Abstract

We report the first demonstration of a photonic chip based dynamically reconfigurable, widely tunable, narrow pass-band, high Q microwave photonic filter (MPF). We exploit stimulated Brillouin scattering (SBS) in a 6.5 cm long chalcogenide (As2S3) photonic chip to demonstrate a MPF that exhibited a high quality factor of ~520 and narrow bandwidth and was dynamically reconfigurable and widely tunable. It maintained a stable 3 dB bandwidth of 23 ± 2MHz and amplitude of 20 ± 2 dB over a large frequency tuning range of 2-12 GHz. By tailoring the pump spectrum, we reconfigured the 3 dB bandwidth of the MPF from ~20 MHz to ~40 MHz and tuned the shape factor from 3.5 to 2 resulting in a nearly flat-topped filter profile. This demonstration represents a significant advance in integrated microwave photonics with potential applications in on-chip microwave signal processing for RADAR and analogue communications.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol.24(1), 201–229 (2006).
    [CrossRef]
  2. D. B. Hunter and R. A. Minasian, “Tunable microwave fiber-optic bandpass filters,” IEEE Photon. Technol. Lett.11(7), 874–876 (1999).
    [CrossRef]
  3. Y. M. Chang and J. H. Lee, “High-Q tunable, photonic microwave single passband filter based on stimulated Brillouin scattering and fiber Bragg grating filtering,” Opt. Commun.281(20), 5146–5150 (2008).
    [CrossRef]
  4. X. Yi and R. A. Minasian, “Microwave photonic filter with single bandpass response,” Electron. Lett.45(7), 362–U31 (2009).
    [CrossRef]
  5. W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech.60(5), 1287–1296 (2012).
    [CrossRef]
  6. M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Highly chirped single-bandpass microwave photonic filter with reconfiguration capabilities,” Opt. Express19(5), 4566–4576 (2011).
    [CrossRef] [PubMed]
  7. J. Mora, B. Ortega, A. Diez, J. L. Cruz, M. V. Andres, J. Capmany, and D. Pastor, “Photonic microwave tunable single-bandpass filter based on a Mach-Zehnder interferometer,” J. Lightwave Technol.24(7), 2500–2509 (2006).
    [CrossRef]
  8. K. Zhu, H. Ou, H. Fu, E. Remb, and S. He, “A simple and tunable single-bandpass microwave photonic filter of adjustable shape,” IEEE Photon. Technol. Lett.20(23), 1917–1919 (2008).
    [CrossRef]
  9. V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics6(3), 186–194 (2012).
    [CrossRef]
  10. A. J. Torregrosa, H. Maestre, A. L. Recas, J. A. Pereda, J. Capmany, and C. R. Fernandez-Pousa, “Tunability of the multiple-bandpass response of cascaded single-source and continuous-sample microwave photonic filters,” Opt. Commun.283(7), 1320–1325 (2010).
    [CrossRef]
  11. X. Xue, X. Zheng, H. Zhang, and B. Zhou, “Single-bandpass microwave photonic filter with wide tuning range and no baseband response,” IEEE Photonics Conference 143–144 (2011).
  12. J. Mora, J. Capmany, and L. R. Chen, “Tunable and reconfigurable single bandpass photonic microwave filter using a high-birefringence Sagnac loop and DVMM channel selector,” IEEE Leos Annual Meeting 1-2, 192–193 (2007).
  13. B. Vidal, M. A. Piqueras, and J. Martí, “Tunable and reconfigurable photonic microwave filter based on stimulated Brillouin scattering,” Opt. Lett.32(1), 23–25 (2007).
    [CrossRef] [PubMed]
  14. W. W. Zhang and R. A. Minasian, “Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett.23(23), 1775–1777 (2011).
    [CrossRef]
  15. J. Sancho, M. Sanghoon Chin, A. Sagues, J. Loayssa, I. Lloret, S. Gasulla, L. Sales, Thévenaz, and J. Capmany, “Dynamic microwave photonic filter using separate carrier tuning based on stimulated Brillouin scattering in fibers,” IEEE Photon. Technol. Lett.22(23), 1753–1755 (2010).
    [CrossRef]
  16. B. Vidal, T. Mengual, and J. Marti, “Photonic microwave filter with single bandpass response based on Brillouin processing and SSB-SC,” International Topical Meeting on Microwave Photonics 92–95 (2009).
  17. A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett.18(16), 1744–1746 (2006).
    [CrossRef]
  18. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide Photonics,” Nat. Photonics5, 141–148 (2011).
  19. B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguids,” Laser Photon. Rev.6(1), 97–114 (2012).
    [CrossRef]
  20. W. J. Chin, D. H. Kim, J. H. Song, and S. S. Lee, “Integrated photonic microwave bandpass filter incorporating a polymeric microring resonator,” JJAP Part 1-Regular Papers Brief Communications & Review Papers45(4A), 2576–2579 (2006).
    [CrossRef]
  21. F. Coppinger, C. K. Madsen, and B. Jalali, “Photonic microwave filtering using coherently coupled integrated ring resonators,” Microw. Opt. Technol. Lett.21(2), 90–93 (1999).
    [CrossRef]
  22. E. J. Norberg, R. S. Guzzon, J. S. Parker, L. A. Johansson, and L. A. Coldren, “Programmable photonic microwave filters monolithically integrated in InP-InGaAsP,” J. Lightwave Technol.29(11), 1611–1619 (2011).
    [CrossRef]
  23. R. Pant, A. Byrnes, C. G. Poulton, E. Li, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering,” Opt. Lett.37(5), 969–971 (2012).
    [CrossRef] [PubMed]
  24. R. Pant, C. G. Poulton, D.-Y. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated Brillouin scattering,” Opt. Express19(9), 8285–8290 (2011).
    [CrossRef] [PubMed]
  25. R. Pant, M. D. Stenner, M. A. Neifeld, Z. M. Shi, R. W. Boyd, and D. J. Gauthier, “Maximizing the opening of eye diagrams for slow-light systems,” Appl. Opt.46(26), 6513–6519 (2007).
    [CrossRef] [PubMed]

2012 (4)

W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech.60(5), 1287–1296 (2012).
[CrossRef]

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics6(3), 186–194 (2012).
[CrossRef]

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguids,” Laser Photon. Rev.6(1), 97–114 (2012).
[CrossRef]

R. Pant, A. Byrnes, C. G. Poulton, E. Li, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering,” Opt. Lett.37(5), 969–971 (2012).
[CrossRef] [PubMed]

2011 (5)

2010 (2)

J. Sancho, M. Sanghoon Chin, A. Sagues, J. Loayssa, I. Lloret, S. Gasulla, L. Sales, Thévenaz, and J. Capmany, “Dynamic microwave photonic filter using separate carrier tuning based on stimulated Brillouin scattering in fibers,” IEEE Photon. Technol. Lett.22(23), 1753–1755 (2010).
[CrossRef]

A. J. Torregrosa, H. Maestre, A. L. Recas, J. A. Pereda, J. Capmany, and C. R. Fernandez-Pousa, “Tunability of the multiple-bandpass response of cascaded single-source and continuous-sample microwave photonic filters,” Opt. Commun.283(7), 1320–1325 (2010).
[CrossRef]

2009 (1)

X. Yi and R. A. Minasian, “Microwave photonic filter with single bandpass response,” Electron. Lett.45(7), 362–U31 (2009).
[CrossRef]

2008 (2)

K. Zhu, H. Ou, H. Fu, E. Remb, and S. He, “A simple and tunable single-bandpass microwave photonic filter of adjustable shape,” IEEE Photon. Technol. Lett.20(23), 1917–1919 (2008).
[CrossRef]

Y. M. Chang and J. H. Lee, “High-Q tunable, photonic microwave single passband filter based on stimulated Brillouin scattering and fiber Bragg grating filtering,” Opt. Commun.281(20), 5146–5150 (2008).
[CrossRef]

2007 (2)

2006 (4)

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol.24(1), 201–229 (2006).
[CrossRef]

W. J. Chin, D. H. Kim, J. H. Song, and S. S. Lee, “Integrated photonic microwave bandpass filter incorporating a polymeric microring resonator,” JJAP Part 1-Regular Papers Brief Communications & Review Papers45(4A), 2576–2579 (2006).
[CrossRef]

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett.18(16), 1744–1746 (2006).
[CrossRef]

J. Mora, B. Ortega, A. Diez, J. L. Cruz, M. V. Andres, J. Capmany, and D. Pastor, “Photonic microwave tunable single-bandpass filter based on a Mach-Zehnder interferometer,” J. Lightwave Technol.24(7), 2500–2509 (2006).
[CrossRef]

1999 (2)

D. B. Hunter and R. A. Minasian, “Tunable microwave fiber-optic bandpass filters,” IEEE Photon. Technol. Lett.11(7), 874–876 (1999).
[CrossRef]

F. Coppinger, C. K. Madsen, and B. Jalali, “Photonic microwave filtering using coherently coupled integrated ring resonators,” Microw. Opt. Technol. Lett.21(2), 90–93 (1999).
[CrossRef]

Andres, M. V.

Bolea, M.

Boyd, R. W.

Byrnes, A.

Capmany, J.

M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Highly chirped single-bandpass microwave photonic filter with reconfiguration capabilities,” Opt. Express19(5), 4566–4576 (2011).
[CrossRef] [PubMed]

A. J. Torregrosa, H. Maestre, A. L. Recas, J. A. Pereda, J. Capmany, and C. R. Fernandez-Pousa, “Tunability of the multiple-bandpass response of cascaded single-source and continuous-sample microwave photonic filters,” Opt. Commun.283(7), 1320–1325 (2010).
[CrossRef]

J. Sancho, M. Sanghoon Chin, A. Sagues, J. Loayssa, I. Lloret, S. Gasulla, L. Sales, Thévenaz, and J. Capmany, “Dynamic microwave photonic filter using separate carrier tuning based on stimulated Brillouin scattering in fibers,” IEEE Photon. Technol. Lett.22(23), 1753–1755 (2010).
[CrossRef]

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett.18(16), 1744–1746 (2006).
[CrossRef]

J. Mora, B. Ortega, A. Diez, J. L. Cruz, M. V. Andres, J. Capmany, and D. Pastor, “Photonic microwave tunable single-bandpass filter based on a Mach-Zehnder interferometer,” J. Lightwave Technol.24(7), 2500–2509 (2006).
[CrossRef]

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol.24(1), 201–229 (2006).
[CrossRef]

Chang, Y. M.

Y. M. Chang and J. H. Lee, “High-Q tunable, photonic microwave single passband filter based on stimulated Brillouin scattering and fiber Bragg grating filtering,” Opt. Commun.281(20), 5146–5150 (2008).
[CrossRef]

Chin, W. J.

W. J. Chin, D. H. Kim, J. H. Song, and S. S. Lee, “Integrated photonic microwave bandpass filter incorporating a polymeric microring resonator,” JJAP Part 1-Regular Papers Brief Communications & Review Papers45(4A), 2576–2579 (2006).
[CrossRef]

Choi, D.-Y.

Coldren, L. A.

Coppinger, F.

F. Coppinger, C. K. Madsen, and B. Jalali, “Photonic microwave filtering using coherently coupled integrated ring resonators,” Microw. Opt. Technol. Lett.21(2), 90–93 (1999).
[CrossRef]

Cruz, J. L.

Diez, A.

Eggleton, B. J.

R. Pant, A. Byrnes, C. G. Poulton, E. Li, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering,” Opt. Lett.37(5), 969–971 (2012).
[CrossRef] [PubMed]

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguids,” Laser Photon. Rev.6(1), 97–114 (2012).
[CrossRef]

R. Pant, C. G. Poulton, D.-Y. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated Brillouin scattering,” Opt. Express19(9), 8285–8290 (2011).
[CrossRef] [PubMed]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide Photonics,” Nat. Photonics5, 141–148 (2011).

Ferdous, F.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics6(3), 186–194 (2012).
[CrossRef]

Fernandez-Pousa, C. R.

A. J. Torregrosa, H. Maestre, A. L. Recas, J. A. Pereda, J. Capmany, and C. R. Fernandez-Pousa, “Tunability of the multiple-bandpass response of cascaded single-source and continuous-sample microwave photonic filters,” Opt. Commun.283(7), 1320–1325 (2010).
[CrossRef]

Fu, H.

K. Zhu, H. Ou, H. Fu, E. Remb, and S. He, “A simple and tunable single-bandpass microwave photonic filter of adjustable shape,” IEEE Photon. Technol. Lett.20(23), 1917–1919 (2008).
[CrossRef]

Gasulla, S.

J. Sancho, M. Sanghoon Chin, A. Sagues, J. Loayssa, I. Lloret, S. Gasulla, L. Sales, Thévenaz, and J. Capmany, “Dynamic microwave photonic filter using separate carrier tuning based on stimulated Brillouin scattering in fibers,” IEEE Photon. Technol. Lett.22(23), 1753–1755 (2010).
[CrossRef]

Gauthier, D. J.

Guzzon, R. S.

Hamidi, E.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics6(3), 186–194 (2012).
[CrossRef]

He, S.

K. Zhu, H. Ou, H. Fu, E. Remb, and S. He, “A simple and tunable single-bandpass microwave photonic filter of adjustable shape,” IEEE Photon. Technol. Lett.20(23), 1917–1919 (2008).
[CrossRef]

Hile, S.

Hunter, D. B.

D. B. Hunter and R. A. Minasian, “Tunable microwave fiber-optic bandpass filters,” IEEE Photon. Technol. Lett.11(7), 874–876 (1999).
[CrossRef]

Jalali, B.

F. Coppinger, C. K. Madsen, and B. Jalali, “Photonic microwave filtering using coherently coupled integrated ring resonators,” Microw. Opt. Technol. Lett.21(2), 90–93 (1999).
[CrossRef]

Johansson, L. A.

Kim, D. H.

W. J. Chin, D. H. Kim, J. H. Song, and S. S. Lee, “Integrated photonic microwave bandpass filter incorporating a polymeric microring resonator,” JJAP Part 1-Regular Papers Brief Communications & Review Papers45(4A), 2576–2579 (2006).
[CrossRef]

Leaird, D. E.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics6(3), 186–194 (2012).
[CrossRef]

Lee, J. H.

Y. M. Chang and J. H. Lee, “High-Q tunable, photonic microwave single passband filter based on stimulated Brillouin scattering and fiber Bragg grating filtering,” Opt. Commun.281(20), 5146–5150 (2008).
[CrossRef]

Lee, S. S.

W. J. Chin, D. H. Kim, J. H. Song, and S. S. Lee, “Integrated photonic microwave bandpass filter incorporating a polymeric microring resonator,” JJAP Part 1-Regular Papers Brief Communications & Review Papers45(4A), 2576–2579 (2006).
[CrossRef]

Li, E.

Li, M.

W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech.60(5), 1287–1296 (2012).
[CrossRef]

Li, W.

W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech.60(5), 1287–1296 (2012).
[CrossRef]

Lloret, I.

J. Sancho, M. Sanghoon Chin, A. Sagues, J. Loayssa, I. Lloret, S. Gasulla, L. Sales, Thévenaz, and J. Capmany, “Dynamic microwave photonic filter using separate carrier tuning based on stimulated Brillouin scattering in fibers,” IEEE Photon. Technol. Lett.22(23), 1753–1755 (2010).
[CrossRef]

Loayssa, A.

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett.18(16), 1744–1746 (2006).
[CrossRef]

Loayssa, J.

J. Sancho, M. Sanghoon Chin, A. Sagues, J. Loayssa, I. Lloret, S. Gasulla, L. Sales, Thévenaz, and J. Capmany, “Dynamic microwave photonic filter using separate carrier tuning based on stimulated Brillouin scattering in fibers,” IEEE Photon. Technol. Lett.22(23), 1753–1755 (2010).
[CrossRef]

Long, C. M.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics6(3), 186–194 (2012).
[CrossRef]

Luther-Davies, B.

R. Pant, A. Byrnes, C. G. Poulton, E. Li, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering,” Opt. Lett.37(5), 969–971 (2012).
[CrossRef] [PubMed]

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguids,” Laser Photon. Rev.6(1), 97–114 (2012).
[CrossRef]

R. Pant, C. G. Poulton, D.-Y. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated Brillouin scattering,” Opt. Express19(9), 8285–8290 (2011).
[CrossRef] [PubMed]

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide Photonics,” Nat. Photonics5, 141–148 (2011).

Madden, S.

Madden, S. J.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguids,” Laser Photon. Rev.6(1), 97–114 (2012).
[CrossRef]

R. Pant, C. G. Poulton, D.-Y. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated Brillouin scattering,” Opt. Express19(9), 8285–8290 (2011).
[CrossRef] [PubMed]

Madsen, C. K.

F. Coppinger, C. K. Madsen, and B. Jalali, “Photonic microwave filtering using coherently coupled integrated ring resonators,” Microw. Opt. Technol. Lett.21(2), 90–93 (1999).
[CrossRef]

Maestre, H.

A. J. Torregrosa, H. Maestre, A. L. Recas, J. A. Pereda, J. Capmany, and C. R. Fernandez-Pousa, “Tunability of the multiple-bandpass response of cascaded single-source and continuous-sample microwave photonic filters,” Opt. Commun.283(7), 1320–1325 (2010).
[CrossRef]

Martí, J.

Mcfarlane, H.

Minasian, R. A.

W. W. Zhang and R. A. Minasian, “Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett.23(23), 1775–1777 (2011).
[CrossRef]

X. Yi and R. A. Minasian, “Microwave photonic filter with single bandpass response,” Electron. Lett.45(7), 362–U31 (2009).
[CrossRef]

D. B. Hunter and R. A. Minasian, “Tunable microwave fiber-optic bandpass filters,” IEEE Photon. Technol. Lett.11(7), 874–876 (1999).
[CrossRef]

Mora, J.

Neifeld, M. A.

Norberg, E. J.

Ortega, B.

Ou, H.

K. Zhu, H. Ou, H. Fu, E. Remb, and S. He, “A simple and tunable single-bandpass microwave photonic filter of adjustable shape,” IEEE Photon. Technol. Lett.20(23), 1917–1919 (2008).
[CrossRef]

Pant, R.

Parker, J. S.

Pastor, D.

Pelusi, M. D.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguids,” Laser Photon. Rev.6(1), 97–114 (2012).
[CrossRef]

Pereda, J. A.

A. J. Torregrosa, H. Maestre, A. L. Recas, J. A. Pereda, J. Capmany, and C. R. Fernandez-Pousa, “Tunability of the multiple-bandpass response of cascaded single-source and continuous-sample microwave photonic filters,” Opt. Commun.283(7), 1320–1325 (2010).
[CrossRef]

Piqueras, M. A.

Poulton, C. G.

Recas, A. L.

A. J. Torregrosa, H. Maestre, A. L. Recas, J. A. Pereda, J. Capmany, and C. R. Fernandez-Pousa, “Tunability of the multiple-bandpass response of cascaded single-source and continuous-sample microwave photonic filters,” Opt. Commun.283(7), 1320–1325 (2010).
[CrossRef]

Remb, E.

K. Zhu, H. Ou, H. Fu, E. Remb, and S. He, “A simple and tunable single-bandpass microwave photonic filter of adjustable shape,” IEEE Photon. Technol. Lett.20(23), 1917–1919 (2008).
[CrossRef]

Richardson, K.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide Photonics,” Nat. Photonics5, 141–148 (2011).

Sagues, A.

J. Sancho, M. Sanghoon Chin, A. Sagues, J. Loayssa, I. Lloret, S. Gasulla, L. Sales, Thévenaz, and J. Capmany, “Dynamic microwave photonic filter using separate carrier tuning based on stimulated Brillouin scattering in fibers,” IEEE Photon. Technol. Lett.22(23), 1753–1755 (2010).
[CrossRef]

Sagues, M.

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett.18(16), 1744–1746 (2006).
[CrossRef]

Sales, L.

J. Sancho, M. Sanghoon Chin, A. Sagues, J. Loayssa, I. Lloret, S. Gasulla, L. Sales, Thévenaz, and J. Capmany, “Dynamic microwave photonic filter using separate carrier tuning based on stimulated Brillouin scattering in fibers,” IEEE Photon. Technol. Lett.22(23), 1753–1755 (2010).
[CrossRef]

Sancho, J.

J. Sancho, M. Sanghoon Chin, A. Sagues, J. Loayssa, I. Lloret, S. Gasulla, L. Sales, Thévenaz, and J. Capmany, “Dynamic microwave photonic filter using separate carrier tuning based on stimulated Brillouin scattering in fibers,” IEEE Photon. Technol. Lett.22(23), 1753–1755 (2010).
[CrossRef]

Sanghoon Chin, M.

J. Sancho, M. Sanghoon Chin, A. Sagues, J. Loayssa, I. Lloret, S. Gasulla, L. Sales, Thévenaz, and J. Capmany, “Dynamic microwave photonic filter using separate carrier tuning based on stimulated Brillouin scattering in fibers,” IEEE Photon. Technol. Lett.22(23), 1753–1755 (2010).
[CrossRef]

Schr, J.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguids,” Laser Photon. Rev.6(1), 97–114 (2012).
[CrossRef]

Shi, Z. M.

Song, J. H.

W. J. Chin, D. H. Kim, J. H. Song, and S. S. Lee, “Integrated photonic microwave bandpass filter incorporating a polymeric microring resonator,” JJAP Part 1-Regular Papers Brief Communications & Review Papers45(4A), 2576–2579 (2006).
[CrossRef]

Stenner, M. D.

Supradeepa, V. R.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics6(3), 186–194 (2012).
[CrossRef]

Thevenaz, L.

Thévenaz,

J. Sancho, M. Sanghoon Chin, A. Sagues, J. Loayssa, I. Lloret, S. Gasulla, L. Sales, Thévenaz, and J. Capmany, “Dynamic microwave photonic filter using separate carrier tuning based on stimulated Brillouin scattering in fibers,” IEEE Photon. Technol. Lett.22(23), 1753–1755 (2010).
[CrossRef]

Torregrosa, A. J.

A. J. Torregrosa, H. Maestre, A. L. Recas, J. A. Pereda, J. Capmany, and C. R. Fernandez-Pousa, “Tunability of the multiple-bandpass response of cascaded single-source and continuous-sample microwave photonic filters,” Opt. Commun.283(7), 1320–1325 (2010).
[CrossRef]

Vidal, B.

Vo, T. D.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguids,” Laser Photon. Rev.6(1), 97–114 (2012).
[CrossRef]

Weiner, A. M.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics6(3), 186–194 (2012).
[CrossRef]

Wu, R.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics6(3), 186–194 (2012).
[CrossRef]

Yao, J.

W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech.60(5), 1287–1296 (2012).
[CrossRef]

Yi, X.

X. Yi and R. A. Minasian, “Microwave photonic filter with single bandpass response,” Electron. Lett.45(7), 362–U31 (2009).
[CrossRef]

Yong Choi, D.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguids,” Laser Photon. Rev.6(1), 97–114 (2012).
[CrossRef]

Zhang, W. W.

W. W. Zhang and R. A. Minasian, “Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett.23(23), 1775–1777 (2011).
[CrossRef]

Zhu, K.

K. Zhu, H. Ou, H. Fu, E. Remb, and S. He, “A simple and tunable single-bandpass microwave photonic filter of adjustable shape,” IEEE Photon. Technol. Lett.20(23), 1917–1919 (2008).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (1)

X. Yi and R. A. Minasian, “Microwave photonic filter with single bandpass response,” Electron. Lett.45(7), 362–U31 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

D. B. Hunter and R. A. Minasian, “Tunable microwave fiber-optic bandpass filters,” IEEE Photon. Technol. Lett.11(7), 874–876 (1999).
[CrossRef]

K. Zhu, H. Ou, H. Fu, E. Remb, and S. He, “A simple and tunable single-bandpass microwave photonic filter of adjustable shape,” IEEE Photon. Technol. Lett.20(23), 1917–1919 (2008).
[CrossRef]

W. W. Zhang and R. A. Minasian, “Widely tunable single-passband microwave photonic filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett.23(23), 1775–1777 (2011).
[CrossRef]

J. Sancho, M. Sanghoon Chin, A. Sagues, J. Loayssa, I. Lloret, S. Gasulla, L. Sales, Thévenaz, and J. Capmany, “Dynamic microwave photonic filter using separate carrier tuning based on stimulated Brillouin scattering in fibers,” IEEE Photon. Technol. Lett.22(23), 1753–1755 (2010).
[CrossRef]

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with all-optical complex coefficients,” IEEE Photon. Technol. Lett.18(16), 1744–1746 (2006).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

W. Li, M. Li, and J. Yao, “A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating,” IEEE Trans. Microw. Theory Tech.60(5), 1287–1296 (2012).
[CrossRef]

J. Lightwave Technol. (3)

JJAP Part 1-Regular Papers Brief Communications & Review Papers (1)

W. J. Chin, D. H. Kim, J. H. Song, and S. S. Lee, “Integrated photonic microwave bandpass filter incorporating a polymeric microring resonator,” JJAP Part 1-Regular Papers Brief Communications & Review Papers45(4A), 2576–2579 (2006).
[CrossRef]

Laser Photon. Rev. (1)

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguids,” Laser Photon. Rev.6(1), 97–114 (2012).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

F. Coppinger, C. K. Madsen, and B. Jalali, “Photonic microwave filtering using coherently coupled integrated ring resonators,” Microw. Opt. Technol. Lett.21(2), 90–93 (1999).
[CrossRef]

Nat. Photonics (2)

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide Photonics,” Nat. Photonics5, 141–148 (2011).

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics6(3), 186–194 (2012).
[CrossRef]

Opt. Commun. (2)

A. J. Torregrosa, H. Maestre, A. L. Recas, J. A. Pereda, J. Capmany, and C. R. Fernandez-Pousa, “Tunability of the multiple-bandpass response of cascaded single-source and continuous-sample microwave photonic filters,” Opt. Commun.283(7), 1320–1325 (2010).
[CrossRef]

Y. M. Chang and J. H. Lee, “High-Q tunable, photonic microwave single passband filter based on stimulated Brillouin scattering and fiber Bragg grating filtering,” Opt. Commun.281(20), 5146–5150 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Other (3)

B. Vidal, T. Mengual, and J. Marti, “Photonic microwave filter with single bandpass response based on Brillouin processing and SSB-SC,” International Topical Meeting on Microwave Photonics 92–95 (2009).

X. Xue, X. Zheng, H. Zhang, and B. Zhou, “Single-bandpass microwave photonic filter with wide tuning range and no baseband response,” IEEE Photonics Conference 143–144 (2011).

J. Mora, J. Capmany, and L. R. Chen, “Tunable and reconfigurable single bandpass photonic microwave filter using a high-birefringence Sagnac loop and DVMM channel selector,” IEEE Leos Annual Meeting 1-2, 192–193 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Principle of stimulated Brillouin scattering based microwave photonic filter

Fig. 2
Fig. 2

Schematic of stimulated Brillouin scattering based microwave photonic filter with residual co-propagating pump which arises due to reflection at the lensed fiber and chip interface.

Fig. 3
Fig. 3

Experimental setup to realize PCMPF using SBS along with the optical microscope image of a typical rib waveguide and optical and acoustic modes in the rib structure showing strong optical-acoustic confinement. PC: polarization controller, FBG: fiber Bragg grating, IM: intensity modulator, PM: phase modulator C: circulator, EDFA: erbium doped fiber amplifier, OSA: optical spectrum analyser, Det: photodetector and RFSA: radio frequency spectrum analyser.

Fig. 4
Fig. 4

Principle of general MPF operation when IM frequency greater than RF frequency ωM > ωRF (a, b) and for IM frequency smaller than RF frequency ωRF > ωM (c, d). For ωM > ωRF, lower IM sideband is used as a carrier for phase modulation and the upper phase modulated sideband experiences SBS gain. For ωRF> ωM, upper IM sideband acts as the carrier for phase modulation and lower phase modulated sideband experiences SBS gain. For ωM > ωRF, the IM carrier is blocked by FBG2, which was used to remove the parasitic pump.

Fig. 5
Fig. 5

RF trace for filtering of a phase modulated RF signal centered at ωRF = 7 GHz using PCMPF showing a large signal ~20 dB on the RFSA at the RF frequency ωRF = 7GHz and other small unwanted signals arising from the beating of residual co-propagating pump with amplified signal (ΩB) and a signal arising from beating between the amplified and unamplified PM sideband at 2ωRF = 14 GHz (see inset).

Fig. 6
Fig. 6

Tuning response of the MPF centre frequency over the range 2-12 GHz demonstrating wide tuning range.

Fig. 7
Fig. 7

Amplitude and 3dB bandwidth of PCMPF for different centre RF frequencies demonstrating good amplitude (~20 ± 2 dB) and bandwidth (23 ± 2 MHz) stability. Inset: MPF profiles taken at centre frequencies of 4 and 11 GHz.

Fig. 8
Fig. 8

Theoretical filter response for (a) single and (c) two pumps demonstrating MPF profile reshaping (flat top) with improved 3dB bandwidth. Measured MPF profiles for (b) single pump f3dB ~20 MHz and (d) dual pump f3dB ~40 MHz with shape factor improved from S = 3.5 (single pump) to S = 2 (dual pump). The reshaping results in flat topped filter profile.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E(t)= e j ω 0 t e jϕ(t) = e j ω 0 t [ 1+ A (Ω) e jΩt dΩ+ A + (Ω) e jΩt dΩ ].
[ A * (Ω)+ A + (Ω) ] e jΩt dΩ=0,
I(t) [ A * (Ω)+G(Ω) A + (Ω) ] e jΩt dΩ.
I(t) ( G(Ω)1 ) A + (Ω) e jΩt dΩ.
E(t)= e j ω 0 t [ 1+ A (Ω) e jΩt dΩ+ G (Ω) A + (Ω) e jΩt dΩ+ A p e j( ω p ω 0 )t ].
I(t) ( G(Ω)1 ) A + (Ω) e jΩt dΩ Filtered Signal + [ A p e j( ω p ω 0 )t + A p A * (Ω) e j( ω p ω 0 +Ω)t dΩ+ A p G * (Ω) A + * (Ω) e j( ω p ω 0 Ω)t dΩ ] Unwanted Signals .

Metrics