Abstract

We investigate the performance of visible light communication (VLC) system with a pulse width modulation (PWM) dimming control scheme. Under this scheme, the communication quality in terms of number of transmitted bits and bit error rate (BER) of less than 10−3 should be guaranteed. However, for on-off-keying (OOK) signal, the required data rate becomes 10 times as high as the original data rate when the duty cycle of dimming control signal is 0.1. To make the dimming control scheme easy to be implemented in VLC system, we propose the variable M-QAM OFDM VLC system, where M is adjusted according to the brightness of LED light in terms of duty cycle. The results show that with different duty cycles the required data rates are not higher than the original value and less LED lamp power is required to guarantee the communication quality, which makes the dimming control system that satisfies both communication and illumination requirements easy to be implemented and power-saving.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Hann, J.-H. Kim, S.-Y. Jung, and C.-S. Park, “White LED ceiling lights positioning systems for optical wireless indoor applications,” in ECOC, 1–3 (2010).
  2. H. Elgala, R. Mesleh, H. Haas, and B. Pricope, “OFDM visible light wireless communication based on white LEDs,” in VTC2007-Spring, 2185–2189 (2007).
  3. O. Bouchet, P. Porcon, M. Wolf, L. Grobe, J. W. Walewski, S. Nerreter, K. Langer, L. Fernandez, J. Vucic, T. Kamalakis, G. Ntogari, and E. Gueutier, “Visible-light communication system enabling 73Mb/s data streaming,” in GLOBECOM Workshops, 1042–1046 (2010).
  4. K. Langer, J. Vucic, C. Kottke, L. Fernandez, K. Habe, A. Paraskevopoulos, M. Wendl, and V. Markov, “Exploring the potentials of optical-wireless communication using white LEDs,” in ICTON, 1–5 (2011).
  5. T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron.50(1), 100–107 (2004).
    [CrossRef]
  6. L. Zeng, D. O’Brien, H. Le-Minh, K. Lee, D. Jung, and Y. Oh, “Improvement of data rate by using equalization in an indoor visible light communication system,” in International Conference on Circuits and Systems for Communications, 678–682 (2008).
  7. J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE85(2), 265–298 (1997).
    [CrossRef]
  8. M. Zhang, Y. Zhang, X. Yuan, and J. Zhang, “Mathematic models for a ray tracing method and its applications in wireless optical communications,” Opt. Express18(17), 18431–18437 (2010).
    [CrossRef] [PubMed]
  9. H. Sugiyama, S. Haruyama, and M. Nakagawa, “Brightness control methods for illumination and visible-light communication systems,” in International Conference on Wireless and Mobile Communications, 78–83 (2007).
  10. J.-H. Choi, E.-B. Cho, T.-G. Kang, and G. Lee, “Pulse width modulation based signal format for visible light communications,” in OECC, 276–277 (2010).
  11. A. Goldsmith and S.-G. Chua, “Variable-rate variable-power MQAM for fading channels,” IEEE Trans. Commun.45(10), 1218–1230 (1997).
    [CrossRef]
  12. I. Neokosmidis, T. Kamalakis, J. Walewski, B. Inan, and T. Sphicopoulos, “Impact of nonlinear LED transfer function on discrete multitone modulation: analytical approach,” J. Lightwave Technol.27(22), 4970–4978 (2009).
    [CrossRef]
  13. G. Agrawal, Lightwave Technology: Telecommunication Systems (Wiley-Interscience, New Jersey, 2005).
  14. H. Kressel, Semiconductor Devices for Optical Communication (Springer-Verlag, 1982).
  15. G. Ntogari, T. Kamalakis, J. Walewski, and T. Sphicopoulos, “Combining illumination dimming based on pulse-width modulation with visible-light communications based on discrete multitone,” J. Opt. Commun. Netw.3(1), 56–65 (2011).
    [CrossRef]
  16. J. Proakis and M. Salehi, Contemporary Communication Systems Using MATLAB (PWS Pub., 1998).
  17. R. Essiambre, G. Kramer, P. Winzer, G. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol.28(4), 662–701 (2010).
    [CrossRef]
  18. J. Armstrong, “OFDM for optical communications,” J. Lightwave Technol.27(3), 189–204 (2009).
    [CrossRef]

2011

2010

2009

2004

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron.50(1), 100–107 (2004).
[CrossRef]

1997

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE85(2), 265–298 (1997).
[CrossRef]

A. Goldsmith and S.-G. Chua, “Variable-rate variable-power MQAM for fading channels,” IEEE Trans. Commun.45(10), 1218–1230 (1997).
[CrossRef]

Armstrong, J.

Barry, J. R.

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE85(2), 265–298 (1997).
[CrossRef]

Chua, S.-G.

A. Goldsmith and S.-G. Chua, “Variable-rate variable-power MQAM for fading channels,” IEEE Trans. Commun.45(10), 1218–1230 (1997).
[CrossRef]

Essiambre, R.

Foschini, G.

Goebel, B.

Goldsmith, A.

A. Goldsmith and S.-G. Chua, “Variable-rate variable-power MQAM for fading channels,” IEEE Trans. Commun.45(10), 1218–1230 (1997).
[CrossRef]

Inan, B.

Kahn, J. M.

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE85(2), 265–298 (1997).
[CrossRef]

Kamalakis, T.

Komine, T.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron.50(1), 100–107 (2004).
[CrossRef]

Kramer, G.

Nakagawa, M.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron.50(1), 100–107 (2004).
[CrossRef]

Neokosmidis, I.

Ntogari, G.

Sphicopoulos, T.

Walewski, J.

Winzer, P.

Yuan, X.

Zhang, J.

Zhang, M.

Zhang, Y.

IEEE Trans. Commun.

A. Goldsmith and S.-G. Chua, “Variable-rate variable-power MQAM for fading channels,” IEEE Trans. Commun.45(10), 1218–1230 (1997).
[CrossRef]

IEEE Trans. Consum. Electron.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron.50(1), 100–107 (2004).
[CrossRef]

J. Lightwave Technol.

J. Opt. Commun. Netw.

Opt. Express

Proc. IEEE

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE85(2), 265–298 (1997).
[CrossRef]

Other

H. Sugiyama, S. Haruyama, and M. Nakagawa, “Brightness control methods for illumination and visible-light communication systems,” in International Conference on Wireless and Mobile Communications, 78–83 (2007).

J.-H. Choi, E.-B. Cho, T.-G. Kang, and G. Lee, “Pulse width modulation based signal format for visible light communications,” in OECC, 276–277 (2010).

L. Zeng, D. O’Brien, H. Le-Minh, K. Lee, D. Jung, and Y. Oh, “Improvement of data rate by using equalization in an indoor visible light communication system,” in International Conference on Circuits and Systems for Communications, 678–682 (2008).

S. Hann, J.-H. Kim, S.-Y. Jung, and C.-S. Park, “White LED ceiling lights positioning systems for optical wireless indoor applications,” in ECOC, 1–3 (2010).

H. Elgala, R. Mesleh, H. Haas, and B. Pricope, “OFDM visible light wireless communication based on white LEDs,” in VTC2007-Spring, 2185–2189 (2007).

O. Bouchet, P. Porcon, M. Wolf, L. Grobe, J. W. Walewski, S. Nerreter, K. Langer, L. Fernandez, J. Vucic, T. Kamalakis, G. Ntogari, and E. Gueutier, “Visible-light communication system enabling 73Mb/s data streaming,” in GLOBECOM Workshops, 1042–1046 (2010).

K. Langer, J. Vucic, C. Kottke, L. Fernandez, K. Habe, A. Paraskevopoulos, M. Wendl, and V. Markov, “Exploring the potentials of optical-wireless communication using white LEDs,” in ICTON, 1–5 (2011).

J. Proakis and M. Salehi, Contemporary Communication Systems Using MATLAB (PWS Pub., 1998).

G. Agrawal, Lightwave Technology: Telecommunication Systems (Wiley-Interscience, New Jersey, 2005).

H. Kressel, Semiconductor Devices for Optical Communication (Springer-Verlag, 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic, (b) waveform in VLC system with dimming control.

Fig. 2
Fig. 2

(a) Adaptive data rate versus the duty cycle, (b) the required LED lamp power to achieve BER of 10−3 without applying dimming control in OOK VLC system versus the duty cycle.

Fig. 3
Fig. 3

(a) Adaptive symbol rate of MQAM signal versus the duty cycle, (b) the required LED lamp power to achieve BER of 10−3 without applying dimming control versus the duty cycle.

Fig. 4
Fig. 4

Required SNR to achieve BER of 10−3 in variable M-QAM VLC system under dimming control scheme.

Tables (2)

Tables Icon

Table 1 Parameters of VLC system configuration.

Tables Icon

Table 2 Relationship between M1 and duty cycle for variable M-QAM with dimming control

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

R( φ )= ( m+1 ) cos m ( φ ) 2π ,
H( 0 )= R( φ )cos( θ )A d 2 = ( m+1 ) cos m ( φ )Acos( θ ) 2π d 2 ,
P r =H(0) P t .
SNR= ( RH( 0 ) P t M index ) 2 f ( t ) 2 ¯ σ 2 ,
σ shot 2 =2q[ R P r ( 1+ ( M index f(t) ) 2 ¯ )+ I bg I 2 ]B,
σ thermal 2 =8πk T K ηA B 2 ( I 2 G + 2πΓ g m ηA I 3 B ).
R 1 TD= R 0 T R 1 = R 0 D ,
BER=Q( 2SNR ),
BER=Q( 2SNR )=Q( 2 ( RH( 0 ) P t M index ) 2 σ 2 ( P t ) ) =Q( 2 RH( 0 ) P t M index σ( P t ) ).
M 1 R 1 TD= M 0 R 0 T R 1 = M 0 R 0 M 1 D .
BER0.2exp( 1.5 γ ¯ / ( M1 ) ).
{ 0 γ ¯ 30 dB, M4.
BER0.2exp( 1.5 ( RH( 0 ) P t M index ) 2 ( M1 ) σ 2 ( P t ) ).

Metrics