Abstract

We report on far-field measurements of L3 photonic crystal (PhC) cavities with high quality beaming. This is achieved by means of the so-called “band folding” technique, in which a modulation of the radius of specific holes surrounding the cavity is introduced. Far-field patterns are measured from photoluminescence of quantum wells embedded in the PhC. A very good agreement between experimental results and simulated radiation patterns has been found. Laser effect is demonstrated in the beaming cavity with a threshold comparable to the regular one. In addition, free-space input coupling to this cavity has been achieved. In order to fully analyze the coupling efficiency, we generalize the approach developed in S. Fan, et al., [J. Opt. Soc. Am. A 20, 569 (2003)], relaxing the hypothesis of mirror symmetry. The obtained coupling efficiencies are about 15% with quality factors (Q) exceeding 104. These results further validate the “folding” technique on L3 cavities for nanocavity realization with efficient free-space coupling and high Q factors.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
    [Crossref] [PubMed]
  2. W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, T.-M. Hsu, and W.-H. Chang, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 117401 (2006).
    [Crossref] [PubMed]
  3. B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photon. 5, 297–300 (2011).
    [Crossref]
  4. M. Brunstein, A. M. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and J. A. Levenson, “Excitability and self-pulsing in a photonic crystal nanocavity,” Phys. Rev. A 85, 031803(R) (2012).
    [Crossref]
  5. M. Brunstein, A. M. Yacomotti, R. Braive, S. Barbay, I. Sagnes, L. Bigot, L. Le-Gratiet, and J. A. Levenson, “All-optical, all-fibered ultrafast switching in 2-D InP-based photonic crystal nanocavity,” IEEE Photon. J. 2, 642–651 (2010).
    [Crossref]
  6. I. Hwang, S. Kim, J. Yang, S. Kim, S. Lee, and Y. Lee, “Curved-microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett. 87, 131107 (2005).
    [Crossref]
  7. M. Brunstein, R. Braive, R. Hostein, A. Beveratos, I. Rober-Philip, I. Sagnes, T. J. Karle, A. M. Yacomotti, J. A. Levenson, V. Moreau, G. Tessier, and Y. De Wilde, “Thermo-optical dynamics in an optically pumped photonic crystal nano-cavity,” Opt. Express 17, 17118–17129 (2009).
    [Crossref] [PubMed]
  8. F. Romer and B. Witzigmann, “Spectral and spatial properties of the spontaneous emission enhancement in photonic crystal cavities,” J. Opt. Soc. Am. B 25, 31–39 (2008).
    [Crossref]
  9. S.-H. Kim, S.-K. Kim, and Y.-H. Lee, “Vertical beaming of wavelength-scale photonic crystal resonators,” Phys. Rev. B 73, 235117 (2006).
    [Crossref]
  10. J. Kang, M. Seo, S. Kim, S. Kim, M. Kim, H. Park, K. Kim, and Y. Lee, “Polarized vertical beaming of an engineeredhexapole mode laser,” Opt. Express 17, 6074–6081 (2009).
    [Crossref] [PubMed]
  11. N.-V.-Q. Tran, S. Combrié, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79, 041101(R) (2009).
    [Crossref]
  12. S. L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani, and D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Opt. Express 18, 16064–16073 (2010).
    [Crossref] [PubMed]
  13. N.-V.-Q. Tran, S. Combrié, P. Colman, A. De Rossi, and T. Mei, “Vertical high emission in photonic crystal nanocavities by band-folding design,” Phys. Rev. B 82, 075120 (2010).
    [Crossref]
  14. M. Narimatsu, S. Kita, H. Abe, and T. Baba, “Enhancement of vertical emission in photonic crystal nanolasers,” Appl. Phys. Lett. 100, 121117 (2012).
    [Crossref]
  15. M. Brunstein, T. J. Karle, I. Sagnes, F. Raineri, J. Bloch, Y. Halioua, G. Beaudoin, L. Le Gratiet, J. A. Levenson, and A. M. Yacomotti, “Radiation patterns from coupled photonic crystal nanocavities,” Appl. Phys. Lett. 99, 111101 (2011).
    [Crossref]
  16. Commercial FDTD software from Lumerical Solutions Inc. has been used for the 3D-FDTD simulations.
  17. http://ab-initio.mit.edu/wiki/index.php/Harminv
  18. M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano Resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
    [Crossref]
  19. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20, 569–572 (2003).
    [Crossref]

2012 (2)

M. Brunstein, A. M. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and J. A. Levenson, “Excitability and self-pulsing in a photonic crystal nanocavity,” Phys. Rev. A 85, 031803(R) (2012).
[Crossref]

M. Narimatsu, S. Kita, H. Abe, and T. Baba, “Enhancement of vertical emission in photonic crystal nanolasers,” Appl. Phys. Lett. 100, 121117 (2012).
[Crossref]

2011 (2)

M. Brunstein, T. J. Karle, I. Sagnes, F. Raineri, J. Bloch, Y. Halioua, G. Beaudoin, L. Le Gratiet, J. A. Levenson, and A. M. Yacomotti, “Radiation patterns from coupled photonic crystal nanocavities,” Appl. Phys. Lett. 99, 111101 (2011).
[Crossref]

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photon. 5, 297–300 (2011).
[Crossref]

2010 (3)

S. L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani, and D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Opt. Express 18, 16064–16073 (2010).
[Crossref] [PubMed]

N.-V.-Q. Tran, S. Combrié, P. Colman, A. De Rossi, and T. Mei, “Vertical high emission in photonic crystal nanocavities by band-folding design,” Phys. Rev. B 82, 075120 (2010).
[Crossref]

M. Brunstein, A. M. Yacomotti, R. Braive, S. Barbay, I. Sagnes, L. Bigot, L. Le-Gratiet, and J. A. Levenson, “All-optical, all-fibered ultrafast switching in 2-D InP-based photonic crystal nanocavity,” IEEE Photon. J. 2, 642–651 (2010).
[Crossref]

2009 (4)

M. Brunstein, R. Braive, R. Hostein, A. Beveratos, I. Rober-Philip, I. Sagnes, T. J. Karle, A. M. Yacomotti, J. A. Levenson, V. Moreau, G. Tessier, and Y. De Wilde, “Thermo-optical dynamics in an optically pumped photonic crystal nano-cavity,” Opt. Express 17, 17118–17129 (2009).
[Crossref] [PubMed]

J. Kang, M. Seo, S. Kim, S. Kim, M. Kim, H. Park, K. Kim, and Y. Lee, “Polarized vertical beaming of an engineeredhexapole mode laser,” Opt. Express 17, 6074–6081 (2009).
[Crossref] [PubMed]

N.-V.-Q. Tran, S. Combrié, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79, 041101(R) (2009).
[Crossref]

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano Resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
[Crossref]

2008 (1)

2006 (2)

S.-H. Kim, S.-K. Kim, and Y.-H. Lee, “Vertical beaming of wavelength-scale photonic crystal resonators,” Phys. Rev. B 73, 235117 (2006).
[Crossref]

W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, T.-M. Hsu, and W.-H. Chang, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 117401 (2006).
[Crossref] [PubMed]

2005 (1)

I. Hwang, S. Kim, J. Yang, S. Kim, S. Lee, and Y. Lee, “Curved-microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett. 87, 131107 (2005).
[Crossref]

2003 (2)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20, 569–572 (2003).
[Crossref]

Abe, H.

M. Narimatsu, S. Kita, H. Abe, and T. Baba, “Enhancement of vertical emission in photonic crystal nanolasers,” Appl. Phys. Lett. 100, 121117 (2012).
[Crossref]

Akahane, Y.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Andreani, L. C.

S. L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani, and D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Opt. Express 18, 16064–16073 (2010).
[Crossref] [PubMed]

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano Resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
[Crossref]

Asano, T.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Baba, T.

M. Narimatsu, S. Kita, H. Abe, and T. Baba, “Enhancement of vertical emission in photonic crystal nanolasers,” Appl. Phys. Lett. 100, 121117 (2012).
[Crossref]

Barbay, S.

M. Brunstein, A. M. Yacomotti, R. Braive, S. Barbay, I. Sagnes, L. Bigot, L. Le-Gratiet, and J. A. Levenson, “All-optical, all-fibered ultrafast switching in 2-D InP-based photonic crystal nanocavity,” IEEE Photon. J. 2, 642–651 (2010).
[Crossref]

Beaudoin, G.

M. Brunstein, T. J. Karle, I. Sagnes, F. Raineri, J. Bloch, Y. Halioua, G. Beaudoin, L. Le Gratiet, J. A. Levenson, and A. M. Yacomotti, “Radiation patterns from coupled photonic crystal nanocavities,” Appl. Phys. Lett. 99, 111101 (2011).
[Crossref]

Belotti, M.

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano Resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
[Crossref]

Beveratos, A.

Bigot, L.

M. Brunstein, A. M. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and J. A. Levenson, “Excitability and self-pulsing in a photonic crystal nanocavity,” Phys. Rev. A 85, 031803(R) (2012).
[Crossref]

M. Brunstein, A. M. Yacomotti, R. Braive, S. Barbay, I. Sagnes, L. Bigot, L. Le-Gratiet, and J. A. Levenson, “All-optical, all-fibered ultrafast switching in 2-D InP-based photonic crystal nanocavity,” IEEE Photon. J. 2, 642–651 (2010).
[Crossref]

Bloch, J.

M. Brunstein, T. J. Karle, I. Sagnes, F. Raineri, J. Bloch, Y. Halioua, G. Beaudoin, L. Le Gratiet, J. A. Levenson, and A. M. Yacomotti, “Radiation patterns from coupled photonic crystal nanocavities,” Appl. Phys. Lett. 99, 111101 (2011).
[Crossref]

Braive, R.

M. Brunstein, A. M. Yacomotti, R. Braive, S. Barbay, I. Sagnes, L. Bigot, L. Le-Gratiet, and J. A. Levenson, “All-optical, all-fibered ultrafast switching in 2-D InP-based photonic crystal nanocavity,” IEEE Photon. J. 2, 642–651 (2010).
[Crossref]

M. Brunstein, R. Braive, R. Hostein, A. Beveratos, I. Rober-Philip, I. Sagnes, T. J. Karle, A. M. Yacomotti, J. A. Levenson, V. Moreau, G. Tessier, and Y. De Wilde, “Thermo-optical dynamics in an optically pumped photonic crystal nano-cavity,” Opt. Express 17, 17118–17129 (2009).
[Crossref] [PubMed]

Brunstein, M.

M. Brunstein, A. M. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and J. A. Levenson, “Excitability and self-pulsing in a photonic crystal nanocavity,” Phys. Rev. A 85, 031803(R) (2012).
[Crossref]

M. Brunstein, T. J. Karle, I. Sagnes, F. Raineri, J. Bloch, Y. Halioua, G. Beaudoin, L. Le Gratiet, J. A. Levenson, and A. M. Yacomotti, “Radiation patterns from coupled photonic crystal nanocavities,” Appl. Phys. Lett. 99, 111101 (2011).
[Crossref]

M. Brunstein, A. M. Yacomotti, R. Braive, S. Barbay, I. Sagnes, L. Bigot, L. Le-Gratiet, and J. A. Levenson, “All-optical, all-fibered ultrafast switching in 2-D InP-based photonic crystal nanocavity,” IEEE Photon. J. 2, 642–651 (2010).
[Crossref]

M. Brunstein, R. Braive, R. Hostein, A. Beveratos, I. Rober-Philip, I. Sagnes, T. J. Karle, A. M. Yacomotti, J. A. Levenson, V. Moreau, G. Tessier, and Y. De Wilde, “Thermo-optical dynamics in an optically pumped photonic crystal nano-cavity,” Opt. Express 17, 17118–17129 (2009).
[Crossref] [PubMed]

Chang, H.-S.

W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, T.-M. Hsu, and W.-H. Chang, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 117401 (2006).
[Crossref] [PubMed]

Chang, W.-H.

W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, T.-M. Hsu, and W.-H. Chang, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 117401 (2006).
[Crossref] [PubMed]

Chen, W.-Y.

W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, T.-M. Hsu, and W.-H. Chang, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 117401 (2006).
[Crossref] [PubMed]

Chyi, J.-I.

W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, T.-M. Hsu, and W.-H. Chang, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 117401 (2006).
[Crossref] [PubMed]

Colman, P.

N.-V.-Q. Tran, S. Combrié, P. Colman, A. De Rossi, and T. Mei, “Vertical high emission in photonic crystal nanocavities by band-folding design,” Phys. Rev. B 82, 075120 (2010).
[Crossref]

Combrié, S.

N.-V.-Q. Tran, S. Combrié, P. Colman, A. De Rossi, and T. Mei, “Vertical high emission in photonic crystal nanocavities by band-folding design,” Phys. Rev. B 82, 075120 (2010).
[Crossref]

N.-V.-Q. Tran, S. Combrié, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79, 041101(R) (2009).
[Crossref]

De Rossi, A.

N.-V.-Q. Tran, S. Combrié, P. Colman, A. De Rossi, and T. Mei, “Vertical high emission in photonic crystal nanocavities by band-folding design,” Phys. Rev. B 82, 075120 (2010).
[Crossref]

N.-V.-Q. Tran, S. Combrié, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79, 041101(R) (2009).
[Crossref]

De Wilde, Y.

Ellis, B.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photon. 5, 297–300 (2011).
[Crossref]

Fan, S.

Galli, M.

S. L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani, and D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Opt. Express 18, 16064–16073 (2010).
[Crossref] [PubMed]

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano Resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
[Crossref]

Gerace, D.

Halioua, Y.

M. Brunstein, T. J. Karle, I. Sagnes, F. Raineri, J. Bloch, Y. Halioua, G. Beaudoin, L. Le Gratiet, J. A. Levenson, and A. M. Yacomotti, “Radiation patterns from coupled photonic crystal nanocavities,” Appl. Phys. Lett. 99, 111101 (2011).
[Crossref]

Haller, E. E.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photon. 5, 297–300 (2011).
[Crossref]

Harris, J.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photon. 5, 297–300 (2011).
[Crossref]

Hostein, R.

Hsieh, T.-P.

W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, T.-M. Hsu, and W.-H. Chang, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 117401 (2006).
[Crossref] [PubMed]

Hsu, T.-M.

W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, T.-M. Hsu, and W.-H. Chang, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 117401 (2006).
[Crossref] [PubMed]

Hwang, I.

I. Hwang, S. Kim, J. Yang, S. Kim, S. Lee, and Y. Lee, “Curved-microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett. 87, 131107 (2005).
[Crossref]

Joannopoulos, J. D.

Kang, J.

Karle, T. J.

M. Brunstein, T. J. Karle, I. Sagnes, F. Raineri, J. Bloch, Y. Halioua, G. Beaudoin, L. Le Gratiet, J. A. Levenson, and A. M. Yacomotti, “Radiation patterns from coupled photonic crystal nanocavities,” Appl. Phys. Lett. 99, 111101 (2011).
[Crossref]

M. Brunstein, R. Braive, R. Hostein, A. Beveratos, I. Rober-Philip, I. Sagnes, T. J. Karle, A. M. Yacomotti, J. A. Levenson, V. Moreau, G. Tessier, and Y. De Wilde, “Thermo-optical dynamics in an optically pumped photonic crystal nano-cavity,” Opt. Express 17, 17118–17129 (2009).
[Crossref] [PubMed]

Kim, K.

Kim, M.

Kim, S.

J. Kang, M. Seo, S. Kim, S. Kim, M. Kim, H. Park, K. Kim, and Y. Lee, “Polarized vertical beaming of an engineeredhexapole mode laser,” Opt. Express 17, 6074–6081 (2009).
[Crossref] [PubMed]

J. Kang, M. Seo, S. Kim, S. Kim, M. Kim, H. Park, K. Kim, and Y. Lee, “Polarized vertical beaming of an engineeredhexapole mode laser,” Opt. Express 17, 6074–6081 (2009).
[Crossref] [PubMed]

I. Hwang, S. Kim, J. Yang, S. Kim, S. Lee, and Y. Lee, “Curved-microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett. 87, 131107 (2005).
[Crossref]

I. Hwang, S. Kim, J. Yang, S. Kim, S. Lee, and Y. Lee, “Curved-microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett. 87, 131107 (2005).
[Crossref]

Kim, S.-H.

S.-H. Kim, S.-K. Kim, and Y.-H. Lee, “Vertical beaming of wavelength-scale photonic crystal resonators,” Phys. Rev. B 73, 235117 (2006).
[Crossref]

Kim, S.-K.

S.-H. Kim, S.-K. Kim, and Y.-H. Lee, “Vertical beaming of wavelength-scale photonic crystal resonators,” Phys. Rev. B 73, 235117 (2006).
[Crossref]

Kita, S.

M. Narimatsu, S. Kita, H. Abe, and T. Baba, “Enhancement of vertical emission in photonic crystal nanolasers,” Appl. Phys. Lett. 100, 121117 (2012).
[Crossref]

Krauss, T. F.

S. L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani, and D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Opt. Express 18, 16064–16073 (2010).
[Crossref] [PubMed]

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano Resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
[Crossref]

Le Gratiet, L.

M. Brunstein, T. J. Karle, I. Sagnes, F. Raineri, J. Bloch, Y. Halioua, G. Beaudoin, L. Le Gratiet, J. A. Levenson, and A. M. Yacomotti, “Radiation patterns from coupled photonic crystal nanocavities,” Appl. Phys. Lett. 99, 111101 (2011).
[Crossref]

Lee, S.

I. Hwang, S. Kim, J. Yang, S. Kim, S. Lee, and Y. Lee, “Curved-microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett. 87, 131107 (2005).
[Crossref]

Lee, Y.

J. Kang, M. Seo, S. Kim, S. Kim, M. Kim, H. Park, K. Kim, and Y. Lee, “Polarized vertical beaming of an engineeredhexapole mode laser,” Opt. Express 17, 6074–6081 (2009).
[Crossref] [PubMed]

I. Hwang, S. Kim, J. Yang, S. Kim, S. Lee, and Y. Lee, “Curved-microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett. 87, 131107 (2005).
[Crossref]

Lee, Y.-H.

S.-H. Kim, S.-K. Kim, and Y.-H. Lee, “Vertical beaming of wavelength-scale photonic crystal resonators,” Phys. Rev. B 73, 235117 (2006).
[Crossref]

Le-Gratiet, L.

M. Brunstein, A. M. Yacomotti, R. Braive, S. Barbay, I. Sagnes, L. Bigot, L. Le-Gratiet, and J. A. Levenson, “All-optical, all-fibered ultrafast switching in 2-D InP-based photonic crystal nanocavity,” IEEE Photon. J. 2, 642–651 (2010).
[Crossref]

Levenson, J. A.

M. Brunstein, A. M. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and J. A. Levenson, “Excitability and self-pulsing in a photonic crystal nanocavity,” Phys. Rev. A 85, 031803(R) (2012).
[Crossref]

M. Brunstein, T. J. Karle, I. Sagnes, F. Raineri, J. Bloch, Y. Halioua, G. Beaudoin, L. Le Gratiet, J. A. Levenson, and A. M. Yacomotti, “Radiation patterns from coupled photonic crystal nanocavities,” Appl. Phys. Lett. 99, 111101 (2011).
[Crossref]

M. Brunstein, A. M. Yacomotti, R. Braive, S. Barbay, I. Sagnes, L. Bigot, L. Le-Gratiet, and J. A. Levenson, “All-optical, all-fibered ultrafast switching in 2-D InP-based photonic crystal nanocavity,” IEEE Photon. J. 2, 642–651 (2010).
[Crossref]

M. Brunstein, R. Braive, R. Hostein, A. Beveratos, I. Rober-Philip, I. Sagnes, T. J. Karle, A. M. Yacomotti, J. A. Levenson, V. Moreau, G. Tessier, and Y. De Wilde, “Thermo-optical dynamics in an optically pumped photonic crystal nano-cavity,” Opt. Express 17, 17118–17129 (2009).
[Crossref] [PubMed]

Mayer, M. A.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photon. 5, 297–300 (2011).
[Crossref]

Mei, T.

N.-V.-Q. Tran, S. Combrié, P. Colman, A. De Rossi, and T. Mei, “Vertical high emission in photonic crystal nanocavities by band-folding design,” Phys. Rev. B 82, 075120 (2010).
[Crossref]

Moreau, V.

Narimatsu, M.

M. Narimatsu, S. Kita, H. Abe, and T. Baba, “Enhancement of vertical emission in photonic crystal nanolasers,” Appl. Phys. Lett. 100, 121117 (2012).
[Crossref]

Noda, S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

O’Faolain, L.

S. L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani, and D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Opt. Express 18, 16064–16073 (2010).
[Crossref] [PubMed]

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano Resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
[Crossref]

Park, H.

Portalupi, S. L.

S. L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani, and D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Opt. Express 18, 16064–16073 (2010).
[Crossref] [PubMed]

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano Resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
[Crossref]

Raineri, F.

M. Brunstein, A. M. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and J. A. Levenson, “Excitability and self-pulsing in a photonic crystal nanocavity,” Phys. Rev. A 85, 031803(R) (2012).
[Crossref]

M. Brunstein, T. J. Karle, I. Sagnes, F. Raineri, J. Bloch, Y. Halioua, G. Beaudoin, L. Le Gratiet, J. A. Levenson, and A. M. Yacomotti, “Radiation patterns from coupled photonic crystal nanocavities,” Appl. Phys. Lett. 99, 111101 (2011).
[Crossref]

Reardon, C.

Rober-Philip, I.

Romer, F.

Sagnes, I.

M. Brunstein, A. M. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and J. A. Levenson, “Excitability and self-pulsing in a photonic crystal nanocavity,” Phys. Rev. A 85, 031803(R) (2012).
[Crossref]

M. Brunstein, T. J. Karle, I. Sagnes, F. Raineri, J. Bloch, Y. Halioua, G. Beaudoin, L. Le Gratiet, J. A. Levenson, and A. M. Yacomotti, “Radiation patterns from coupled photonic crystal nanocavities,” Appl. Phys. Lett. 99, 111101 (2011).
[Crossref]

M. Brunstein, A. M. Yacomotti, R. Braive, S. Barbay, I. Sagnes, L. Bigot, L. Le-Gratiet, and J. A. Levenson, “All-optical, all-fibered ultrafast switching in 2-D InP-based photonic crystal nanocavity,” IEEE Photon. J. 2, 642–651 (2010).
[Crossref]

M. Brunstein, R. Braive, R. Hostein, A. Beveratos, I. Rober-Philip, I. Sagnes, T. J. Karle, A. M. Yacomotti, J. A. Levenson, V. Moreau, G. Tessier, and Y. De Wilde, “Thermo-optical dynamics in an optically pumped photonic crystal nano-cavity,” Opt. Express 17, 17118–17129 (2009).
[Crossref] [PubMed]

Sarmiento, T.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photon. 5, 297–300 (2011).
[Crossref]

Seo, M.

Shambat, G.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photon. 5, 297–300 (2011).
[Crossref]

Song, B. S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Suh, W.

Tessier, G.

Tran, N.-V.-Q.

N.-V.-Q. Tran, S. Combrié, P. Colman, A. De Rossi, and T. Mei, “Vertical high emission in photonic crystal nanocavities by band-folding design,” Phys. Rev. B 82, 075120 (2010).
[Crossref]

N.-V.-Q. Tran, S. Combrié, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79, 041101(R) (2009).
[Crossref]

Vuckovic, J.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photon. 5, 297–300 (2011).
[Crossref]

Witzigmann, B.

Yacomotti, A. M.

M. Brunstein, A. M. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and J. A. Levenson, “Excitability and self-pulsing in a photonic crystal nanocavity,” Phys. Rev. A 85, 031803(R) (2012).
[Crossref]

M. Brunstein, T. J. Karle, I. Sagnes, F. Raineri, J. Bloch, Y. Halioua, G. Beaudoin, L. Le Gratiet, J. A. Levenson, and A. M. Yacomotti, “Radiation patterns from coupled photonic crystal nanocavities,” Appl. Phys. Lett. 99, 111101 (2011).
[Crossref]

M. Brunstein, A. M. Yacomotti, R. Braive, S. Barbay, I. Sagnes, L. Bigot, L. Le-Gratiet, and J. A. Levenson, “All-optical, all-fibered ultrafast switching in 2-D InP-based photonic crystal nanocavity,” IEEE Photon. J. 2, 642–651 (2010).
[Crossref]

M. Brunstein, R. Braive, R. Hostein, A. Beveratos, I. Rober-Philip, I. Sagnes, T. J. Karle, A. M. Yacomotti, J. A. Levenson, V. Moreau, G. Tessier, and Y. De Wilde, “Thermo-optical dynamics in an optically pumped photonic crystal nano-cavity,” Opt. Express 17, 17118–17129 (2009).
[Crossref] [PubMed]

Yang, J.

I. Hwang, S. Kim, J. Yang, S. Kim, S. Lee, and Y. Lee, “Curved-microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett. 87, 131107 (2005).
[Crossref]

Appl. Phys. Lett. (4)

I. Hwang, S. Kim, J. Yang, S. Kim, S. Lee, and Y. Lee, “Curved-microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett. 87, 131107 (2005).
[Crossref]

M. Narimatsu, S. Kita, H. Abe, and T. Baba, “Enhancement of vertical emission in photonic crystal nanolasers,” Appl. Phys. Lett. 100, 121117 (2012).
[Crossref]

M. Brunstein, T. J. Karle, I. Sagnes, F. Raineri, J. Bloch, Y. Halioua, G. Beaudoin, L. Le Gratiet, J. A. Levenson, and A. M. Yacomotti, “Radiation patterns from coupled photonic crystal nanocavities,” Appl. Phys. Lett. 99, 111101 (2011).
[Crossref]

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano Resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
[Crossref]

IEEE Photon. J. (1)

M. Brunstein, A. M. Yacomotti, R. Braive, S. Barbay, I. Sagnes, L. Bigot, L. Le-Gratiet, and J. A. Levenson, “All-optical, all-fibered ultrafast switching in 2-D InP-based photonic crystal nanocavity,” IEEE Photon. J. 2, 642–651 (2010).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Nat. Photon. (1)

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photon. 5, 297–300 (2011).
[Crossref]

Nature (1)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Opt. Express (3)

Phys. Rev. A (1)

M. Brunstein, A. M. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and J. A. Levenson, “Excitability and self-pulsing in a photonic crystal nanocavity,” Phys. Rev. A 85, 031803(R) (2012).
[Crossref]

Phys. Rev. B (3)

S.-H. Kim, S.-K. Kim, and Y.-H. Lee, “Vertical beaming of wavelength-scale photonic crystal resonators,” Phys. Rev. B 73, 235117 (2006).
[Crossref]

N.-V.-Q. Tran, S. Combrié, P. Colman, A. De Rossi, and T. Mei, “Vertical high emission in photonic crystal nanocavities by band-folding design,” Phys. Rev. B 82, 075120 (2010).
[Crossref]

N.-V.-Q. Tran, S. Combrié, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79, 041101(R) (2009).
[Crossref]

Phys. Rev. Lett. (1)

W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, T.-M. Hsu, and W.-H. Chang, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 117401 (2006).
[Crossref] [PubMed]

Other (2)

Commercial FDTD software from Lumerical Solutions Inc. has been used for the 3D-FDTD simulations.

http://ab-initio.mit.edu/wiki/index.php/Harminv

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

SEM images of the unfolded (a) and folded (d) L3 nanocavities. Circles filled in red denote the shifted and shrunk-end holes to boost the Q-factor, those filled in green denote the size modulation at twice the period of the original lattice to achieve the band-folding effect. Measured sizes are a = 437nm, s = 66nm, r0 = 122nm, r1 = 97nm and r2 = 114nm. (b) and (e) are the spectral emissions of the unfolded (9μW-pump power) and folded (16.3μW-pump power) nanocavities, respectively. The output power (black) and spectral width (red) versus input power are presented in (c) for the unfolded nanocavity and (f) for the folded one, showing laser emission in both cases.

Fig. 2
Fig. 2

Experimental and simulated far-field of the unfolded (a and c) and folded (b and d) L3 nanocavity. The white line corresponds to the light line (emission at 90°) while the dashed white line corresponds to N.A.=0.95, i.e. the maximum angle collected in our set up (∼ 72°). Short dashed line corresponds to 30° (N.A.=0.5).

Fig. 3
Fig. 3

(a) Experimental (black line) data and fit with Fano model [Eq. (2) in the text, red line], of the reflectivity spectrum. Fitted parameters are r2 = 0.1804, F0 = 0.06373, λ0 = 1546.22nm, Γ = 1.0585 × 1011 Hz and q = 0.9. The contrast efficiency is ηC ≈ 12%. (b) Zoom of (a), with an additional fit: Coupled Mode Theory (CMT) Fano model with mirror symmetry (Eq. (8), green line). Fitted parameters are r = −0.4254, τc = 1.29 × 10−10 s, τ = 1.83 × 10−11 s and λ0 = 1546.23nm. The corresponding coupling efficiency is η ≈ 14%. Inset: schematic of coupling channels (CMT model).

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

F ( ω ) = A 0 + F 0 [ q + 2 ( ω ω 0 ) / Γ ] 2 1 + [ 2 ( ω ω 0 ) / Γ ] 2 ,
R ( ω ) = r 2 + F 0 { [ q + 2 ( ω ω 0 ) / Γ ] 2 1 + [ 2 ( ω ω 0 ) / Γ ] 2 1 } .
η C = | F 0 | ( 1 + q 2 ) .
1 τ = 1 τ 0 + 1 τ c , 1 τ 0 = 1 τ mis + 1 τ a ,
2 τ c = 1 τ 1 + 1 τ 2 .
η = τ τ c = τ τ 1 ( 1 + f 2 ) 2 .
R ( ω ) = r 2 + 1 τ 1 2 2 r τ 1 [ r τ + t ( ω ω 0 ) ] ( ω ω 0 ) 2 + 1 / τ 2 ,
R ( ω ) = r 2 + 1 τ c 2 2 r τ c [ r τ + t ( ω ω 0 ) ] ( ω ω 0 ) 2 + 1 / τ 2 .
Δ R = r t η 1 + q + 2 q + = r t η 1 + q 2 q .
η = η C / 2 | r | 1 r 2
η o p = | S E cav * ( k ) E 0 ( k ) d k x d k y | S | E cav ( k ) | 2 d k x d k y S | E 0 ( k ) | 2 d k x d k y ,
1 η o p = τ c τ rad = 1 + τ c τ mis = 1 + Q η Q mis ,
Q mis = Q η o p η ( 1 η o p ) , Q rad = Q η o p η , Q a = Q ( 1 η / η o p ) .
S = C + | d d | * j ( ω ω 0 ) + 1 / τ ,
C | d * = | d .
C = e j ϕ ( r j t j t r ) ,
e j Δ β ± = j t 2 r ( f 1 f ) ± 1 t 2 4 r 2 ( f 1 f ) 2 ,
s 1 = s 1 + e j ϕ ( r ( r + j t ) / τ 1 j ( ω ω 0 ) + 1 / τ ) ,
r = r t f sin Δ β ± , t = t f cos Δ β ± .
Γ = 2 τ , F 0 = r t η q ± , q ± = 1 2 r t [ ( η 2 r 2 ) ± ( η 2 r 2 ) 2 + 4 r 2 t 2 ] .
T 2 ( 1 + q 2 ) 2 + T ( 2 F 0 q 2 ( 1 q 2 ) r 2 4 q 2 ) + ( F 0 q 2 r 2 ) 2 = 0 .
τ 1 = τ r t / F 0 q ,
f = ( r r ) 2 r t 2 + 1 .
η = F 0 q r t ( 1 + f 2 ) 2 .

Metrics