Abstract

We use optical interferometry to capture coherent surface acoustic waves for elastographic imaging. An inverse method is employed to convert multi-frequency data into an elastic depth profile. Using this method, we image elastic properties over a 55 mm range with <5 mm resolution. For relevance to breast cancer detection, we employ a tissue phantom with a tumor-like inclusion. Holographic elastography is also shown to be well-behaved in ex vivo tissue, revealing the subsurface position of a bone. Because digital holography can assess waves over a wide surface area, this constitutes a flexible new platform for large volume and non-invasive elastography.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Eskin and J. Ralston, “On the inverse boundary value problem for linear isotropic elasticity,” Inverse Probl. 18(3), 907–921 (2002).
    [CrossRef]
  2. E. R. Engdahl, R. van der Hilst, and R. Buland, “Global teleseismic earthquake relocation with improved travel times and procedures for depth determination,” Bull. Seismol. Soc. Am. 88, 722–743 (1998).
  3. B. A. Auld, “General electromechanical reciprocity relations applied to the calculation of elastic wave scattering coefficients,” Wave Motion 1(1), 3–10 (1979).
    [CrossRef]
  4. C. Kim, A. Facchetti, and T. J. Marks, “Polymer gate dielectric surface viscoelasticity modulates pentacene transistor performance,” Science 318(5847), 76–80 (2007).
    [CrossRef] [PubMed]
  5. C. P. Buckley, C. Prisacariu, and C. Martin, “Elasticity and inelasticity of thermoplastic polyurethane elastomers: Sensitivity to chemical and physical structure,” Polymer (Guildf.) 51(14), 3213–3224 (2010).
    [CrossRef]
  6. A. Samani, J. Zubovits, and D. Plewes, “Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples,” Phys. Med. Biol. 52(6), 1565–1576 (2007).
    [CrossRef] [PubMed]
  7. L. Castéra, J. Vergniol, J. Foucher, B. Le Bail, E. Chanteloup, M. Haaser, M. Darriet, P. Couzigou, and V. De Lédinghen, “Prospective comparison of transient elastography, fibrotest, APRI, and liver biopsy for the assessment of fibrosis in chronic hepatitis C,” Gastroenterology 128(2), 343–350 (2005).
    [CrossRef] [PubMed]
  8. L. Gao, K. J. Parker, R. M. Lerner, and S. F. Levinson, “Imaging of the elastic properties of tissue--a review,” Ultrasound Med. Biol. 22(8), 959–977 (1996).
    [CrossRef] [PubMed]
  9. A. Y. Iyo, “Acoustic radiation force impulse imaging - a literature review,” J. Diagn. Med. Sonog. 25(4), 204–211 (2009).
    [CrossRef]
  10. R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
    [CrossRef] [PubMed]
  11. K. Daoudi, A.-C. Boccara, and E. Bossy, “Detection and discrimination of optical absorption and shear stiffness at depth in tissue-mimicking phantoms by transient optoelastography,” Appl. Phys. Lett. 94(15), 154103 (2009).
    [CrossRef]
  12. B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography,” Opt. Express 19(7), 6623–6634 (2011).
    [CrossRef] [PubMed]
  13. S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express 14(24), 11585–11597 (2006).
    [CrossRef] [PubMed]
  14. F.-C. Lin, M. P. Moschetti, and M. H. Ritzwoller, “Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps,” Geophys. J. Int. 173(1), 281–298 (2008).
    [CrossRef]
  15. C. Glorieux, W. Gao, S. E. Kruger, K. Van de Rostyne, W. Lauriks, and J. Thoen, “Surface acoustic wave depth profiling of elastically inhomogeneous materials,” J. Appl. Phys. 88(7), 4394–4400 (2000).
    [CrossRef]
  16. T. J. Royston, H. A. Mansy, and R. H. Sandler, “Excitation and propagation of surface waves on a viscoelastic half-space with application to medical diagnosis,” J. Acoust. Soc. Am. 106(6), 3678–3686 (1999).
    [CrossRef] [PubMed]
  17. X. Zhang and J. F. Greenleaf, “Estimation of tissue’s elasticity with surface wave speed,” J. Acoust. Soc. Am. 122(5), 2522–2525 (2007).
    [CrossRef] [PubMed]
  18. S. Schedin, G. Pedrini, and H. J. Tiziani, “Pulsed digital holography for deformation measurements on biological tissues,” Appl. Opt. 39(16), 2853–2857 (2000).
    [CrossRef] [PubMed]
  19. M. S. Hernández-Montes, C. Pérez-López, and F. M. Santoyo, “Finding the position of tumor inhomogeneities in a gel-like model of a human breast using 3-D pulsed digital holography,” J. Biomed. Opt. 12(2), 024027 (2007).
    [CrossRef] [PubMed]
  20. S. J. Kirkpatrick, R. K. Wang, D. D. Duncan, M. Kulesz-Martin, and K. Lee, “Imaging the mechanical stiffness of skin lesions by in vivo acousto-optical elastography,” Opt. Express 14(21), 9770–9779 (2006).
    [CrossRef] [PubMed]
  21. S. Li, K. D. Mohan, W. W. Sanders, and A. L. Oldenburg, “Toward soft-tissue elastography using digital holography to monitor surface acoustic waves,” J. Biomed. Opt. 16(11), 116005 (2011).
    [CrossRef] [PubMed]
  22. M. Leclercq, M. Karray, V. Isnard, F. Gautier, and P. Picart, “Quantitative evaluation of skin vibration induced by a bone-conduction device using holographic recording in the quasi-time-averaging regime,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2012), paper DW1C.2.
  23. I. A. Viktorov, Rayleigh and Lamb Waves: Physical Theory and Applications (Plenum Press, 1967) p. 3.
  24. N. A. Haskell, “The dispersion of surface waves on multilayered media,” Bull. Seismol. Soc. Am. 43, 17–34 (1953).
  25. T. L. Szabo, “Obtaining subsurface profiles from surface−acoustic−wave velocity dispersion,” J. Appl. Phys. 46(4), 1448–1454 (1975).
    [CrossRef]
  26. B. R. Tittmann, L. A. Ahlberg, J. M. Richardson, and R. B. Thompson, “Determination of physical property gradients from measured surface wave dispersion,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 34(5), 500–507 (1987).
    [CrossRef] [PubMed]
  27. F. I. Karahanoglu, I. Bayram, and D. Van De Ville, “A signal processing approach to generalized 1-D total variation” IEEE T. Signal Process. 59, 5265–5274 (2011).
  28. J. Dahl, P. Hansen, S. Jensen, and T. Jensen, “Algorithms and software for total variation image reconstruction via first-order methods,” Numer. Algorithms 53(1), 67–92 (2010).
    [CrossRef]
  29. P. C. Hansen and D. P. O'Leary, “The use of the L-curve in the regularization of discrete ill-posed problems,” SIAM J. Sci. Comput. 14(6), 1487–1503 (1993).
    [CrossRef]
  30. A. L. Oldenburg, F. J.-J. Toublan, K. S. Suslick, A. Wei, and S. A. Boppart, “Magnetomotive contrast for in vivo optical coherence tomography,” Opt. Express 13(17), 6597–6614 (2005).
    [CrossRef] [PubMed]
  31. K. Bliznakova, Z. Bliznakov, V. Bravou, Z. Kolitsi, and N. Pallikarakis, “A three-dimensional breast software phantom for mammography simulation,” Phys. Med. Biol. 48(22), 3699–3719 (2003).
    [CrossRef] [PubMed]

2011 (3)

S. Li, K. D. Mohan, W. W. Sanders, and A. L. Oldenburg, “Toward soft-tissue elastography using digital holography to monitor surface acoustic waves,” J. Biomed. Opt. 16(11), 116005 (2011).
[CrossRef] [PubMed]

F. I. Karahanoglu, I. Bayram, and D. Van De Ville, “A signal processing approach to generalized 1-D total variation” IEEE T. Signal Process. 59, 5265–5274 (2011).

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography,” Opt. Express 19(7), 6623–6634 (2011).
[CrossRef] [PubMed]

2010 (2)

J. Dahl, P. Hansen, S. Jensen, and T. Jensen, “Algorithms and software for total variation image reconstruction via first-order methods,” Numer. Algorithms 53(1), 67–92 (2010).
[CrossRef]

C. P. Buckley, C. Prisacariu, and C. Martin, “Elasticity and inelasticity of thermoplastic polyurethane elastomers: Sensitivity to chemical and physical structure,” Polymer (Guildf.) 51(14), 3213–3224 (2010).
[CrossRef]

2009 (2)

A. Y. Iyo, “Acoustic radiation force impulse imaging - a literature review,” J. Diagn. Med. Sonog. 25(4), 204–211 (2009).
[CrossRef]

K. Daoudi, A.-C. Boccara, and E. Bossy, “Detection and discrimination of optical absorption and shear stiffness at depth in tissue-mimicking phantoms by transient optoelastography,” Appl. Phys. Lett. 94(15), 154103 (2009).
[CrossRef]

2008 (1)

F.-C. Lin, M. P. Moschetti, and M. H. Ritzwoller, “Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps,” Geophys. J. Int. 173(1), 281–298 (2008).
[CrossRef]

2007 (4)

X. Zhang and J. F. Greenleaf, “Estimation of tissue’s elasticity with surface wave speed,” J. Acoust. Soc. Am. 122(5), 2522–2525 (2007).
[CrossRef] [PubMed]

M. S. Hernández-Montes, C. Pérez-López, and F. M. Santoyo, “Finding the position of tumor inhomogeneities in a gel-like model of a human breast using 3-D pulsed digital holography,” J. Biomed. Opt. 12(2), 024027 (2007).
[CrossRef] [PubMed]

C. Kim, A. Facchetti, and T. J. Marks, “Polymer gate dielectric surface viscoelasticity modulates pentacene transistor performance,” Science 318(5847), 76–80 (2007).
[CrossRef] [PubMed]

A. Samani, J. Zubovits, and D. Plewes, “Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples,” Phys. Med. Biol. 52(6), 1565–1576 (2007).
[CrossRef] [PubMed]

2006 (2)

2005 (2)

A. L. Oldenburg, F. J.-J. Toublan, K. S. Suslick, A. Wei, and S. A. Boppart, “Magnetomotive contrast for in vivo optical coherence tomography,” Opt. Express 13(17), 6597–6614 (2005).
[CrossRef] [PubMed]

L. Castéra, J. Vergniol, J. Foucher, B. Le Bail, E. Chanteloup, M. Haaser, M. Darriet, P. Couzigou, and V. De Lédinghen, “Prospective comparison of transient elastography, fibrotest, APRI, and liver biopsy for the assessment of fibrosis in chronic hepatitis C,” Gastroenterology 128(2), 343–350 (2005).
[CrossRef] [PubMed]

2003 (1)

K. Bliznakova, Z. Bliznakov, V. Bravou, Z. Kolitsi, and N. Pallikarakis, “A three-dimensional breast software phantom for mammography simulation,” Phys. Med. Biol. 48(22), 3699–3719 (2003).
[CrossRef] [PubMed]

2002 (1)

G. Eskin and J. Ralston, “On the inverse boundary value problem for linear isotropic elasticity,” Inverse Probl. 18(3), 907–921 (2002).
[CrossRef]

2000 (2)

S. Schedin, G. Pedrini, and H. J. Tiziani, “Pulsed digital holography for deformation measurements on biological tissues,” Appl. Opt. 39(16), 2853–2857 (2000).
[CrossRef] [PubMed]

C. Glorieux, W. Gao, S. E. Kruger, K. Van de Rostyne, W. Lauriks, and J. Thoen, “Surface acoustic wave depth profiling of elastically inhomogeneous materials,” J. Appl. Phys. 88(7), 4394–4400 (2000).
[CrossRef]

1999 (1)

T. J. Royston, H. A. Mansy, and R. H. Sandler, “Excitation and propagation of surface waves on a viscoelastic half-space with application to medical diagnosis,” J. Acoust. Soc. Am. 106(6), 3678–3686 (1999).
[CrossRef] [PubMed]

1998 (1)

E. R. Engdahl, R. van der Hilst, and R. Buland, “Global teleseismic earthquake relocation with improved travel times and procedures for depth determination,” Bull. Seismol. Soc. Am. 88, 722–743 (1998).

1996 (1)

L. Gao, K. J. Parker, R. M. Lerner, and S. F. Levinson, “Imaging of the elastic properties of tissue--a review,” Ultrasound Med. Biol. 22(8), 959–977 (1996).
[CrossRef] [PubMed]

1995 (1)

R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
[CrossRef] [PubMed]

1993 (1)

P. C. Hansen and D. P. O'Leary, “The use of the L-curve in the regularization of discrete ill-posed problems,” SIAM J. Sci. Comput. 14(6), 1487–1503 (1993).
[CrossRef]

1987 (1)

B. R. Tittmann, L. A. Ahlberg, J. M. Richardson, and R. B. Thompson, “Determination of physical property gradients from measured surface wave dispersion,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 34(5), 500–507 (1987).
[CrossRef] [PubMed]

1979 (1)

B. A. Auld, “General electromechanical reciprocity relations applied to the calculation of elastic wave scattering coefficients,” Wave Motion 1(1), 3–10 (1979).
[CrossRef]

1975 (1)

T. L. Szabo, “Obtaining subsurface profiles from surface−acoustic−wave velocity dispersion,” J. Appl. Phys. 46(4), 1448–1454 (1975).
[CrossRef]

1953 (1)

N. A. Haskell, “The dispersion of surface waves on multilayered media,” Bull. Seismol. Soc. Am. 43, 17–34 (1953).

Adie, S. G.

Ahlberg, L. A.

B. R. Tittmann, L. A. Ahlberg, J. M. Richardson, and R. B. Thompson, “Determination of physical property gradients from measured surface wave dispersion,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 34(5), 500–507 (1987).
[CrossRef] [PubMed]

Auld, B. A.

B. A. Auld, “General electromechanical reciprocity relations applied to the calculation of elastic wave scattering coefficients,” Wave Motion 1(1), 3–10 (1979).
[CrossRef]

Bayram, I.

F. I. Karahanoglu, I. Bayram, and D. Van De Ville, “A signal processing approach to generalized 1-D total variation” IEEE T. Signal Process. 59, 5265–5274 (2011).

Bliznakov, Z.

K. Bliznakova, Z. Bliznakov, V. Bravou, Z. Kolitsi, and N. Pallikarakis, “A three-dimensional breast software phantom for mammography simulation,” Phys. Med. Biol. 48(22), 3699–3719 (2003).
[CrossRef] [PubMed]

Bliznakova, K.

K. Bliznakova, Z. Bliznakov, V. Bravou, Z. Kolitsi, and N. Pallikarakis, “A three-dimensional breast software phantom for mammography simulation,” Phys. Med. Biol. 48(22), 3699–3719 (2003).
[CrossRef] [PubMed]

Boccara, A.-C.

K. Daoudi, A.-C. Boccara, and E. Bossy, “Detection and discrimination of optical absorption and shear stiffness at depth in tissue-mimicking phantoms by transient optoelastography,” Appl. Phys. Lett. 94(15), 154103 (2009).
[CrossRef]

Boppart, S. A.

Bossy, E.

K. Daoudi, A.-C. Boccara, and E. Bossy, “Detection and discrimination of optical absorption and shear stiffness at depth in tissue-mimicking phantoms by transient optoelastography,” Appl. Phys. Lett. 94(15), 154103 (2009).
[CrossRef]

Bravou, V.

K. Bliznakova, Z. Bliznakov, V. Bravou, Z. Kolitsi, and N. Pallikarakis, “A three-dimensional breast software phantom for mammography simulation,” Phys. Med. Biol. 48(22), 3699–3719 (2003).
[CrossRef] [PubMed]

Buckley, C. P.

C. P. Buckley, C. Prisacariu, and C. Martin, “Elasticity and inelasticity of thermoplastic polyurethane elastomers: Sensitivity to chemical and physical structure,” Polymer (Guildf.) 51(14), 3213–3224 (2010).
[CrossRef]

Buland, R.

E. R. Engdahl, R. van der Hilst, and R. Buland, “Global teleseismic earthquake relocation with improved travel times and procedures for depth determination,” Bull. Seismol. Soc. Am. 88, 722–743 (1998).

Castéra, L.

L. Castéra, J. Vergniol, J. Foucher, B. Le Bail, E. Chanteloup, M. Haaser, M. Darriet, P. Couzigou, and V. De Lédinghen, “Prospective comparison of transient elastography, fibrotest, APRI, and liver biopsy for the assessment of fibrosis in chronic hepatitis C,” Gastroenterology 128(2), 343–350 (2005).
[CrossRef] [PubMed]

Chanteloup, E.

L. Castéra, J. Vergniol, J. Foucher, B. Le Bail, E. Chanteloup, M. Haaser, M. Darriet, P. Couzigou, and V. De Lédinghen, “Prospective comparison of transient elastography, fibrotest, APRI, and liver biopsy for the assessment of fibrosis in chronic hepatitis C,” Gastroenterology 128(2), 343–350 (2005).
[CrossRef] [PubMed]

Couzigou, P.

L. Castéra, J. Vergniol, J. Foucher, B. Le Bail, E. Chanteloup, M. Haaser, M. Darriet, P. Couzigou, and V. De Lédinghen, “Prospective comparison of transient elastography, fibrotest, APRI, and liver biopsy for the assessment of fibrosis in chronic hepatitis C,” Gastroenterology 128(2), 343–350 (2005).
[CrossRef] [PubMed]

Dahl, J.

J. Dahl, P. Hansen, S. Jensen, and T. Jensen, “Algorithms and software for total variation image reconstruction via first-order methods,” Numer. Algorithms 53(1), 67–92 (2010).
[CrossRef]

Daoudi, K.

K. Daoudi, A.-C. Boccara, and E. Bossy, “Detection and discrimination of optical absorption and shear stiffness at depth in tissue-mimicking phantoms by transient optoelastography,” Appl. Phys. Lett. 94(15), 154103 (2009).
[CrossRef]

Darriet, M.

L. Castéra, J. Vergniol, J. Foucher, B. Le Bail, E. Chanteloup, M. Haaser, M. Darriet, P. Couzigou, and V. De Lédinghen, “Prospective comparison of transient elastography, fibrotest, APRI, and liver biopsy for the assessment of fibrosis in chronic hepatitis C,” Gastroenterology 128(2), 343–350 (2005).
[CrossRef] [PubMed]

De Lédinghen, V.

L. Castéra, J. Vergniol, J. Foucher, B. Le Bail, E. Chanteloup, M. Haaser, M. Darriet, P. Couzigou, and V. De Lédinghen, “Prospective comparison of transient elastography, fibrotest, APRI, and liver biopsy for the assessment of fibrosis in chronic hepatitis C,” Gastroenterology 128(2), 343–350 (2005).
[CrossRef] [PubMed]

Duncan, D. D.

Ehman, R. L.

R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
[CrossRef] [PubMed]

Engdahl, E. R.

E. R. Engdahl, R. van der Hilst, and R. Buland, “Global teleseismic earthquake relocation with improved travel times and procedures for depth determination,” Bull. Seismol. Soc. Am. 88, 722–743 (1998).

Eskin, G.

G. Eskin and J. Ralston, “On the inverse boundary value problem for linear isotropic elasticity,” Inverse Probl. 18(3), 907–921 (2002).
[CrossRef]

Facchetti, A.

C. Kim, A. Facchetti, and T. J. Marks, “Polymer gate dielectric surface viscoelasticity modulates pentacene transistor performance,” Science 318(5847), 76–80 (2007).
[CrossRef] [PubMed]

Foucher, J.

L. Castéra, J. Vergniol, J. Foucher, B. Le Bail, E. Chanteloup, M. Haaser, M. Darriet, P. Couzigou, and V. De Lédinghen, “Prospective comparison of transient elastography, fibrotest, APRI, and liver biopsy for the assessment of fibrosis in chronic hepatitis C,” Gastroenterology 128(2), 343–350 (2005).
[CrossRef] [PubMed]

Gao, L.

L. Gao, K. J. Parker, R. M. Lerner, and S. F. Levinson, “Imaging of the elastic properties of tissue--a review,” Ultrasound Med. Biol. 22(8), 959–977 (1996).
[CrossRef] [PubMed]

Gao, W.

C. Glorieux, W. Gao, S. E. Kruger, K. Van de Rostyne, W. Lauriks, and J. Thoen, “Surface acoustic wave depth profiling of elastically inhomogeneous materials,” J. Appl. Phys. 88(7), 4394–4400 (2000).
[CrossRef]

Gerstmann, D. K.

Glorieux, C.

C. Glorieux, W. Gao, S. E. Kruger, K. Van de Rostyne, W. Lauriks, and J. Thoen, “Surface acoustic wave depth profiling of elastically inhomogeneous materials,” J. Appl. Phys. 88(7), 4394–4400 (2000).
[CrossRef]

Greenleaf, J. F.

X. Zhang and J. F. Greenleaf, “Estimation of tissue’s elasticity with surface wave speed,” J. Acoust. Soc. Am. 122(5), 2522–2525 (2007).
[CrossRef] [PubMed]

R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
[CrossRef] [PubMed]

Haaser, M.

L. Castéra, J. Vergniol, J. Foucher, B. Le Bail, E. Chanteloup, M. Haaser, M. Darriet, P. Couzigou, and V. De Lédinghen, “Prospective comparison of transient elastography, fibrotest, APRI, and liver biopsy for the assessment of fibrosis in chronic hepatitis C,” Gastroenterology 128(2), 343–350 (2005).
[CrossRef] [PubMed]

Hansen, P.

J. Dahl, P. Hansen, S. Jensen, and T. Jensen, “Algorithms and software for total variation image reconstruction via first-order methods,” Numer. Algorithms 53(1), 67–92 (2010).
[CrossRef]

Hansen, P. C.

P. C. Hansen and D. P. O'Leary, “The use of the L-curve in the regularization of discrete ill-posed problems,” SIAM J. Sci. Comput. 14(6), 1487–1503 (1993).
[CrossRef]

Haskell, N. A.

N. A. Haskell, “The dispersion of surface waves on multilayered media,” Bull. Seismol. Soc. Am. 43, 17–34 (1953).

Hernández-Montes, M. S.

M. S. Hernández-Montes, C. Pérez-López, and F. M. Santoyo, “Finding the position of tumor inhomogeneities in a gel-like model of a human breast using 3-D pulsed digital holography,” J. Biomed. Opt. 12(2), 024027 (2007).
[CrossRef] [PubMed]

Iyo, A. Y.

A. Y. Iyo, “Acoustic radiation force impulse imaging - a literature review,” J. Diagn. Med. Sonog. 25(4), 204–211 (2009).
[CrossRef]

Jensen, S.

J. Dahl, P. Hansen, S. Jensen, and T. Jensen, “Algorithms and software for total variation image reconstruction via first-order methods,” Numer. Algorithms 53(1), 67–92 (2010).
[CrossRef]

Jensen, T.

J. Dahl, P. Hansen, S. Jensen, and T. Jensen, “Algorithms and software for total variation image reconstruction via first-order methods,” Numer. Algorithms 53(1), 67–92 (2010).
[CrossRef]

Karahanoglu, F. I.

F. I. Karahanoglu, I. Bayram, and D. Van De Ville, “A signal processing approach to generalized 1-D total variation” IEEE T. Signal Process. 59, 5265–5274 (2011).

Kennedy, B. F.

Kim, C.

C. Kim, A. Facchetti, and T. J. Marks, “Polymer gate dielectric surface viscoelasticity modulates pentacene transistor performance,” Science 318(5847), 76–80 (2007).
[CrossRef] [PubMed]

Kirkpatrick, S. J.

Kolitsi, Z.

K. Bliznakova, Z. Bliznakov, V. Bravou, Z. Kolitsi, and N. Pallikarakis, “A three-dimensional breast software phantom for mammography simulation,” Phys. Med. Biol. 48(22), 3699–3719 (2003).
[CrossRef] [PubMed]

Kruger, S. E.

C. Glorieux, W. Gao, S. E. Kruger, K. Van de Rostyne, W. Lauriks, and J. Thoen, “Surface acoustic wave depth profiling of elastically inhomogeneous materials,” J. Appl. Phys. 88(7), 4394–4400 (2000).
[CrossRef]

Kulesz-Martin, M.

Lauriks, W.

C. Glorieux, W. Gao, S. E. Kruger, K. Van de Rostyne, W. Lauriks, and J. Thoen, “Surface acoustic wave depth profiling of elastically inhomogeneous materials,” J. Appl. Phys. 88(7), 4394–4400 (2000).
[CrossRef]

Le Bail, B.

L. Castéra, J. Vergniol, J. Foucher, B. Le Bail, E. Chanteloup, M. Haaser, M. Darriet, P. Couzigou, and V. De Lédinghen, “Prospective comparison of transient elastography, fibrotest, APRI, and liver biopsy for the assessment of fibrosis in chronic hepatitis C,” Gastroenterology 128(2), 343–350 (2005).
[CrossRef] [PubMed]

Lee, K.

Lerner, R. M.

L. Gao, K. J. Parker, R. M. Lerner, and S. F. Levinson, “Imaging of the elastic properties of tissue--a review,” Ultrasound Med. Biol. 22(8), 959–977 (1996).
[CrossRef] [PubMed]

Levinson, S. F.

L. Gao, K. J. Parker, R. M. Lerner, and S. F. Levinson, “Imaging of the elastic properties of tissue--a review,” Ultrasound Med. Biol. 22(8), 959–977 (1996).
[CrossRef] [PubMed]

Li, S.

S. Li, K. D. Mohan, W. W. Sanders, and A. L. Oldenburg, “Toward soft-tissue elastography using digital holography to monitor surface acoustic waves,” J. Biomed. Opt. 16(11), 116005 (2011).
[CrossRef] [PubMed]

Liang, X.

Lin, F.-C.

F.-C. Lin, M. P. Moschetti, and M. H. Ritzwoller, “Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps,” Geophys. J. Int. 173(1), 281–298 (2008).
[CrossRef]

Lomas, D. J.

R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
[CrossRef] [PubMed]

Manduca, A.

R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
[CrossRef] [PubMed]

Mansy, H. A.

T. J. Royston, H. A. Mansy, and R. H. Sandler, “Excitation and propagation of surface waves on a viscoelastic half-space with application to medical diagnosis,” J. Acoust. Soc. Am. 106(6), 3678–3686 (1999).
[CrossRef] [PubMed]

Marks, T. J.

C. Kim, A. Facchetti, and T. J. Marks, “Polymer gate dielectric surface viscoelasticity modulates pentacene transistor performance,” Science 318(5847), 76–80 (2007).
[CrossRef] [PubMed]

Martin, C.

C. P. Buckley, C. Prisacariu, and C. Martin, “Elasticity and inelasticity of thermoplastic polyurethane elastomers: Sensitivity to chemical and physical structure,” Polymer (Guildf.) 51(14), 3213–3224 (2010).
[CrossRef]

Mohan, K. D.

S. Li, K. D. Mohan, W. W. Sanders, and A. L. Oldenburg, “Toward soft-tissue elastography using digital holography to monitor surface acoustic waves,” J. Biomed. Opt. 16(11), 116005 (2011).
[CrossRef] [PubMed]

Moschetti, M. P.

F.-C. Lin, M. P. Moschetti, and M. H. Ritzwoller, “Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps,” Geophys. J. Int. 173(1), 281–298 (2008).
[CrossRef]

Muthupillai, R.

R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
[CrossRef] [PubMed]

Oldenburg, A. L.

S. Li, K. D. Mohan, W. W. Sanders, and A. L. Oldenburg, “Toward soft-tissue elastography using digital holography to monitor surface acoustic waves,” J. Biomed. Opt. 16(11), 116005 (2011).
[CrossRef] [PubMed]

A. L. Oldenburg, F. J.-J. Toublan, K. S. Suslick, A. Wei, and S. A. Boppart, “Magnetomotive contrast for in vivo optical coherence tomography,” Opt. Express 13(17), 6597–6614 (2005).
[CrossRef] [PubMed]

O'Leary, D. P.

P. C. Hansen and D. P. O'Leary, “The use of the L-curve in the regularization of discrete ill-posed problems,” SIAM J. Sci. Comput. 14(6), 1487–1503 (1993).
[CrossRef]

Pallikarakis, N.

K. Bliznakova, Z. Bliznakov, V. Bravou, Z. Kolitsi, and N. Pallikarakis, “A three-dimensional breast software phantom for mammography simulation,” Phys. Med. Biol. 48(22), 3699–3719 (2003).
[CrossRef] [PubMed]

Parker, K. J.

L. Gao, K. J. Parker, R. M. Lerner, and S. F. Levinson, “Imaging of the elastic properties of tissue--a review,” Ultrasound Med. Biol. 22(8), 959–977 (1996).
[CrossRef] [PubMed]

Pedrini, G.

Pérez-López, C.

M. S. Hernández-Montes, C. Pérez-López, and F. M. Santoyo, “Finding the position of tumor inhomogeneities in a gel-like model of a human breast using 3-D pulsed digital holography,” J. Biomed. Opt. 12(2), 024027 (2007).
[CrossRef] [PubMed]

Plewes, D.

A. Samani, J. Zubovits, and D. Plewes, “Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples,” Phys. Med. Biol. 52(6), 1565–1576 (2007).
[CrossRef] [PubMed]

Prisacariu, C.

C. P. Buckley, C. Prisacariu, and C. Martin, “Elasticity and inelasticity of thermoplastic polyurethane elastomers: Sensitivity to chemical and physical structure,” Polymer (Guildf.) 51(14), 3213–3224 (2010).
[CrossRef]

Quirk, B. C.

Ralston, J.

G. Eskin and J. Ralston, “On the inverse boundary value problem for linear isotropic elasticity,” Inverse Probl. 18(3), 907–921 (2002).
[CrossRef]

Richardson, J. M.

B. R. Tittmann, L. A. Ahlberg, J. M. Richardson, and R. B. Thompson, “Determination of physical property gradients from measured surface wave dispersion,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 34(5), 500–507 (1987).
[CrossRef] [PubMed]

Ritzwoller, M. H.

F.-C. Lin, M. P. Moschetti, and M. H. Ritzwoller, “Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps,” Geophys. J. Int. 173(1), 281–298 (2008).
[CrossRef]

Rossman, P. J.

R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
[CrossRef] [PubMed]

Royston, T. J.

T. J. Royston, H. A. Mansy, and R. H. Sandler, “Excitation and propagation of surface waves on a viscoelastic half-space with application to medical diagnosis,” J. Acoust. Soc. Am. 106(6), 3678–3686 (1999).
[CrossRef] [PubMed]

Samani, A.

A. Samani, J. Zubovits, and D. Plewes, “Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples,” Phys. Med. Biol. 52(6), 1565–1576 (2007).
[CrossRef] [PubMed]

Sampson, D. D.

Sanders, W. W.

S. Li, K. D. Mohan, W. W. Sanders, and A. L. Oldenburg, “Toward soft-tissue elastography using digital holography to monitor surface acoustic waves,” J. Biomed. Opt. 16(11), 116005 (2011).
[CrossRef] [PubMed]

Sandler, R. H.

T. J. Royston, H. A. Mansy, and R. H. Sandler, “Excitation and propagation of surface waves on a viscoelastic half-space with application to medical diagnosis,” J. Acoust. Soc. Am. 106(6), 3678–3686 (1999).
[CrossRef] [PubMed]

Santoyo, F. M.

M. S. Hernández-Montes, C. Pérez-López, and F. M. Santoyo, “Finding the position of tumor inhomogeneities in a gel-like model of a human breast using 3-D pulsed digital holography,” J. Biomed. Opt. 12(2), 024027 (2007).
[CrossRef] [PubMed]

Schedin, S.

Suslick, K. S.

Szabo, T. L.

T. L. Szabo, “Obtaining subsurface profiles from surface−acoustic−wave velocity dispersion,” J. Appl. Phys. 46(4), 1448–1454 (1975).
[CrossRef]

Thoen, J.

C. Glorieux, W. Gao, S. E. Kruger, K. Van de Rostyne, W. Lauriks, and J. Thoen, “Surface acoustic wave depth profiling of elastically inhomogeneous materials,” J. Appl. Phys. 88(7), 4394–4400 (2000).
[CrossRef]

Thompson, R. B.

B. R. Tittmann, L. A. Ahlberg, J. M. Richardson, and R. B. Thompson, “Determination of physical property gradients from measured surface wave dispersion,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 34(5), 500–507 (1987).
[CrossRef] [PubMed]

Tittmann, B. R.

B. R. Tittmann, L. A. Ahlberg, J. M. Richardson, and R. B. Thompson, “Determination of physical property gradients from measured surface wave dispersion,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 34(5), 500–507 (1987).
[CrossRef] [PubMed]

Tiziani, H. J.

Toublan, F. J.-J.

Van de Rostyne, K.

C. Glorieux, W. Gao, S. E. Kruger, K. Van de Rostyne, W. Lauriks, and J. Thoen, “Surface acoustic wave depth profiling of elastically inhomogeneous materials,” J. Appl. Phys. 88(7), 4394–4400 (2000).
[CrossRef]

Van De Ville, D.

F. I. Karahanoglu, I. Bayram, and D. Van De Ville, “A signal processing approach to generalized 1-D total variation” IEEE T. Signal Process. 59, 5265–5274 (2011).

van der Hilst, R.

E. R. Engdahl, R. van der Hilst, and R. Buland, “Global teleseismic earthquake relocation with improved travel times and procedures for depth determination,” Bull. Seismol. Soc. Am. 88, 722–743 (1998).

Vergniol, J.

L. Castéra, J. Vergniol, J. Foucher, B. Le Bail, E. Chanteloup, M. Haaser, M. Darriet, P. Couzigou, and V. De Lédinghen, “Prospective comparison of transient elastography, fibrotest, APRI, and liver biopsy for the assessment of fibrosis in chronic hepatitis C,” Gastroenterology 128(2), 343–350 (2005).
[CrossRef] [PubMed]

Wang, R. K.

Wei, A.

Zhang, X.

X. Zhang and J. F. Greenleaf, “Estimation of tissue’s elasticity with surface wave speed,” J. Acoust. Soc. Am. 122(5), 2522–2525 (2007).
[CrossRef] [PubMed]

Zubovits, J.

A. Samani, J. Zubovits, and D. Plewes, “Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples,” Phys. Med. Biol. 52(6), 1565–1576 (2007).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. Daoudi, A.-C. Boccara, and E. Bossy, “Detection and discrimination of optical absorption and shear stiffness at depth in tissue-mimicking phantoms by transient optoelastography,” Appl. Phys. Lett. 94(15), 154103 (2009).
[CrossRef]

Bull. Seismol. Soc. Am. (2)

N. A. Haskell, “The dispersion of surface waves on multilayered media,” Bull. Seismol. Soc. Am. 43, 17–34 (1953).

E. R. Engdahl, R. van der Hilst, and R. Buland, “Global teleseismic earthquake relocation with improved travel times and procedures for depth determination,” Bull. Seismol. Soc. Am. 88, 722–743 (1998).

Gastroenterology (1)

L. Castéra, J. Vergniol, J. Foucher, B. Le Bail, E. Chanteloup, M. Haaser, M. Darriet, P. Couzigou, and V. De Lédinghen, “Prospective comparison of transient elastography, fibrotest, APRI, and liver biopsy for the assessment of fibrosis in chronic hepatitis C,” Gastroenterology 128(2), 343–350 (2005).
[CrossRef] [PubMed]

Geophys. J. Int. (1)

F.-C. Lin, M. P. Moschetti, and M. H. Ritzwoller, “Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps,” Geophys. J. Int. 173(1), 281–298 (2008).
[CrossRef]

IEEE T. Signal Process. (1)

F. I. Karahanoglu, I. Bayram, and D. Van De Ville, “A signal processing approach to generalized 1-D total variation” IEEE T. Signal Process. 59, 5265–5274 (2011).

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

B. R. Tittmann, L. A. Ahlberg, J. M. Richardson, and R. B. Thompson, “Determination of physical property gradients from measured surface wave dispersion,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 34(5), 500–507 (1987).
[CrossRef] [PubMed]

Inverse Probl. (1)

G. Eskin and J. Ralston, “On the inverse boundary value problem for linear isotropic elasticity,” Inverse Probl. 18(3), 907–921 (2002).
[CrossRef]

J. Acoust. Soc. Am. (2)

T. J. Royston, H. A. Mansy, and R. H. Sandler, “Excitation and propagation of surface waves on a viscoelastic half-space with application to medical diagnosis,” J. Acoust. Soc. Am. 106(6), 3678–3686 (1999).
[CrossRef] [PubMed]

X. Zhang and J. F. Greenleaf, “Estimation of tissue’s elasticity with surface wave speed,” J. Acoust. Soc. Am. 122(5), 2522–2525 (2007).
[CrossRef] [PubMed]

J. Appl. Phys. (2)

C. Glorieux, W. Gao, S. E. Kruger, K. Van de Rostyne, W. Lauriks, and J. Thoen, “Surface acoustic wave depth profiling of elastically inhomogeneous materials,” J. Appl. Phys. 88(7), 4394–4400 (2000).
[CrossRef]

T. L. Szabo, “Obtaining subsurface profiles from surface−acoustic−wave velocity dispersion,” J. Appl. Phys. 46(4), 1448–1454 (1975).
[CrossRef]

J. Biomed. Opt. (2)

S. Li, K. D. Mohan, W. W. Sanders, and A. L. Oldenburg, “Toward soft-tissue elastography using digital holography to monitor surface acoustic waves,” J. Biomed. Opt. 16(11), 116005 (2011).
[CrossRef] [PubMed]

M. S. Hernández-Montes, C. Pérez-López, and F. M. Santoyo, “Finding the position of tumor inhomogeneities in a gel-like model of a human breast using 3-D pulsed digital holography,” J. Biomed. Opt. 12(2), 024027 (2007).
[CrossRef] [PubMed]

J. Diagn. Med. Sonog. (1)

A. Y. Iyo, “Acoustic radiation force impulse imaging - a literature review,” J. Diagn. Med. Sonog. 25(4), 204–211 (2009).
[CrossRef]

Numer. Algorithms (1)

J. Dahl, P. Hansen, S. Jensen, and T. Jensen, “Algorithms and software for total variation image reconstruction via first-order methods,” Numer. Algorithms 53(1), 67–92 (2010).
[CrossRef]

Opt. Express (4)

Phys. Med. Biol. (2)

K. Bliznakova, Z. Bliznakov, V. Bravou, Z. Kolitsi, and N. Pallikarakis, “A three-dimensional breast software phantom for mammography simulation,” Phys. Med. Biol. 48(22), 3699–3719 (2003).
[CrossRef] [PubMed]

A. Samani, J. Zubovits, and D. Plewes, “Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples,” Phys. Med. Biol. 52(6), 1565–1576 (2007).
[CrossRef] [PubMed]

Polymer (Guildf.) (1)

C. P. Buckley, C. Prisacariu, and C. Martin, “Elasticity and inelasticity of thermoplastic polyurethane elastomers: Sensitivity to chemical and physical structure,” Polymer (Guildf.) 51(14), 3213–3224 (2010).
[CrossRef]

Science (2)

C. Kim, A. Facchetti, and T. J. Marks, “Polymer gate dielectric surface viscoelasticity modulates pentacene transistor performance,” Science 318(5847), 76–80 (2007).
[CrossRef] [PubMed]

R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
[CrossRef] [PubMed]

SIAM J. Sci. Comput. (1)

P. C. Hansen and D. P. O'Leary, “The use of the L-curve in the regularization of discrete ill-posed problems,” SIAM J. Sci. Comput. 14(6), 1487–1503 (1993).
[CrossRef]

Ultrasound Med. Biol. (1)

L. Gao, K. J. Parker, R. M. Lerner, and S. F. Levinson, “Imaging of the elastic properties of tissue--a review,” Ultrasound Med. Biol. 22(8), 959–977 (1996).
[CrossRef] [PubMed]

Wave Motion (1)

B. A. Auld, “General electromechanical reciprocity relations applied to the calculation of elastic wave scattering coefficients,” Wave Motion 1(1), 3–10 (1979).
[CrossRef]

Other (2)

M. Leclercq, M. Karray, V. Isnard, F. Gautier, and P. Picart, “Quantitative evaluation of skin vibration induced by a bone-conduction device using holographic recording in the quasi-time-averaging regime,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (Optical Society of America, 2012), paper DW1C.2.

I. A. Viktorov, Rayleigh and Lamb Waves: Physical Theory and Applications (Plenum Press, 1967) p. 3.

Supplementary Material (11)

» Media 1: AVI (1923 KB)     
» Media 2: AVI (1795 KB)     
» Media 3: AVI (3220 KB)     
» Media 4: AVI (2812 KB)     
» Media 5: AVI (1802 KB)     
» Media 6: AVI (3220 KB)     
» Media 7: AVI (2812 KB)     
» Media 8: AVI (1802 KB)     
» Media 9: AVI (3220 KB)     
» Media 10: AVI (2812 KB)     
» Media 11: AVI (1802 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Cartoon diagram of depth-dependent out-of-plane (z) motion of Rayleigh waves as a function of wavelength (not to scale). Scanning the wavelength effectively scans the probing depth of the SAW. The amplitude of this motion is used as the sensitivity kernel in the proposed inverse method.

Fig. 2
Fig. 2

(a) Digital holography system for monitoring Rayleigh waves on tissue phantoms. f1 = 40mm, f2 = 100mm, f3 = 11mm, f4 = 150mm, f5 = 200mm. (b) Raw image (interferogram) obtained by the high speed camera (SAW frequency = 96Hz, camera framerate = 3kHz (Media 1). (c) The corresponding phase reconstruction (Media 2).

Fig. 3
Fig. 3

Dispersion curves obtained for samples with (a) stiff lower layer and (b) stiff upper layer. The corresponding inversions of the dispersion curve in (a) and (b) are shown in (c) and (d), respectively.

Fig. 4
Fig. 4

Images of a breast tissue phantom with a tumor-like inclusion. (a) B-mode ultrasound of a region with the inclusion (marked with dashed circle). SAW phase reconstructions of the surface over the inclusion are shown in (b) for excitation at 96Hz (Media 3) (c) for 168Hz (Media 4), and (d) for 228Hz (Media 5). The dashed circles in (b-d) correspond to the approximate lateral position of the inclusion. SAWs are perturbed by the inclusion only at low frequencies, when the SAW penetration depth is great enough to reach the inclusion. (e) B-mode ultrasound of the same phantom in a control region without the inclusion. SAW phase reconstructions of the surface in this region are shown in (f) for 96Hz (Media 6), (g) for 168Hz (Media 7), and (h) for 228Hz (Media 8).

Fig. 5
Fig. 5

Images of a raw chicken thigh with a bone through the middle. Ultrasound images are shown in (a), with the bone indicated by the dashed circle. SAW phase reconstructions of SAWs over the region containing the bone are shown in (b) for 84Hz (Media 9) (c) for 168Hz (Media 10), and (d) for 432Hz (Media 11). High frequency SAWs do not penetrate to the depth of the bone and appear more circular.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

c R 0.87+1.12ν 1+ν E 2ρ( 1+ν ) ,
E eff ( f )= 0 k( f,z )E( z )dz 0 k( f,z )dz ,
k( f,z )=αexp( αzf c R ( f ) ) β 2 +4 π 2 2β exp( βzf c R ( f ) ),
α=2π 1 ( 12ν ) ( 0.871.12ν ) 2 2( 1ν ) ( 1+ν ) 2
β=2π 1 ( 0.87+1.12ν ) 2 ( 1+ν ) 2
kE E eff 2 2 +γ{ TV( E ) }

Metrics