Abstract

We propose a type of photonic resonator with a tunable curved cavity that enables efficient tuning of the optical length of a resonant cavity made of a solid material; we call this a “tunable curved resonator” (TCR). Its integration with a “tunable curved waveguide” (TCWG) and their actuation by a MEMS (micro electromechanical systems) electrostatic comb actuator are also designed for integrated photonic circuits. With this kind of structure, a widely and continuously tunable narrow-band resonance ranging up to 200 nm is achieved with a MEMS actuation voltage less than 70 V. Its applications in widely tunable photonic filters and lasers are promising.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008).
  2. K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003).
    [CrossRef] [PubMed]
  3. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett.80(5), 960–963 (1998).
    [CrossRef]
  4. M. Belotti, M. Galli, D. Gerace, L. C. Andreani, G. Guizzetti, A. R. Md Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, “All-optical switching in silicon-on-insulator photonic wire nano-cavities,” Opt. Express18(2), 1450–1461 (2010).
    [CrossRef] [PubMed]
  5. D. Sridharan, R. Bose, H. Kim, G. S. Solomon, and E. Waks, “A reversibly tunable photonic crystal nanocavity laser using photochromic thin film,” Opt. Express19(6), 5551–5558 (2011).
    [CrossRef] [PubMed]
  6. I. W. Frank, P. B. Deotare, M. W. McCutcheon, and M. Lončar, “Programmable photonic crystal nanobeam cavities,” Opt. Express18(8), 8705–8712 (2010).
    [CrossRef] [PubMed]
  7. R. Perahia, J. D. Cohen, S. Meenehan, T. P. M. Alegre, and O. Painter, “Electrostatically tunable optomechanical “zipper” cavity laser,” Appl. Phys. Lett.97(19), 191112 (2010).
    [CrossRef]
  8. X. Chew, G. Zhou, H. Yu, F. S. Chau, J. Deng, Y. C. Loke, and X. Tang, “An in-plane nano-mechanics approach to achieve reversible resonance control of photonic crystal nanocavities,” Opt. Express18(21), 22232–22244 (2010).
    [CrossRef] [PubMed]
  9. G. Liang, C. Lee, and A. J. Danner, “Design of narrow band photonic filter with compact MEMS for tunable resonant wavelength ranging 100 nm,” AIP Advances1(4), 042171 (2011).
    [CrossRef]
  10. P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
    [CrossRef]
  11. M. Y. Liu and S. Y. Chou, “High-modulation-depth and short-cavity-length silicon Fabry-Perot modulator with two grating Bragg reflectors,” Appl. Phys. Lett.68(2), 170–172 (1996).
    [CrossRef]
  12. B. Schmidt, Q. Xu, J. Shakya, S. Manipatruni, and M. Lipson, “Compact electro-optic modulator on silicon-on-insulator substrates using cavities with ultra-small modal volumes,” Opt. Express15(6), 3140–3148 (2007).
    [CrossRef] [PubMed]
  13. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech, 2000).
  14. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
    [CrossRef]
  15. Y. Zhang, M. W. McCutcheon, I. B. Burgess, and M. Loncar, “Ultra-high-Q TE/TM dual-polarized photonic crystal nanocavities,” Opt. Lett.34(17), 2694–2696 (2009).
    [CrossRef] [PubMed]
  16. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett.29(11), 1209–1211 (2004).
    [CrossRef] [PubMed]
  17. C. O. M. S. O. L. Multiphysics, http://www.comsol.com .
  18. M. E. E. P. Tutorial, http://ab-initio.mit.edu/wiki/index.php/Meep .

2011 (2)

G. Liang, C. Lee, and A. J. Danner, “Design of narrow band photonic filter with compact MEMS for tunable resonant wavelength ranging 100 nm,” AIP Advances1(4), 042171 (2011).
[CrossRef]

D. Sridharan, R. Bose, H. Kim, G. S. Solomon, and E. Waks, “A reversibly tunable photonic crystal nanocavity laser using photochromic thin film,” Opt. Express19(6), 5551–5558 (2011).
[CrossRef] [PubMed]

2010 (5)

2009 (1)

2007 (1)

2004 (1)

2003 (1)

K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003).
[CrossRef] [PubMed]

1998 (1)

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett.80(5), 960–963 (1998).
[CrossRef]

1997 (1)

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
[CrossRef]

1996 (1)

M. Y. Liu and S. Y. Chou, “High-modulation-depth and short-cavity-length silicon Fabry-Perot modulator with two grating Bragg reflectors,” Appl. Phys. Lett.68(2), 170–172 (1996).
[CrossRef]

Alegre, T. P. M.

R. Perahia, J. D. Cohen, S. Meenehan, T. P. M. Alegre, and O. Painter, “Electrostatically tunable optomechanical “zipper” cavity laser,” Appl. Phys. Lett.97(19), 191112 (2010).
[CrossRef]

Almeida, V. R.

Andreani, L. C.

Barrios, C. A.

Belotti, M.

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Bose, R.

Burgess, I. B.

Chau, F. S.

Chew, X.

Chou, S. Y.

M. Y. Liu and S. Y. Chou, “High-modulation-depth and short-cavity-length silicon Fabry-Perot modulator with two grating Bragg reflectors,” Appl. Phys. Lett.68(2), 170–172 (1996).
[CrossRef]

Cohen, J. D.

R. Perahia, J. D. Cohen, S. Meenehan, T. P. M. Alegre, and O. Painter, “Electrostatically tunable optomechanical “zipper” cavity laser,” Appl. Phys. Lett.97(19), 191112 (2010).
[CrossRef]

Danner, A. J.

G. Liang, C. Lee, and A. J. Danner, “Design of narrow band photonic filter with compact MEMS for tunable resonant wavelength ranging 100 nm,” AIP Advances1(4), 042171 (2011).
[CrossRef]

De La Rue, R. M.

Deng, J.

Deotare, P. B.

Fan, S.

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett.80(5), 960–963 (1998).
[CrossRef]

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
[CrossRef]

Ferrera, J.

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
[CrossRef]

Foresi, J. S.

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
[CrossRef]

Frank, I. W.

Galli, M.

Gerace, D.

Guizzetti, G.

Haus, H. A.

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett.80(5), 960–963 (1998).
[CrossRef]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Ippen, E. P.

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
[CrossRef]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett.80(5), 960–963 (1998).
[CrossRef]

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
[CrossRef]

Johnson, N. P.

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Kim, H.

Kimerling, L. C.

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
[CrossRef]

Lee, C.

G. Liang, C. Lee, and A. J. Danner, “Design of narrow band photonic filter with compact MEMS for tunable resonant wavelength ranging 100 nm,” AIP Advances1(4), 042171 (2011).
[CrossRef]

Liang, G.

G. Liang, C. Lee, and A. J. Danner, “Design of narrow band photonic filter with compact MEMS for tunable resonant wavelength ranging 100 nm,” AIP Advances1(4), 042171 (2011).
[CrossRef]

Lipson, M.

Liu, M. Y.

M. Y. Liu and S. Y. Chou, “High-modulation-depth and short-cavity-length silicon Fabry-Perot modulator with two grating Bragg reflectors,” Appl. Phys. Lett.68(2), 170–172 (1996).
[CrossRef]

Loke, Y. C.

Loncar, M.

Manipatruni, S.

McCutcheon, M. W.

Md Zain, A. R.

Meenehan, S.

R. Perahia, J. D. Cohen, S. Meenehan, T. P. M. Alegre, and O. Painter, “Electrostatically tunable optomechanical “zipper” cavity laser,” Appl. Phys. Lett.97(19), 191112 (2010).
[CrossRef]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Painter, O.

R. Perahia, J. D. Cohen, S. Meenehan, T. P. M. Alegre, and O. Painter, “Electrostatically tunable optomechanical “zipper” cavity laser,” Appl. Phys. Lett.97(19), 191112 (2010).
[CrossRef]

Perahia, R.

R. Perahia, J. D. Cohen, S. Meenehan, T. P. M. Alegre, and O. Painter, “Electrostatically tunable optomechanical “zipper” cavity laser,” Appl. Phys. Lett.97(19), 191112 (2010).
[CrossRef]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Schmidt, B.

Shakya, J.

Smith, H. I.

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
[CrossRef]

Solomon, G. S.

Sorel, M.

Sridharan, D.

Steinmeyer, G.

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
[CrossRef]

Tang, X.

Thoen, E. R.

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
[CrossRef]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003).
[CrossRef] [PubMed]

Villeneuve, P. R.

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett.80(5), 960–963 (1998).
[CrossRef]

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
[CrossRef]

Waks, E.

Xu, Q.

Yu, H.

Zhang, Y.

Zhou, G.

AIP Advances (1)

G. Liang, C. Lee, and A. J. Danner, “Design of narrow band photonic filter with compact MEMS for tunable resonant wavelength ranging 100 nm,” AIP Advances1(4), 042171 (2011).
[CrossRef]

Appl. Phys. Lett. (2)

M. Y. Liu and S. Y. Chou, “High-modulation-depth and short-cavity-length silicon Fabry-Perot modulator with two grating Bragg reflectors,” Appl. Phys. Lett.68(2), 170–172 (1996).
[CrossRef]

R. Perahia, J. D. Cohen, S. Meenehan, T. P. M. Alegre, and O. Painter, “Electrostatically tunable optomechanical “zipper” cavity laser,” Appl. Phys. Lett.97(19), 191112 (2010).
[CrossRef]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Nature (2)

P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
[CrossRef]

K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett.80(5), 960–963 (1998).
[CrossRef]

Other (4)

C. O. M. S. O. L. Multiphysics, http://www.comsol.com .

M. E. E. P. Tutorial, http://ab-initio.mit.edu/wiki/index.php/Meep .

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech, 2000).

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) A straight photonic crystal resonator with cavity length C. (b) Tuning the length of the cavity by an air break introduced by shifting the red part along the z-direction by distance Δz. (c) Transmission spectra of the resonator as a function of Δz. The inset shows the position of the resonant peak relative to the wide photonic band gap.

Fig. 2
Fig. 2

(a) A design of a tunable curved photonic resonator without an air gap between the blue and red parts. The red part can be shifted in z-direction. Two examples for Δz = 115 and 235 nm are shown. (b) Transmission spectra of the resonator as a function of Δz. The wavelength of the resonant peak can be tuned ranging 202 nm. (c) FWHM and Q factor of the resonant peaks throughout the tuning range. (d) A typical mode profile when Δz = 75 nm showing confinement of the light field by the curved photonic resonator.

Fig. 3
Fig. 3

(a) A design for a tunable curved resonator (TCR) with an air gap between the blue and red parts. The red part will be shifted in the z-direction. Two examples for Δz = 160 and 360 nm are shown. (b) Transmission spectra of the TCR as a function of Δz. The wavelength of the resonant peak can be tuned ranging 175 nm. (c) FWHM and Q factor of the resonant peaks in (b) in the tuning range. (d) Transmission spectra of the TCWG using ΔzTCWG = −360, −280, −200, −120 and 0 nm as examples for Δz = 0, 80, 160, 240 and 360 nm in Fig. 3(b), respectively. (e) Integration of structure TCR with TCWG for connection to external photonic circuit providing the Input and Output ports. (f) Mode profile for the structure in (e) using Δz = 160 nm as an example.

Fig. 4
Fig. 4

Actuation for the integrated photonic circuit (TCR + TCWG) by a MEMS electrostatic comb actuator. An enlarged view of the dashed squared area shows Δz = 360 nm for the tunable part of the TCR. Δz as a function of the actuation voltage is shown in the inset.

Fig. 5
Fig. 5

(a) Adding N more air holes in the photonic structure in Fig. 2(a) for increasing the Q factor of the curved cavity. (b) Q factor as a function of the number of added holes N, showing saturation of Q factor when N>5.

Metrics