Abstract

By employing real-time monitoring of single-photon avalanche photodiodes we demonstrate how two types of practical eavesdropping strategies, the after-gate and time-shift attacks, may be detected. Both attacks are identified with the detectors operating without any special modifications, making this proposal well suited for real-world applications. The monitoring system is based on accumulating statistics of the times between consecutive detection events, and extracting the afterpulse and overall efficiency of the detectors in real-time using mathematical models fit to the measured data. We are able to directly observe changes in the afterpulse probabilities generated from the after-gate and faint after-gate attacks, as well as different timing signatures in the time-shift attack. We also discuss the applicability of our scheme to other general blinding attacks.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74(1), 145–195 (2002).
    [CrossRef]
  2. H.-K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science283(5410), 2050–2056 (1999).
    [CrossRef] [PubMed]
  3. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys.81(3), 1301–1350 (2009).
    [CrossRef]
  4. D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quantum Inf. Comput.4, 325–360 (2004).
  5. S. Felix, N. Gisin, A. Stefanov, and H. Zbinden, “Faint laser quantum key distribution: eavesdropping exploiting multiphoton pulses,” J. Mod. Opt.48, 2009–2021 (2001).
  6. S.-H. Sun, M.-S. Jiang, and L.-M. Liang, “Passive Faraday-mirror attack in a practical two-way quantum-key-distribution system,” Phys. Rev. A83(6), 062331 (2011).
    [CrossRef]
  7. N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A73(2), 022320 (2006).
    [CrossRef]
  8. C.-H. F. Fung, B. Qi, K. Tamaki, and H.-K. Lo, “Phase-remapping attack in practical quantum-key-distribution systems,” Phys. Rev. A75(3), 032314 (2007).
    [CrossRef]
  9. F. Xu, B. Qi, and H.-K. Lo, “Experimental demonstration of phase-remapping attack in a practical quantum key distribution system,” New J. Phys.12(11), 113026 (2010).
    [CrossRef]
  10. V. Makarov, A. Anisimov, and A. Skaar, “Effects of detector efficiency mismatch on security of quantum cryptosystems,” Phys. Rev. A74(2), 022313 (2006).
    [CrossRef]
  11. B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, “Time-shift attack in practical quantum cryptosystem,” Quantum Inf. Comput.7, 073–082 (2007).
  12. Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A78(4), 042333 (2008).
    [CrossRef]
  13. N. Jain, C. Wittmann, L. Lydersen, C. Wiechers, D. Elser, C. Marquardt, V. Makarov, and G. Leuchs, “Device calibration impacts security of quantum key distribution,” Phys. Rev. Lett.107(11), 110501 (2011).
    [CrossRef] [PubMed]
  14. V. Makarov, “Controlling passively quenched single photon detectors by bright light,” New J. Phys.11(6), 065003 (2009).
    [CrossRef]
  15. S. Sauge, L. Lydersen, A. Anisimov, J. Skaar, and V. Makarov, “Controlling an actively-quenched single photon detector with bright light,” Opt. Express19(23), 23590–23600 (2011).
    [CrossRef] [PubMed]
  16. C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “After-gate attack on a quantum cryptosystem,” New J. Phys.13(1), 013043 (2011).
    [CrossRef]
  17. L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Thermal blinding of gated detectors in quantum cryptography,” Opt. Express18(26), 27938–27954 (2010).
    [CrossRef] [PubMed]
  18. V. Makarov and D. R. Hjelme, “Faked states attack on quantum cryptosystems,” J. Mod. Opt.52, 691–705 (2005).
    [CrossRef]
  19. H. Weier, H. Krauss, M. Rau, M. Fürst, S. Nauerth, and H. Weinfurter, “Quantum eavesdropping without interception: an attack exploiting the dead time of single-photon detectors,” New J. Phys.13(7), 073024 (2011).
    [CrossRef]
  20. L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics4(10), 686–689 (2010).
    [CrossRef]
  21. I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and V. Makarov, “Full-field implementation of a perfect eavesdropper on a quantum cryptography system,” Nat. Commun.2, 349 (2011).
    [CrossRef] [PubMed]
  22. I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, V. Scarani, V. Makarov, and C. Kurtsiefer, “Experimentally Faking the Violation of Bell’s Inequalities,” Phys. Rev. Lett.107(17), 170404 (2011).
    [CrossRef] [PubMed]
  23. Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Avoiding the blinding attack in QKD,” Nat. Photonics4(12), 800–801 (2010).
    [CrossRef]
  24. Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography,” Appl. Phys. Lett.98(23), 231104 (2011).
    [CrossRef]
  25. L. Lydersen, V. Makarov, and J. Skaar, “Comment on “Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography” [App. Phys. Lett. 98, 231104 (2011)],” Appl. Phys. Lett.99(19), 196101 (2011).
    [CrossRef]
  26. Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Response to “Comment on “Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography”” [Appl. Phys. Lett 99 196101 (2011)],” Appl. Phys. Lett.99(19), 196102 (2011).
    [CrossRef]
  27. L. Lydersen, V. Makarov, and J. Skaar, “Secure gated detection scheme for quantum cryptography,” Phys. Rev. A83(3), 032306 (2011).
    [CrossRef]
  28. H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett.108(13), 130503 (2012).
    [CrossRef] [PubMed]
  29. T. F. da Silva, G. B. Xavier, and J. P. von der Weid, “Real-time characterization of gated-mode single-photon detectors,” IEEE J. Quantum Electron.47(9), 1251–1256 (2011).
    [CrossRef]
  30. L. Lydersen, N. Jain, C. Wittmann, O. Maroy, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “Superlinear threshold detectors in quantum cryptography,” Phys. Rev. A84(3), 032320 (2011).
    [CrossRef]
  31. R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics3(12), 696–705 (2009).
    [CrossRef]
  32. M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: single-photon sources and detectors,” Rev. Sci. Instrum.82(7), 071101 (2011).
    [CrossRef] [PubMed]
  33. J. Zhang, R. Thew, J. D. Gautier, N. Gisin, and H. Zbinden, “Comprehensive characterization of InGaAs-InP avalanche photodiodes at 1550 nm with an active quenching ASIC,” IEEE J. Quantum Electron.45(7), 792–799 (2009).
    [CrossRef]
  34. A. Yoshizawa, R. Kaji, and H. Tsuchida, “Quantum efficiency evaluation method for gated-mode single-photon detector,” Electron. Lett.38(23), 1468–1469 (2002).
    [CrossRef]
  35. S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt.35(12), 1956–1976 (1996).
    [CrossRef] [PubMed]
  36. G. B. Xavier, N. Walenta, G. Vilela de Faria, G. P. Temporão, N. Gisin, H. Zbinden, and J. P. von der Weid, “Experimental polarization encoded quantum key distribution over optical fibres with real-time continuous birefringence compensation,” New J. Phys.11(4), 045015 (2009).
    [CrossRef]
  37. S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt.51, 1267–1288 (2004).
  38. J. G. Rarity, P. C. M. Owens, and P. R. Tapster, “Quantum random-number generation and key sharing,” J. Mod. Opt.41(12), 2435–2444 (1994).
    [CrossRef]
  39. J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, M. Fujiwara, M. Sasaki, and A. J. Shields, “Stability of high bit rate quantum key distribution on installed fiber,” Opt. Express20(15), 16339–16347 (2012).
    [CrossRef]

2012 (2)

2011 (14)

T. F. da Silva, G. B. Xavier, and J. P. von der Weid, “Real-time characterization of gated-mode single-photon detectors,” IEEE J. Quantum Electron.47(9), 1251–1256 (2011).
[CrossRef]

L. Lydersen, N. Jain, C. Wittmann, O. Maroy, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “Superlinear threshold detectors in quantum cryptography,” Phys. Rev. A84(3), 032320 (2011).
[CrossRef]

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: single-photon sources and detectors,” Rev. Sci. Instrum.82(7), 071101 (2011).
[CrossRef] [PubMed]

H. Weier, H. Krauss, M. Rau, M. Fürst, S. Nauerth, and H. Weinfurter, “Quantum eavesdropping without interception: an attack exploiting the dead time of single-photon detectors,” New J. Phys.13(7), 073024 (2011).
[CrossRef]

I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and V. Makarov, “Full-field implementation of a perfect eavesdropper on a quantum cryptography system,” Nat. Commun.2, 349 (2011).
[CrossRef] [PubMed]

I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, V. Scarani, V. Makarov, and C. Kurtsiefer, “Experimentally Faking the Violation of Bell’s Inequalities,” Phys. Rev. Lett.107(17), 170404 (2011).
[CrossRef] [PubMed]

Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography,” Appl. Phys. Lett.98(23), 231104 (2011).
[CrossRef]

L. Lydersen, V. Makarov, and J. Skaar, “Comment on “Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography” [App. Phys. Lett. 98, 231104 (2011)],” Appl. Phys. Lett.99(19), 196101 (2011).
[CrossRef]

Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Response to “Comment on “Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography”” [Appl. Phys. Lett 99 196101 (2011)],” Appl. Phys. Lett.99(19), 196102 (2011).
[CrossRef]

L. Lydersen, V. Makarov, and J. Skaar, “Secure gated detection scheme for quantum cryptography,” Phys. Rev. A83(3), 032306 (2011).
[CrossRef]

S.-H. Sun, M.-S. Jiang, and L.-M. Liang, “Passive Faraday-mirror attack in a practical two-way quantum-key-distribution system,” Phys. Rev. A83(6), 062331 (2011).
[CrossRef]

N. Jain, C. Wittmann, L. Lydersen, C. Wiechers, D. Elser, C. Marquardt, V. Makarov, and G. Leuchs, “Device calibration impacts security of quantum key distribution,” Phys. Rev. Lett.107(11), 110501 (2011).
[CrossRef] [PubMed]

S. Sauge, L. Lydersen, A. Anisimov, J. Skaar, and V. Makarov, “Controlling an actively-quenched single photon detector with bright light,” Opt. Express19(23), 23590–23600 (2011).
[CrossRef] [PubMed]

C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “After-gate attack on a quantum cryptosystem,” New J. Phys.13(1), 013043 (2011).
[CrossRef]

2010 (4)

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Thermal blinding of gated detectors in quantum cryptography,” Opt. Express18(26), 27938–27954 (2010).
[CrossRef] [PubMed]

F. Xu, B. Qi, and H.-K. Lo, “Experimental demonstration of phase-remapping attack in a practical quantum key distribution system,” New J. Phys.12(11), 113026 (2010).
[CrossRef]

Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Avoiding the blinding attack in QKD,” Nat. Photonics4(12), 800–801 (2010).
[CrossRef]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics4(10), 686–689 (2010).
[CrossRef]

2009 (5)

J. Zhang, R. Thew, J. D. Gautier, N. Gisin, and H. Zbinden, “Comprehensive characterization of InGaAs-InP avalanche photodiodes at 1550 nm with an active quenching ASIC,” IEEE J. Quantum Electron.45(7), 792–799 (2009).
[CrossRef]

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics3(12), 696–705 (2009).
[CrossRef]

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys.81(3), 1301–1350 (2009).
[CrossRef]

V. Makarov, “Controlling passively quenched single photon detectors by bright light,” New J. Phys.11(6), 065003 (2009).
[CrossRef]

G. B. Xavier, N. Walenta, G. Vilela de Faria, G. P. Temporão, N. Gisin, H. Zbinden, and J. P. von der Weid, “Experimental polarization encoded quantum key distribution over optical fibres with real-time continuous birefringence compensation,” New J. Phys.11(4), 045015 (2009).
[CrossRef]

2008 (1)

Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A78(4), 042333 (2008).
[CrossRef]

2007 (2)

C.-H. F. Fung, B. Qi, K. Tamaki, and H.-K. Lo, “Phase-remapping attack in practical quantum-key-distribution systems,” Phys. Rev. A75(3), 032314 (2007).
[CrossRef]

B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, “Time-shift attack in practical quantum cryptosystem,” Quantum Inf. Comput.7, 073–082 (2007).

2006 (2)

V. Makarov, A. Anisimov, and A. Skaar, “Effects of detector efficiency mismatch on security of quantum cryptosystems,” Phys. Rev. A74(2), 022313 (2006).
[CrossRef]

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A73(2), 022320 (2006).
[CrossRef]

2005 (1)

V. Makarov and D. R. Hjelme, “Faked states attack on quantum cryptosystems,” J. Mod. Opt.52, 691–705 (2005).
[CrossRef]

2004 (2)

D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quantum Inf. Comput.4, 325–360 (2004).

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt.51, 1267–1288 (2004).

2002 (2)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74(1), 145–195 (2002).
[CrossRef]

A. Yoshizawa, R. Kaji, and H. Tsuchida, “Quantum efficiency evaluation method for gated-mode single-photon detector,” Electron. Lett.38(23), 1468–1469 (2002).
[CrossRef]

2001 (1)

S. Felix, N. Gisin, A. Stefanov, and H. Zbinden, “Faint laser quantum key distribution: eavesdropping exploiting multiphoton pulses,” J. Mod. Opt.48, 2009–2021 (2001).

1999 (1)

H.-K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science283(5410), 2050–2056 (1999).
[CrossRef] [PubMed]

1996 (1)

1994 (1)

J. G. Rarity, P. C. M. Owens, and P. R. Tapster, “Quantum random-number generation and key sharing,” J. Mod. Opt.41(12), 2435–2444 (1994).
[CrossRef]

Anisimov, A.

S. Sauge, L. Lydersen, A. Anisimov, J. Skaar, and V. Makarov, “Controlling an actively-quenched single photon detector with bright light,” Opt. Express19(23), 23590–23600 (2011).
[CrossRef] [PubMed]

V. Makarov, A. Anisimov, and A. Skaar, “Effects of detector efficiency mismatch on security of quantum cryptosystems,” Phys. Rev. A74(2), 022313 (2006).
[CrossRef]

Bechmann-Pasquinucci, H.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys.81(3), 1301–1350 (2009).
[CrossRef]

Cerf, N. J.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys.81(3), 1301–1350 (2009).
[CrossRef]

Chau, H. F.

H.-K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science283(5410), 2050–2056 (1999).
[CrossRef] [PubMed]

Chen, C.

Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A78(4), 042333 (2008).
[CrossRef]

Choi, I.

Cova, S.

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt.51, 1267–1288 (2004).

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt.35(12), 1956–1976 (1996).
[CrossRef] [PubMed]

Curty, M.

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett.108(13), 130503 (2012).
[CrossRef] [PubMed]

da Silva, T. F.

T. F. da Silva, G. B. Xavier, and J. P. von der Weid, “Real-time characterization of gated-mode single-photon detectors,” IEEE J. Quantum Electron.47(9), 1251–1256 (2011).
[CrossRef]

Dixon, A. R.

Dušek, M.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys.81(3), 1301–1350 (2009).
[CrossRef]

Dynes, J. F.

J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, M. Fujiwara, M. Sasaki, and A. J. Shields, “Stability of high bit rate quantum key distribution on installed fiber,” Opt. Express20(15), 16339–16347 (2012).
[CrossRef]

Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Response to “Comment on “Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography”” [Appl. Phys. Lett 99 196101 (2011)],” Appl. Phys. Lett.99(19), 196102 (2011).
[CrossRef]

Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography,” Appl. Phys. Lett.98(23), 231104 (2011).
[CrossRef]

Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Avoiding the blinding attack in QKD,” Nat. Photonics4(12), 800–801 (2010).
[CrossRef]

Eisaman, M. D.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: single-photon sources and detectors,” Rev. Sci. Instrum.82(7), 071101 (2011).
[CrossRef] [PubMed]

Elser, D.

N. Jain, C. Wittmann, L. Lydersen, C. Wiechers, D. Elser, C. Marquardt, V. Makarov, and G. Leuchs, “Device calibration impacts security of quantum key distribution,” Phys. Rev. Lett.107(11), 110501 (2011).
[CrossRef] [PubMed]

C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “After-gate attack on a quantum cryptosystem,” New J. Phys.13(1), 013043 (2011).
[CrossRef]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Thermal blinding of gated detectors in quantum cryptography,” Opt. Express18(26), 27938–27954 (2010).
[CrossRef] [PubMed]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics4(10), 686–689 (2010).
[CrossRef]

Fan, J.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: single-photon sources and detectors,” Rev. Sci. Instrum.82(7), 071101 (2011).
[CrossRef] [PubMed]

Fasel, S.

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A73(2), 022320 (2006).
[CrossRef]

Felix, S.

S. Felix, N. Gisin, A. Stefanov, and H. Zbinden, “Faint laser quantum key distribution: eavesdropping exploiting multiphoton pulses,” J. Mod. Opt.48, 2009–2021 (2001).

Fujiwara, M.

Fung, C.-H. F.

Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A78(4), 042333 (2008).
[CrossRef]

B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, “Time-shift attack in practical quantum cryptosystem,” Quantum Inf. Comput.7, 073–082 (2007).

C.-H. F. Fung, B. Qi, K. Tamaki, and H.-K. Lo, “Phase-remapping attack in practical quantum-key-distribution systems,” Phys. Rev. A75(3), 032314 (2007).
[CrossRef]

Fürst, M.

H. Weier, H. Krauss, M. Rau, M. Fürst, S. Nauerth, and H. Weinfurter, “Quantum eavesdropping without interception: an attack exploiting the dead time of single-photon detectors,” New J. Phys.13(7), 073024 (2011).
[CrossRef]

Gautier, J. D.

J. Zhang, R. Thew, J. D. Gautier, N. Gisin, and H. Zbinden, “Comprehensive characterization of InGaAs-InP avalanche photodiodes at 1550 nm with an active quenching ASIC,” IEEE J. Quantum Electron.45(7), 792–799 (2009).
[CrossRef]

Gerhardt, I.

I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and V. Makarov, “Full-field implementation of a perfect eavesdropper on a quantum cryptography system,” Nat. Commun.2, 349 (2011).
[CrossRef] [PubMed]

I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, V. Scarani, V. Makarov, and C. Kurtsiefer, “Experimentally Faking the Violation of Bell’s Inequalities,” Phys. Rev. Lett.107(17), 170404 (2011).
[CrossRef] [PubMed]

Ghioni, M.

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt.51, 1267–1288 (2004).

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt.35(12), 1956–1976 (1996).
[CrossRef] [PubMed]

Gisin, N.

J. Zhang, R. Thew, J. D. Gautier, N. Gisin, and H. Zbinden, “Comprehensive characterization of InGaAs-InP avalanche photodiodes at 1550 nm with an active quenching ASIC,” IEEE J. Quantum Electron.45(7), 792–799 (2009).
[CrossRef]

G. B. Xavier, N. Walenta, G. Vilela de Faria, G. P. Temporão, N. Gisin, H. Zbinden, and J. P. von der Weid, “Experimental polarization encoded quantum key distribution over optical fibres with real-time continuous birefringence compensation,” New J. Phys.11(4), 045015 (2009).
[CrossRef]

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A73(2), 022320 (2006).
[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74(1), 145–195 (2002).
[CrossRef]

S. Felix, N. Gisin, A. Stefanov, and H. Zbinden, “Faint laser quantum key distribution: eavesdropping exploiting multiphoton pulses,” J. Mod. Opt.48, 2009–2021 (2001).

Gottesman, D.

D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quantum Inf. Comput.4, 325–360 (2004).

Hadfield, R. H.

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics3(12), 696–705 (2009).
[CrossRef]

Hjelme, D. R.

V. Makarov and D. R. Hjelme, “Faked states attack on quantum cryptosystems,” J. Mod. Opt.52, 691–705 (2005).
[CrossRef]

Jain, N.

L. Lydersen, N. Jain, C. Wittmann, O. Maroy, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “Superlinear threshold detectors in quantum cryptography,” Phys. Rev. A84(3), 032320 (2011).
[CrossRef]

N. Jain, C. Wittmann, L. Lydersen, C. Wiechers, D. Elser, C. Marquardt, V. Makarov, and G. Leuchs, “Device calibration impacts security of quantum key distribution,” Phys. Rev. Lett.107(11), 110501 (2011).
[CrossRef] [PubMed]

Jiang, M.-S.

S.-H. Sun, M.-S. Jiang, and L.-M. Liang, “Passive Faraday-mirror attack in a practical two-way quantum-key-distribution system,” Phys. Rev. A83(6), 062331 (2011).
[CrossRef]

Kaji, R.

A. Yoshizawa, R. Kaji, and H. Tsuchida, “Quantum efficiency evaluation method for gated-mode single-photon detector,” Electron. Lett.38(23), 1468–1469 (2002).
[CrossRef]

Kraus, B.

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A73(2), 022320 (2006).
[CrossRef]

Krauss, H.

H. Weier, H. Krauss, M. Rau, M. Fürst, S. Nauerth, and H. Weinfurter, “Quantum eavesdropping without interception: an attack exploiting the dead time of single-photon detectors,” New J. Phys.13(7), 073024 (2011).
[CrossRef]

Kurtsiefer, C.

I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, V. Scarani, V. Makarov, and C. Kurtsiefer, “Experimentally Faking the Violation of Bell’s Inequalities,” Phys. Rev. Lett.107(17), 170404 (2011).
[CrossRef] [PubMed]

I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and V. Makarov, “Full-field implementation of a perfect eavesdropper on a quantum cryptography system,” Nat. Commun.2, 349 (2011).
[CrossRef] [PubMed]

Lacaita, A.

Lamas-Linares, A.

I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and V. Makarov, “Full-field implementation of a perfect eavesdropper on a quantum cryptography system,” Nat. Commun.2, 349 (2011).
[CrossRef] [PubMed]

I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, V. Scarani, V. Makarov, and C. Kurtsiefer, “Experimentally Faking the Violation of Bell’s Inequalities,” Phys. Rev. Lett.107(17), 170404 (2011).
[CrossRef] [PubMed]

Leuchs, G.

C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “After-gate attack on a quantum cryptosystem,” New J. Phys.13(1), 013043 (2011).
[CrossRef]

L. Lydersen, N. Jain, C. Wittmann, O. Maroy, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “Superlinear threshold detectors in quantum cryptography,” Phys. Rev. A84(3), 032320 (2011).
[CrossRef]

N. Jain, C. Wittmann, L. Lydersen, C. Wiechers, D. Elser, C. Marquardt, V. Makarov, and G. Leuchs, “Device calibration impacts security of quantum key distribution,” Phys. Rev. Lett.107(11), 110501 (2011).
[CrossRef] [PubMed]

Liang, L.-M.

S.-H. Sun, M.-S. Jiang, and L.-M. Liang, “Passive Faraday-mirror attack in a practical two-way quantum-key-distribution system,” Phys. Rev. A83(6), 062331 (2011).
[CrossRef]

Liu, Q.

I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, V. Scarani, V. Makarov, and C. Kurtsiefer, “Experimentally Faking the Violation of Bell’s Inequalities,” Phys. Rev. Lett.107(17), 170404 (2011).
[CrossRef] [PubMed]

I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and V. Makarov, “Full-field implementation of a perfect eavesdropper on a quantum cryptography system,” Nat. Commun.2, 349 (2011).
[CrossRef] [PubMed]

Lo, H.-K.

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett.108(13), 130503 (2012).
[CrossRef] [PubMed]

F. Xu, B. Qi, and H.-K. Lo, “Experimental demonstration of phase-remapping attack in a practical quantum key distribution system,” New J. Phys.12(11), 113026 (2010).
[CrossRef]

Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A78(4), 042333 (2008).
[CrossRef]

B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, “Time-shift attack in practical quantum cryptosystem,” Quantum Inf. Comput.7, 073–082 (2007).

C.-H. F. Fung, B. Qi, K. Tamaki, and H.-K. Lo, “Phase-remapping attack in practical quantum-key-distribution systems,” Phys. Rev. A75(3), 032314 (2007).
[CrossRef]

D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quantum Inf. Comput.4, 325–360 (2004).

H.-K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science283(5410), 2050–2056 (1999).
[CrossRef] [PubMed]

Lotito, A.

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt.51, 1267–1288 (2004).

Lütkenhaus, N.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys.81(3), 1301–1350 (2009).
[CrossRef]

D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quantum Inf. Comput.4, 325–360 (2004).

Lydersen, L.

N. Jain, C. Wittmann, L. Lydersen, C. Wiechers, D. Elser, C. Marquardt, V. Makarov, and G. Leuchs, “Device calibration impacts security of quantum key distribution,” Phys. Rev. Lett.107(11), 110501 (2011).
[CrossRef] [PubMed]

S. Sauge, L. Lydersen, A. Anisimov, J. Skaar, and V. Makarov, “Controlling an actively-quenched single photon detector with bright light,” Opt. Express19(23), 23590–23600 (2011).
[CrossRef] [PubMed]

C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “After-gate attack on a quantum cryptosystem,” New J. Phys.13(1), 013043 (2011).
[CrossRef]

L. Lydersen, V. Makarov, and J. Skaar, “Secure gated detection scheme for quantum cryptography,” Phys. Rev. A83(3), 032306 (2011).
[CrossRef]

L. Lydersen, V. Makarov, and J. Skaar, “Comment on “Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography” [App. Phys. Lett. 98, 231104 (2011)],” Appl. Phys. Lett.99(19), 196101 (2011).
[CrossRef]

L. Lydersen, N. Jain, C. Wittmann, O. Maroy, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “Superlinear threshold detectors in quantum cryptography,” Phys. Rev. A84(3), 032320 (2011).
[CrossRef]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Thermal blinding of gated detectors in quantum cryptography,” Opt. Express18(26), 27938–27954 (2010).
[CrossRef] [PubMed]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics4(10), 686–689 (2010).
[CrossRef]

Ma, X.

B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, “Time-shift attack in practical quantum cryptosystem,” Quantum Inf. Comput.7, 073–082 (2007).

Makarov, V.

S. Sauge, L. Lydersen, A. Anisimov, J. Skaar, and V. Makarov, “Controlling an actively-quenched single photon detector with bright light,” Opt. Express19(23), 23590–23600 (2011).
[CrossRef] [PubMed]

C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “After-gate attack on a quantum cryptosystem,” New J. Phys.13(1), 013043 (2011).
[CrossRef]

N. Jain, C. Wittmann, L. Lydersen, C. Wiechers, D. Elser, C. Marquardt, V. Makarov, and G. Leuchs, “Device calibration impacts security of quantum key distribution,” Phys. Rev. Lett.107(11), 110501 (2011).
[CrossRef] [PubMed]

I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and V. Makarov, “Full-field implementation of a perfect eavesdropper on a quantum cryptography system,” Nat. Commun.2, 349 (2011).
[CrossRef] [PubMed]

L. Lydersen, N. Jain, C. Wittmann, O. Maroy, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “Superlinear threshold detectors in quantum cryptography,” Phys. Rev. A84(3), 032320 (2011).
[CrossRef]

L. Lydersen, V. Makarov, and J. Skaar, “Comment on “Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography” [App. Phys. Lett. 98, 231104 (2011)],” Appl. Phys. Lett.99(19), 196101 (2011).
[CrossRef]

L. Lydersen, V. Makarov, and J. Skaar, “Secure gated detection scheme for quantum cryptography,” Phys. Rev. A83(3), 032306 (2011).
[CrossRef]

I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, V. Scarani, V. Makarov, and C. Kurtsiefer, “Experimentally Faking the Violation of Bell’s Inequalities,” Phys. Rev. Lett.107(17), 170404 (2011).
[CrossRef] [PubMed]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics4(10), 686–689 (2010).
[CrossRef]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Thermal blinding of gated detectors in quantum cryptography,” Opt. Express18(26), 27938–27954 (2010).
[CrossRef] [PubMed]

V. Makarov, “Controlling passively quenched single photon detectors by bright light,” New J. Phys.11(6), 065003 (2009).
[CrossRef]

V. Makarov, A. Anisimov, and A. Skaar, “Effects of detector efficiency mismatch on security of quantum cryptosystems,” Phys. Rev. A74(2), 022313 (2006).
[CrossRef]

V. Makarov and D. R. Hjelme, “Faked states attack on quantum cryptosystems,” J. Mod. Opt.52, 691–705 (2005).
[CrossRef]

Maroy, O.

L. Lydersen, N. Jain, C. Wittmann, O. Maroy, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “Superlinear threshold detectors in quantum cryptography,” Phys. Rev. A84(3), 032320 (2011).
[CrossRef]

Marquardt, C.

L. Lydersen, N. Jain, C. Wittmann, O. Maroy, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “Superlinear threshold detectors in quantum cryptography,” Phys. Rev. A84(3), 032320 (2011).
[CrossRef]

N. Jain, C. Wittmann, L. Lydersen, C. Wiechers, D. Elser, C. Marquardt, V. Makarov, and G. Leuchs, “Device calibration impacts security of quantum key distribution,” Phys. Rev. Lett.107(11), 110501 (2011).
[CrossRef] [PubMed]

C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “After-gate attack on a quantum cryptosystem,” New J. Phys.13(1), 013043 (2011).
[CrossRef]

Migdall, A.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: single-photon sources and detectors,” Rev. Sci. Instrum.82(7), 071101 (2011).
[CrossRef] [PubMed]

Nauerth, S.

H. Weier, H. Krauss, M. Rau, M. Fürst, S. Nauerth, and H. Weinfurter, “Quantum eavesdropping without interception: an attack exploiting the dead time of single-photon detectors,” New J. Phys.13(7), 073024 (2011).
[CrossRef]

Owens, P. C. M.

J. G. Rarity, P. C. M. Owens, and P. R. Tapster, “Quantum random-number generation and key sharing,” J. Mod. Opt.41(12), 2435–2444 (1994).
[CrossRef]

Peev, M.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys.81(3), 1301–1350 (2009).
[CrossRef]

Polyakov, S. V.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: single-photon sources and detectors,” Rev. Sci. Instrum.82(7), 071101 (2011).
[CrossRef] [PubMed]

Preskill, J.

D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quantum Inf. Comput.4, 325–360 (2004).

Qi, B.

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett.108(13), 130503 (2012).
[CrossRef] [PubMed]

F. Xu, B. Qi, and H.-K. Lo, “Experimental demonstration of phase-remapping attack in a practical quantum key distribution system,” New J. Phys.12(11), 113026 (2010).
[CrossRef]

Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A78(4), 042333 (2008).
[CrossRef]

B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, “Time-shift attack in practical quantum cryptosystem,” Quantum Inf. Comput.7, 073–082 (2007).

C.-H. F. Fung, B. Qi, K. Tamaki, and H.-K. Lo, “Phase-remapping attack in practical quantum-key-distribution systems,” Phys. Rev. A75(3), 032314 (2007).
[CrossRef]

Rarity, J. G.

J. G. Rarity, P. C. M. Owens, and P. R. Tapster, “Quantum random-number generation and key sharing,” J. Mod. Opt.41(12), 2435–2444 (1994).
[CrossRef]

Rau, M.

H. Weier, H. Krauss, M. Rau, M. Fürst, S. Nauerth, and H. Weinfurter, “Quantum eavesdropping without interception: an attack exploiting the dead time of single-photon detectors,” New J. Phys.13(7), 073024 (2011).
[CrossRef]

Rech, I.

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt.51, 1267–1288 (2004).

Ribordy, G.

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A73(2), 022320 (2006).
[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74(1), 145–195 (2002).
[CrossRef]

Samori, C.

Sasaki, M.

Sauge, S.

Scarani, V.

I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, V. Scarani, V. Makarov, and C. Kurtsiefer, “Experimentally Faking the Violation of Bell’s Inequalities,” Phys. Rev. Lett.107(17), 170404 (2011).
[CrossRef] [PubMed]

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys.81(3), 1301–1350 (2009).
[CrossRef]

Sharpe, A. W.

Shields, A. J.

J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, M. Fujiwara, M. Sasaki, and A. J. Shields, “Stability of high bit rate quantum key distribution on installed fiber,” Opt. Express20(15), 16339–16347 (2012).
[CrossRef]

Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Response to “Comment on “Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography”” [Appl. Phys. Lett 99 196101 (2011)],” Appl. Phys. Lett.99(19), 196102 (2011).
[CrossRef]

Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography,” Appl. Phys. Lett.98(23), 231104 (2011).
[CrossRef]

Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Avoiding the blinding attack in QKD,” Nat. Photonics4(12), 800–801 (2010).
[CrossRef]

Skaar, A.

V. Makarov, A. Anisimov, and A. Skaar, “Effects of detector efficiency mismatch on security of quantum cryptosystems,” Phys. Rev. A74(2), 022313 (2006).
[CrossRef]

Skaar, J.

S. Sauge, L. Lydersen, A. Anisimov, J. Skaar, and V. Makarov, “Controlling an actively-quenched single photon detector with bright light,” Opt. Express19(23), 23590–23600 (2011).
[CrossRef] [PubMed]

C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “After-gate attack on a quantum cryptosystem,” New J. Phys.13(1), 013043 (2011).
[CrossRef]

L. Lydersen, V. Makarov, and J. Skaar, “Comment on “Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography” [App. Phys. Lett. 98, 231104 (2011)],” Appl. Phys. Lett.99(19), 196101 (2011).
[CrossRef]

L. Lydersen, V. Makarov, and J. Skaar, “Secure gated detection scheme for quantum cryptography,” Phys. Rev. A83(3), 032306 (2011).
[CrossRef]

L. Lydersen, N. Jain, C. Wittmann, O. Maroy, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “Superlinear threshold detectors in quantum cryptography,” Phys. Rev. A84(3), 032320 (2011).
[CrossRef]

I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, V. Scarani, V. Makarov, and C. Kurtsiefer, “Experimentally Faking the Violation of Bell’s Inequalities,” Phys. Rev. Lett.107(17), 170404 (2011).
[CrossRef] [PubMed]

I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and V. Makarov, “Full-field implementation of a perfect eavesdropper on a quantum cryptography system,” Nat. Commun.2, 349 (2011).
[CrossRef] [PubMed]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics4(10), 686–689 (2010).
[CrossRef]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Thermal blinding of gated detectors in quantum cryptography,” Opt. Express18(26), 27938–27954 (2010).
[CrossRef] [PubMed]

Stefanov, A.

S. Felix, N. Gisin, A. Stefanov, and H. Zbinden, “Faint laser quantum key distribution: eavesdropping exploiting multiphoton pulses,” J. Mod. Opt.48, 2009–2021 (2001).

Sun, S.-H.

S.-H. Sun, M.-S. Jiang, and L.-M. Liang, “Passive Faraday-mirror attack in a practical two-way quantum-key-distribution system,” Phys. Rev. A83(6), 062331 (2011).
[CrossRef]

Tamaki, K.

C.-H. F. Fung, B. Qi, K. Tamaki, and H.-K. Lo, “Phase-remapping attack in practical quantum-key-distribution systems,” Phys. Rev. A75(3), 032314 (2007).
[CrossRef]

Tapster, P. R.

J. G. Rarity, P. C. M. Owens, and P. R. Tapster, “Quantum random-number generation and key sharing,” J. Mod. Opt.41(12), 2435–2444 (1994).
[CrossRef]

Temporão, G. P.

G. B. Xavier, N. Walenta, G. Vilela de Faria, G. P. Temporão, N. Gisin, H. Zbinden, and J. P. von der Weid, “Experimental polarization encoded quantum key distribution over optical fibres with real-time continuous birefringence compensation,” New J. Phys.11(4), 045015 (2009).
[CrossRef]

Thew, R.

J. Zhang, R. Thew, J. D. Gautier, N. Gisin, and H. Zbinden, “Comprehensive characterization of InGaAs-InP avalanche photodiodes at 1550 nm with an active quenching ASIC,” IEEE J. Quantum Electron.45(7), 792–799 (2009).
[CrossRef]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74(1), 145–195 (2002).
[CrossRef]

Tsuchida, H.

A. Yoshizawa, R. Kaji, and H. Tsuchida, “Quantum efficiency evaluation method for gated-mode single-photon detector,” Electron. Lett.38(23), 1468–1469 (2002).
[CrossRef]

Vilela de Faria, G.

G. B. Xavier, N. Walenta, G. Vilela de Faria, G. P. Temporão, N. Gisin, H. Zbinden, and J. P. von der Weid, “Experimental polarization encoded quantum key distribution over optical fibres with real-time continuous birefringence compensation,” New J. Phys.11(4), 045015 (2009).
[CrossRef]

von der Weid, J. P.

T. F. da Silva, G. B. Xavier, and J. P. von der Weid, “Real-time characterization of gated-mode single-photon detectors,” IEEE J. Quantum Electron.47(9), 1251–1256 (2011).
[CrossRef]

G. B. Xavier, N. Walenta, G. Vilela de Faria, G. P. Temporão, N. Gisin, H. Zbinden, and J. P. von der Weid, “Experimental polarization encoded quantum key distribution over optical fibres with real-time continuous birefringence compensation,” New J. Phys.11(4), 045015 (2009).
[CrossRef]

Walenta, N.

G. B. Xavier, N. Walenta, G. Vilela de Faria, G. P. Temporão, N. Gisin, H. Zbinden, and J. P. von der Weid, “Experimental polarization encoded quantum key distribution over optical fibres with real-time continuous birefringence compensation,” New J. Phys.11(4), 045015 (2009).
[CrossRef]

Weier, H.

H. Weier, H. Krauss, M. Rau, M. Fürst, S. Nauerth, and H. Weinfurter, “Quantum eavesdropping without interception: an attack exploiting the dead time of single-photon detectors,” New J. Phys.13(7), 073024 (2011).
[CrossRef]

Weinfurter, H.

H. Weier, H. Krauss, M. Rau, M. Fürst, S. Nauerth, and H. Weinfurter, “Quantum eavesdropping without interception: an attack exploiting the dead time of single-photon detectors,” New J. Phys.13(7), 073024 (2011).
[CrossRef]

Wiechers, C.

C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “After-gate attack on a quantum cryptosystem,” New J. Phys.13(1), 013043 (2011).
[CrossRef]

N. Jain, C. Wittmann, L. Lydersen, C. Wiechers, D. Elser, C. Marquardt, V. Makarov, and G. Leuchs, “Device calibration impacts security of quantum key distribution,” Phys. Rev. Lett.107(11), 110501 (2011).
[CrossRef] [PubMed]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics4(10), 686–689 (2010).
[CrossRef]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Thermal blinding of gated detectors in quantum cryptography,” Opt. Express18(26), 27938–27954 (2010).
[CrossRef] [PubMed]

Wittmann, C.

L. Lydersen, N. Jain, C. Wittmann, O. Maroy, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “Superlinear threshold detectors in quantum cryptography,” Phys. Rev. A84(3), 032320 (2011).
[CrossRef]

N. Jain, C. Wittmann, L. Lydersen, C. Wiechers, D. Elser, C. Marquardt, V. Makarov, and G. Leuchs, “Device calibration impacts security of quantum key distribution,” Phys. Rev. Lett.107(11), 110501 (2011).
[CrossRef] [PubMed]

C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “After-gate attack on a quantum cryptosystem,” New J. Phys.13(1), 013043 (2011).
[CrossRef]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Thermal blinding of gated detectors in quantum cryptography,” Opt. Express18(26), 27938–27954 (2010).
[CrossRef] [PubMed]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics4(10), 686–689 (2010).
[CrossRef]

Xavier, G. B.

T. F. da Silva, G. B. Xavier, and J. P. von der Weid, “Real-time characterization of gated-mode single-photon detectors,” IEEE J. Quantum Electron.47(9), 1251–1256 (2011).
[CrossRef]

G. B. Xavier, N. Walenta, G. Vilela de Faria, G. P. Temporão, N. Gisin, H. Zbinden, and J. P. von der Weid, “Experimental polarization encoded quantum key distribution over optical fibres with real-time continuous birefringence compensation,” New J. Phys.11(4), 045015 (2009).
[CrossRef]

Xu, F.

F. Xu, B. Qi, and H.-K. Lo, “Experimental demonstration of phase-remapping attack in a practical quantum key distribution system,” New J. Phys.12(11), 113026 (2010).
[CrossRef]

Yoshizawa, A.

A. Yoshizawa, R. Kaji, and H. Tsuchida, “Quantum efficiency evaluation method for gated-mode single-photon detector,” Electron. Lett.38(23), 1468–1469 (2002).
[CrossRef]

Yuan, Z. L.

J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, M. Fujiwara, M. Sasaki, and A. J. Shields, “Stability of high bit rate quantum key distribution on installed fiber,” Opt. Express20(15), 16339–16347 (2012).
[CrossRef]

Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Response to “Comment on “Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography”” [Appl. Phys. Lett 99 196101 (2011)],” Appl. Phys. Lett.99(19), 196102 (2011).
[CrossRef]

Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography,” Appl. Phys. Lett.98(23), 231104 (2011).
[CrossRef]

Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Avoiding the blinding attack in QKD,” Nat. Photonics4(12), 800–801 (2010).
[CrossRef]

Zappa, F.

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt.51, 1267–1288 (2004).

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, “Avalanche photodiodes and quenching circuits for single-photon detection,” Appl. Opt.35(12), 1956–1976 (1996).
[CrossRef] [PubMed]

Zbinden, H.

J. Zhang, R. Thew, J. D. Gautier, N. Gisin, and H. Zbinden, “Comprehensive characterization of InGaAs-InP avalanche photodiodes at 1550 nm with an active quenching ASIC,” IEEE J. Quantum Electron.45(7), 792–799 (2009).
[CrossRef]

G. B. Xavier, N. Walenta, G. Vilela de Faria, G. P. Temporão, N. Gisin, H. Zbinden, and J. P. von der Weid, “Experimental polarization encoded quantum key distribution over optical fibres with real-time continuous birefringence compensation,” New J. Phys.11(4), 045015 (2009).
[CrossRef]

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A73(2), 022320 (2006).
[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74(1), 145–195 (2002).
[CrossRef]

S. Felix, N. Gisin, A. Stefanov, and H. Zbinden, “Faint laser quantum key distribution: eavesdropping exploiting multiphoton pulses,” J. Mod. Opt.48, 2009–2021 (2001).

Zhang, J.

J. Zhang, R. Thew, J. D. Gautier, N. Gisin, and H. Zbinden, “Comprehensive characterization of InGaAs-InP avalanche photodiodes at 1550 nm with an active quenching ASIC,” IEEE J. Quantum Electron.45(7), 792–799 (2009).
[CrossRef]

Zhao, Y.

Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A78(4), 042333 (2008).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography,” Appl. Phys. Lett.98(23), 231104 (2011).
[CrossRef]

L. Lydersen, V. Makarov, and J. Skaar, “Comment on “Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography” [App. Phys. Lett. 98, 231104 (2011)],” Appl. Phys. Lett.99(19), 196101 (2011).
[CrossRef]

Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Response to “Comment on “Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography”” [Appl. Phys. Lett 99 196101 (2011)],” Appl. Phys. Lett.99(19), 196102 (2011).
[CrossRef]

Electron. Lett. (1)

A. Yoshizawa, R. Kaji, and H. Tsuchida, “Quantum efficiency evaluation method for gated-mode single-photon detector,” Electron. Lett.38(23), 1468–1469 (2002).
[CrossRef]

IEEE J. Quantum Electron. (2)

J. Zhang, R. Thew, J. D. Gautier, N. Gisin, and H. Zbinden, “Comprehensive characterization of InGaAs-InP avalanche photodiodes at 1550 nm with an active quenching ASIC,” IEEE J. Quantum Electron.45(7), 792–799 (2009).
[CrossRef]

T. F. da Silva, G. B. Xavier, and J. P. von der Weid, “Real-time characterization of gated-mode single-photon detectors,” IEEE J. Quantum Electron.47(9), 1251–1256 (2011).
[CrossRef]

J. Mod. Opt. (4)

V. Makarov and D. R. Hjelme, “Faked states attack on quantum cryptosystems,” J. Mod. Opt.52, 691–705 (2005).
[CrossRef]

S. Felix, N. Gisin, A. Stefanov, and H. Zbinden, “Faint laser quantum key distribution: eavesdropping exploiting multiphoton pulses,” J. Mod. Opt.48, 2009–2021 (2001).

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt.51, 1267–1288 (2004).

J. G. Rarity, P. C. M. Owens, and P. R. Tapster, “Quantum random-number generation and key sharing,” J. Mod. Opt.41(12), 2435–2444 (1994).
[CrossRef]

Nat. Commun. (1)

I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and V. Makarov, “Full-field implementation of a perfect eavesdropper on a quantum cryptography system,” Nat. Commun.2, 349 (2011).
[CrossRef] [PubMed]

Nat. Photonics (3)

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics4(10), 686–689 (2010).
[CrossRef]

Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Avoiding the blinding attack in QKD,” Nat. Photonics4(12), 800–801 (2010).
[CrossRef]

R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics3(12), 696–705 (2009).
[CrossRef]

New J. Phys. (5)

H. Weier, H. Krauss, M. Rau, M. Fürst, S. Nauerth, and H. Weinfurter, “Quantum eavesdropping without interception: an attack exploiting the dead time of single-photon detectors,” New J. Phys.13(7), 073024 (2011).
[CrossRef]

F. Xu, B. Qi, and H.-K. Lo, “Experimental demonstration of phase-remapping attack in a practical quantum key distribution system,” New J. Phys.12(11), 113026 (2010).
[CrossRef]

V. Makarov, “Controlling passively quenched single photon detectors by bright light,” New J. Phys.11(6), 065003 (2009).
[CrossRef]

C. Wiechers, L. Lydersen, C. Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “After-gate attack on a quantum cryptosystem,” New J. Phys.13(1), 013043 (2011).
[CrossRef]

G. B. Xavier, N. Walenta, G. Vilela de Faria, G. P. Temporão, N. Gisin, H. Zbinden, and J. P. von der Weid, “Experimental polarization encoded quantum key distribution over optical fibres with real-time continuous birefringence compensation,” New J. Phys.11(4), 045015 (2009).
[CrossRef]

Opt. Express (3)

Phys. Rev. A (7)

V. Makarov, A. Anisimov, and A. Skaar, “Effects of detector efficiency mismatch on security of quantum cryptosystems,” Phys. Rev. A74(2), 022313 (2006).
[CrossRef]

Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems,” Phys. Rev. A78(4), 042333 (2008).
[CrossRef]

S.-H. Sun, M.-S. Jiang, and L.-M. Liang, “Passive Faraday-mirror attack in a practical two-way quantum-key-distribution system,” Phys. Rev. A83(6), 062331 (2011).
[CrossRef]

N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A73(2), 022320 (2006).
[CrossRef]

C.-H. F. Fung, B. Qi, K. Tamaki, and H.-K. Lo, “Phase-remapping attack in practical quantum-key-distribution systems,” Phys. Rev. A75(3), 032314 (2007).
[CrossRef]

L. Lydersen, V. Makarov, and J. Skaar, “Secure gated detection scheme for quantum cryptography,” Phys. Rev. A83(3), 032306 (2011).
[CrossRef]

L. Lydersen, N. Jain, C. Wittmann, O. Maroy, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, “Superlinear threshold detectors in quantum cryptography,” Phys. Rev. A84(3), 032320 (2011).
[CrossRef]

Phys. Rev. Lett. (3)

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett.108(13), 130503 (2012).
[CrossRef] [PubMed]

I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, V. Scarani, V. Makarov, and C. Kurtsiefer, “Experimentally Faking the Violation of Bell’s Inequalities,” Phys. Rev. Lett.107(17), 170404 (2011).
[CrossRef] [PubMed]

N. Jain, C. Wittmann, L. Lydersen, C. Wiechers, D. Elser, C. Marquardt, V. Makarov, and G. Leuchs, “Device calibration impacts security of quantum key distribution,” Phys. Rev. Lett.107(11), 110501 (2011).
[CrossRef] [PubMed]

Quantum Inf. Comput. (2)

B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, “Time-shift attack in practical quantum cryptosystem,” Quantum Inf. Comput.7, 073–082 (2007).

D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quantum Inf. Comput.4, 325–360 (2004).

Rev. Mod. Phys. (2)

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys.81(3), 1301–1350 (2009).
[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74(1), 145–195 (2002).
[CrossRef]

Rev. Sci. Instrum. (1)

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: single-photon sources and detectors,” Rev. Sci. Instrum.82(7), 071101 (2011).
[CrossRef] [PubMed]

Science (1)

H.-K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science283(5410), 2050–2056 (1999).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Real-time SPAD monitoring system. The decaying exponentials qualitatively illustrate the afterpulse probability in subsequent gate windows.

Fig. 2
Fig. 2

Experimental setup for the after-gate attack. Red lines represent optical fibre connections. The trigger source is placed under Alice’s setup indicating that she is providing the synchronization signals for all the parties involved. A/D: Analog-to-digital converter; D: Single-photon detector; LD: Laser diode; PBS: Polarising beam-splitter; PC: Polarisation controller; PM: Polarisation modulator; PRNG: Pseudo-random number generator; VOA: Variable optical attenuator; Δt: delay generator.

Fig. 3
Fig. 3

Comparative histograms with SPAD behaviour under different fractions of eavesdropped photons. Inset highlights the afterpulse contribution, which occurs largely at short time intervals, as a function of the fraction of eavesdropped photons. No counts are generated in the first bins due to the imposed deadtime of 10 μs. In all cases the eavesdropper intervention can be detected with our monitoring system.

Fig. 4
Fig. 4

Gate scan with two different average numbers of photons per pulse for the faint after-gate attack (the end of the gate appears on to left). Inset shows the histograms of times between detections at standard operation and under the attack, with the observable difference in the slopes of the curve due to the fact that when the detector is under attach the detection efficiency is lowered because the attack is performed at the end of the gate.

Fig. 5
Fig. 5

Histogram of times between consecutive detections for a Silicon SPAD operating in free-running mode for four different single-photon counting rates, as illuminated by an attenuated CW laser source. The inset highlights the detector deadtime.

Fig. 6
Fig. 6

Setup for the proof-of-principle monitoring against the time-shift attack. Here, the synchronization trigger is delayed instead of the optical pulses.

Fig. 7
Fig. 7

Temporal scan of the detection gate with the delayed optical pulse. The operational point is identified by the traced line.

Fig. 8
Fig. 8

Histogram of times between consecutive events when under the time-shift attack (blue lines) and under normal operation. Each time bin is defined by the A/D resolution. Inset zooms in the second bin.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P( m )={ 1 P np ( 1 P dark )[ 1 P a ( m ) ] }× [ P np ( 1 P dark ) ] m1 ×[ 1α( m )+β( m ) ],
P after = P 0 1 exp( T/τ )1 .

Metrics