[CrossRef]

Matsumoto, T.

T. Matsumoto, K. Nakamura, T. Nishida, H. Hieda, A. Kikitsu, K. Naito, and T. Koda, “Thermally assisted magnetic recording on a bit-patterned medium by using a near-field optical head with a beaked metallic plate,” Appl. Phys. Lett.93(3), 031108 (2008).
[CrossRef]

T. Matsumoto, Y. Anzai, T. Shintani, K. Nakamura, and T. Nishida, “Writing 40 nm marks by using a beaked metallic plate near-field optical probe,” Opt. Lett.31(2), 259–261 (2006).
[CrossRef] [PubMed]

T. Matsumoto, T. Shimano, H. Saga, H. Sukeda, and M. Kiguchi, “Highly efficient probe with a wedge-shaped metallic plate for high density near-field optical recording,” J. Appl. Phys.95(8), 3901–3906 (2004).
[CrossRef]

Mosendz, O.

O. Mosendz, S. Pisana, J. W. Reiner, B. Stipe, and D. Weller, “Ultra-high coercivity small-grain FePt media for thermally assisted recording,” J. Appl. Phys.111(7), 07B729 (2012).
[CrossRef]

Naito, K.

T. Matsumoto, K. Nakamura, T. Nishida, H. Hieda, A. Kikitsu, K. Naito, and T. Koda, “Thermally assisted magnetic recording on a bit-patterned medium by using a near-field optical head with a beaked metallic plate,” Appl. Phys. Lett.93(3), 031108 (2008).
[CrossRef]

Nakamura, K.

T. Matsumoto, K. Nakamura, T. Nishida, H. Hieda, A. Kikitsu, K. Naito, and T. Koda, “Thermally assisted magnetic recording on a bit-patterned medium by using a near-field optical head with a beaked metallic plate,” Appl. Phys. Lett.93(3), 031108 (2008).
[CrossRef]

T. Matsumoto, Y. Anzai, T. Shintani, K. Nakamura, and T. Nishida, “Writing 40 nm marks by using a beaked metallic plate near-field optical probe,” Opt. Lett.31(2), 259–261 (2006).
[CrossRef] [PubMed]

Nemoto, H.

B. C. Stipe, T. Strand, C. Poon, H. Balamane, T. Boone, J. Katine, J. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics4(7), 484–488 (2010).
[CrossRef]

H. Saga, H. Nemoto, H. Sukeda, and M. Takahashi, “New recording method combining thermo-magnetic writing and flux detection,” Jpn. J. Appl. Phys.38(Part 1, No. 3B), 1839–1840 (1999).
[CrossRef]

Nishida, T.

T. Matsumoto, K. Nakamura, T. Nishida, H. Hieda, A. Kikitsu, K. Naito, and T. Koda, “Thermally assisted magnetic recording on a bit-patterned medium by using a near-field optical head with a beaked metallic plate,” Appl. Phys. Lett.93(3), 031108 (2008).
[CrossRef]

T. Matsumoto, Y. Anzai, T. Shintani, K. Nakamura, and T. Nishida, “Writing 40 nm marks by using a beaked metallic plate near-field optical probe,” Opt. Lett.31(2), 259–261 (2006).
[CrossRef] [PubMed]

Peng, C.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics3(4), 220–224 (2009).
[CrossRef]

Peng, W.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics3(4), 220–224 (2009).
[CrossRef]

Peng, Y.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics3(4), 220–224 (2009).
[CrossRef]

Perumal, A.

L. Zhang, Y. K. Takahashi, A. Perumal, and K. Hono, “L10-ordered high coercivity (FePt) Ag–C granular thin films for perpendicular recording,” J. Magn. Magn. Mater.322(18), 2658–2664 (2010).
[CrossRef]

Pisana, S.

O. Mosendz, S. Pisana, J. W. Reiner, B. Stipe, and D. Weller, “Ultra-high coercivity small-grain FePt media for thermally assisted recording,” J. Appl. Phys.111(7), 07B729 (2012).
[CrossRef]

Poon, C.

B. C. Stipe, T. Strand, C. Poon, H. Balamane, T. Boone, J. Katine, J. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics4(7), 484–488 (2010).
[CrossRef]

Qiu, T. Q.

T. Q. Qiu and C. L. Tien, “Size effects on nonequilibrium laser heating of metal films,” J. Heat Transfer115(4), 842–847 (1993).
[CrossRef]

Rawat, V.

B. C. Stipe, T. Strand, C. Poon, H. Balamane, T. Boone, J. Katine, J. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics4(7), 484–488 (2010).
[CrossRef]

Reiner, J. W.

O. Mosendz, S. Pisana, J. W. Reiner, B. Stipe, and D. Weller, “Ultra-high coercivity small-grain FePt media for thermally assisted recording,” J. Appl. Phys.111(7), 07B729 (2012).
[CrossRef]

Robertson, N.

B. C. Stipe, T. Strand, C. Poon, H. Balamane, T. Boone, J. Katine, J. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics4(7), 484–488 (2010).
[CrossRef]

Rottmayer, R. E.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics3(4), 220–224 (2009).
[CrossRef]

Ruiz, R.

B. C. Stipe, T. Strand, C. Poon, H. Balamane, T. Boone, J. Katine, J. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics4(7), 484–488 (2010).
[CrossRef]

Saga, H.

T. Matsumoto, T. Shimano, H. Saga, H. Sukeda, and M. Kiguchi, “Highly efficient probe with a wedge-shaped metallic plate for high density near-field optical recording,” J. Appl. Phys.95(8), 3901–3906 (2004).
[CrossRef]

H. Saga, H. Nemoto, H. Sukeda, and M. Takahashi, “New recording method combining thermo-magnetic writing and flux detection,” Jpn. J. Appl. Phys.38(Part 1, No. 3B), 1839–1840 (1999).
[CrossRef]

Seigler, M. A.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics3(4), 220–224 (2009).
[CrossRef]

Shi, X.

Shimano, T.

T. Matsumoto, T. Shimano, H. Saga, H. Sukeda, and M. Kiguchi, “Highly efficient probe with a wedge-shaped metallic plate for high density near-field optical recording,” J. Appl. Phys.95(8), 3901–3906 (2004).
[CrossRef]

Shintani, T.

Stipe, B.

O. Mosendz, S. Pisana, J. W. Reiner, B. Stipe, and D. Weller, “Ultra-high coercivity small-grain FePt media for thermally assisted recording,” J. Appl. Phys.111(7), 07B729 (2012).
[CrossRef]

Stipe, B. C.

B. C. Stipe, T. Strand, C. Poon, H. Balamane, T. Boone, J. Katine, J. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics4(7), 484–488 (2010).
[CrossRef]

Strand, T.

B. C. Stipe, T. Strand, C. Poon, H. Balamane, T. Boone, J. Katine, J. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics4(7), 484–488 (2010).
[CrossRef]

Sukeda, H.

T. Matsumoto, T. Shimano, H. Saga, H. Sukeda, and M. Kiguchi, “Highly efficient probe with a wedge-shaped metallic plate for high density near-field optical recording,” J. Appl. Phys.95(8), 3901–3906 (2004).
[CrossRef]

H. Saga, H. Nemoto, H. Sukeda, and M. Takahashi, “New recording method combining thermo-magnetic writing and flux detection,” Jpn. J. Appl. Phys.38(Part 1, No. 3B), 1839–1840 (1999).
[CrossRef]

Takahashi, M.

H. Saga, H. Nemoto, H. Sukeda, and M. Takahashi, “New recording method combining thermo-magnetic writing and flux detection,” Jpn. J. Appl. Phys.38(Part 1, No. 3B), 1839–1840 (1999).
[CrossRef]

Takahashi, Y. K.

L. Zhang, Y. K. Takahashi, A. Perumal, and K. Hono, “L10-ordered high coercivity (FePt) Ag–C granular thin films for perpendicular recording,” J. Magn. Magn. Mater.322(18), 2658–2664 (2010).
[CrossRef]

Terris, B. D.

B. C. Stipe, T. Strand, C. Poon, H. Balamane, T. Boone, J. Katine, J. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics4(7), 484–488 (2010).
[CrossRef]

Thornton, R. L.

Tien, C. L.

T. Q. Qiu and C. L. Tien, “Size effects on nonequilibrium laser heating of metal films,” J. Heat Transfer115(4), 842–847 (1993).
[CrossRef]

Weller, D.

O. Mosendz, S. Pisana, J. W. Reiner, B. Stipe, and D. Weller, “Ultra-high coercivity small-grain FePt media for thermally assisted recording,” J. Appl. Phys.111(7), 07B729 (2012).
[CrossRef]

Yang, X.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics3(4), 220–224 (2009).
[CrossRef]

Zhang, L.

L. Zhang, Y. K. Takahashi, A. Perumal, and K. Hono, “L10-ordered high coercivity (FePt) Ag–C granular thin films for perpendicular recording,” J. Magn. Magn. Mater.322(18), 2658–2664 (2010).
[CrossRef]

Zhu, X.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics3(4), 220–224 (2009).
[CrossRef]

Appl. Phys. Lett.

T. Matsumoto, K. Nakamura, T. Nishida, H. Hieda, A. Kikitsu, K. Naito, and T. Koda, “Thermally assisted magnetic recording on a bit-patterned medium by using a near-field optical head with a beaked metallic plate,” Appl. Phys. Lett.93(3), 031108 (2008).
[CrossRef]

J. Appl. Phys.

T. Matsumoto, T. Shimano, H. Saga, H. Sukeda, and M. Kiguchi, “Highly efficient probe with a wedge-shaped metallic plate for high density near-field optical recording,” J. Appl. Phys.95(8), 3901–3906 (2004).
[CrossRef]

O. Mosendz, S. Pisana, J. W. Reiner, B. Stipe, and D. Weller, “Ultra-high coercivity small-grain FePt media for thermally assisted recording,” J. Appl. Phys.111(7), 07B729 (2012).
[CrossRef]

J. Heat Transfer

T. Q. Qiu and C. L. Tien, “Size effects on nonequilibrium laser heating of metal films,” J. Heat Transfer115(4), 842–847 (1993).
[CrossRef]

J. Magn. Magn. Mater.

L. Zhang, Y. K. Takahashi, A. Perumal, and K. Hono, “L10-ordered high coercivity (FePt) Ag–C granular thin films for perpendicular recording,” J. Magn. Magn. Mater.322(18), 2658–2664 (2010).
[CrossRef]

Jpn. J. Appl. Phys.

H. Saga, H. Nemoto, H. Sukeda, and M. Takahashi, “New recording method combining thermo-magnetic writing and flux detection,” Jpn. J. Appl. Phys.38(Part 1, No. 3B), 1839–1840 (1999).
[CrossRef]

Nat. Mater.

A. A. Balandin, “Thermal properties of graphene and nanostructured carbon materials,” Nat. Mater.10(8), 569–581 (2011).
[CrossRef] [PubMed]

Nat. Photonics

B. C. Stipe, T. Strand, C. Poon, H. Balamane, T. Boone, J. Katine, J. Li, V. Rawat, H. Nemoto, A. Hirotsune, O. Hellwig, R. Ruiz, E. Dobisz, D. S. Kercher, N. Robertson, T. Albrecht, and B. D. Terris, “Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna,” Nat. Photonics4(7), 484–488 (2010).
[CrossRef]

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics3(4), 220–224 (2009).
[CrossRef]

Opt. Lett.

Phys. Rev. B

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Other

ASTC Technical Documents, “ASTC HAMR reference media stack for NFT modeling,” (The International Disk Drive Equipment and Materials Association, 2011). http://idema-cloud.smartsite.net/?page_id=2269 .

M. Ohtsu, ed., Near-Field Nano/Atom optics and Technology (Springer-Verlag, Tokyo, 1998).

T. Matsumoto, M. Mochizuki, F. Akagi, Y. Iwanabe, H. Takei, H. Nemoto, H. Miyamoto, and B. Stipe, “Integrated head design for thermally assisted magnetic recording,” IEEE International Magnetics Conference (Taipei, 2011), AE-01 (2011).

H. Raether, Surface Plasmons (Springer-Verlag, Berlin, 1988).

Lumerical by Lumerical Solutions, Inc., Vancouver, Canada.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of integrated head: (a) cross section of the head, including near-field optical transducer, waveguide, and magnetic pole, and (b) perspective view of near-field optical transducer and magnetic pole.

Fig. 2
Fig. 2

Intensity distribution of waveguide mode: Solid line represents the distribution in the x direction (down-track direction); dotted line represents the distribution in the y direction (cross-track direction). Inset represents the distribution on the xy plane. The waveguide extended 500 nm in the x direction and 200 nm in the y direction.

Fig. 3
Fig. 3

Absorbed power distribution in recording medium. The distribution was calculated in a plane 7 nm from the near-field transducer.

Fig. 4
Fig. 4

(a) Light utilization efficiency as a function of the length of the triangular antenna, and (b) light utilization efficiency as a function of the taper angle of the tapered region of the wing.

Fig. 5
Fig. 5

Light utilization efficiency as a function of (a) the width of the wing and (b) the total height of the near-field optical transducer.

Fig. 6
Fig. 6

(a) Full width at half maximum (FWHM) (circles) and peak value of the absorption power distribution in the recording medium (triangles) as a function of the apex diameter of the triangular antenna, and (b) light utilization efficiency as a function of the apex diameter of the triangular antenna. FWHM was measured in the cross-track direction.

Fig. 7
Fig. 7

Absorbed power and temperature rise distributions in the recording medium measured in the cross-track direction. Dotted line represents the absorbed power distribution; outer three lines represent the temperature rise distributions when the perpendicular thermal conductivity (κp) of the FePt film was 5, 20, and 50 W/m·K. The lateral thermal conductivity was 1/10 of each perpendicular thermal conductivity. The apex diameter of the triangular antenna was 12 nm.

Fig. 8
Fig. 8

Magnetic field and temperature rise distribution in the down-track direction. Dotted line represents the magnetic field distribution; solid line represents the temperature rise distribution. The perpendicular thermal conductivity of the FePt film was 5 W/m·K.

Fig. 9
Fig. 9

Calculated magnetization pattern on the recording medium: Linear recording densities were (a) 1382 kfci and (b) 2764 kfci. The perpendicular thermal conductivity of the recording layer was 5 W/m·K.

Metrics