Abstract

We analytically and numerically study the emission properties of an electric dipole coupled to a plasmonic spiral structure with different pitch. As a transmitting antenna, the spiral structure couples the radiation from the electric dipole into circularly polarized emitted photons in the far field. The spin carried by the emitted photons is determined by the handedness of the spiral antenna. By increasing the spiral pitch in the unit of surface plasmon wavelength, these circularly polarized photons also gain orbital angular momentum with different topological charges. This phenomenon is attributed to the presence of a geometric phase arising from the interaction of light from point source with the anisotropic spiral structure. The circularly polarized vortex emission from such optically coupled spiral antenna also has high directivity, which may find important applications in quantum optical information, single molecule sensing, and integrated photonic circuits.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
    [CrossRef]
  2. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
    [CrossRef] [PubMed]
  3. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett.5(7), 1399–1402 (2005).
    [CrossRef] [PubMed]
  4. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
    [CrossRef] [PubMed]
  5. Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett.101(4), 043903 (2008).
    [CrossRef] [PubMed]
  6. Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett.9(8), 3016–3019 (2009).
    [CrossRef] [PubMed]
  7. N. Shitrit, I. Bretner, Y. Gorodetski, V. Kleiner, and E. Hasman, “Optical spin Hall effects in plasmonic chains,” Nano Lett.11(5), 2038–2042 (2011).
    [CrossRef] [PubMed]
  8. N. Shitrit, S. Nechayev, V. Kleiner, and E. Hasman, “Spin-dependent plasmonics based on interfering topological defects,” Nano Lett.12(3), 1620–1623 (2012).
    [CrossRef] [PubMed]
  9. S. Yang, W. Chen, R. L. Nelson, and Q. Zhan, “Miniature circular polarization analyzer with spiral plasmonic lens,” Opt. Lett.34(20), 3047–3049 (2009).
    [CrossRef] [PubMed]
  10. Z. Wu, W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Two-photon fluorescence characterization of spiral plasmonic lenses as circular polarization analyzers,” Opt. Lett.35(11), 1755–1757 (2010).
    [CrossRef] [PubMed]
  11. W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett.10(6), 2075–2079 (2010).
    [CrossRef] [PubMed]
  12. G. Rui, R. L. Nelson, and Q. Zhan, “Circularly polarized unidirectional emission via a coupled plasmonic spiral antenna,” Opt. Lett.36(23), 4533–4535 (2011).
    [CrossRef] [PubMed]
  13. P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett.100(1), 013101 (2012).
    [CrossRef]
  14. J. Trevino, H. Cao, and L. Dal Negro, “Circularly symmetric light scattering from nanoplasmonic spirals,” Nano Lett.11(5), 2008–2016 (2011).
    [CrossRef] [PubMed]
  15. B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron.34(2), 47–87 (2010).
    [CrossRef]
  16. J. Tetienne, R. Blanchard, N. Yu, P. Genevet, M. A. Kats, J. A. Fan, T. Edamura, S. Furuta, M. Yamanishi, and F. Capasso, “Dipolar modeling and experimental demonstration of multi-beam plasmonic collimators,” New J. Phys.13(5), 053057 (2011).
    [CrossRef]
  17. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).

2012 (2)

N. Shitrit, S. Nechayev, V. Kleiner, and E. Hasman, “Spin-dependent plasmonics based on interfering topological defects,” Nano Lett.12(3), 1620–1623 (2012).
[CrossRef] [PubMed]

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett.100(1), 013101 (2012).
[CrossRef]

2011 (4)

J. Trevino, H. Cao, and L. Dal Negro, “Circularly symmetric light scattering from nanoplasmonic spirals,” Nano Lett.11(5), 2008–2016 (2011).
[CrossRef] [PubMed]

J. Tetienne, R. Blanchard, N. Yu, P. Genevet, M. A. Kats, J. A. Fan, T. Edamura, S. Furuta, M. Yamanishi, and F. Capasso, “Dipolar modeling and experimental demonstration of multi-beam plasmonic collimators,” New J. Phys.13(5), 053057 (2011).
[CrossRef]

N. Shitrit, I. Bretner, Y. Gorodetski, V. Kleiner, and E. Hasman, “Optical spin Hall effects in plasmonic chains,” Nano Lett.11(5), 2038–2042 (2011).
[CrossRef] [PubMed]

G. Rui, R. L. Nelson, and Q. Zhan, “Circularly polarized unidirectional emission via a coupled plasmonic spiral antenna,” Opt. Lett.36(23), 4533–4535 (2011).
[CrossRef] [PubMed]

2010 (3)

Z. Wu, W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Two-photon fluorescence characterization of spiral plasmonic lenses as circular polarization analyzers,” Opt. Lett.35(11), 1755–1757 (2010).
[CrossRef] [PubMed]

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett.10(6), 2075–2079 (2010).
[CrossRef] [PubMed]

B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron.34(2), 47–87 (2010).
[CrossRef]

2009 (2)

S. Yang, W. Chen, R. L. Nelson, and Q. Zhan, “Miniature circular polarization analyzer with spiral plasmonic lens,” Opt. Lett.34(20), 3047–3049 (2009).
[CrossRef] [PubMed]

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett.9(8), 3016–3019 (2009).
[CrossRef] [PubMed]

2008 (1)

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett.101(4), 043903 (2008).
[CrossRef] [PubMed]

2005 (2)

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett.5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

2002 (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).

Abeysinghe, D. C.

Z. Wu, W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Two-photon fluorescence characterization of spiral plasmonic lenses as circular polarization analyzers,” Opt. Lett.35(11), 1755–1757 (2010).
[CrossRef] [PubMed]

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett.10(6), 2075–2079 (2010).
[CrossRef] [PubMed]

Aieta, F.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett.100(1), 013101 (2012).
[CrossRef]

Blanchard, R.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett.100(1), 013101 (2012).
[CrossRef]

J. Tetienne, R. Blanchard, N. Yu, P. Genevet, M. A. Kats, J. A. Fan, T. Edamura, S. Furuta, M. Yamanishi, and F. Capasso, “Dipolar modeling and experimental demonstration of multi-beam plasmonic collimators,” New J. Phys.13(5), 053057 (2011).
[CrossRef]

Bretner, I.

N. Shitrit, I. Bretner, Y. Gorodetski, V. Kleiner, and E. Hasman, “Optical spin Hall effects in plasmonic chains,” Nano Lett.11(5), 2038–2042 (2011).
[CrossRef] [PubMed]

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett.9(8), 3016–3019 (2009).
[CrossRef] [PubMed]

Brown, D. E.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett.5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Cao, H.

J. Trevino, H. Cao, and L. Dal Negro, “Circularly symmetric light scattering from nanoplasmonic spirals,” Nano Lett.11(5), 2008–2016 (2011).
[CrossRef] [PubMed]

Capasso, F.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett.100(1), 013101 (2012).
[CrossRef]

J. Tetienne, R. Blanchard, N. Yu, P. Genevet, M. A. Kats, J. A. Fan, T. Edamura, S. Furuta, M. Yamanishi, and F. Capasso, “Dipolar modeling and experimental demonstration of multi-beam plasmonic collimators,” New J. Phys.13(5), 053057 (2011).
[CrossRef]

Chen, W.

Dal Negro, L.

J. Trevino, H. Cao, and L. Dal Negro, “Circularly symmetric light scattering from nanoplasmonic spirals,” Nano Lett.11(5), 2008–2016 (2011).
[CrossRef] [PubMed]

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Ebbesen, T. W.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Edamura, T.

J. Tetienne, R. Blanchard, N. Yu, P. Genevet, M. A. Kats, J. A. Fan, T. Edamura, S. Furuta, M. Yamanishi, and F. Capasso, “Dipolar modeling and experimental demonstration of multi-beam plasmonic collimators,” New J. Phys.13(5), 053057 (2011).
[CrossRef]

Fan, J. A.

J. Tetienne, R. Blanchard, N. Yu, P. Genevet, M. A. Kats, J. A. Fan, T. Edamura, S. Furuta, M. Yamanishi, and F. Capasso, “Dipolar modeling and experimental demonstration of multi-beam plasmonic collimators,” New J. Phys.13(5), 053057 (2011).
[CrossRef]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Furuta, S.

J. Tetienne, R. Blanchard, N. Yu, P. Genevet, M. A. Kats, J. A. Fan, T. Edamura, S. Furuta, M. Yamanishi, and F. Capasso, “Dipolar modeling and experimental demonstration of multi-beam plasmonic collimators,” New J. Phys.13(5), 053057 (2011).
[CrossRef]

Gaburro, Z.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett.100(1), 013101 (2012).
[CrossRef]

Garcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Genevet, P.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett.100(1), 013101 (2012).
[CrossRef]

J. Tetienne, R. Blanchard, N. Yu, P. Genevet, M. A. Kats, J. A. Fan, T. Edamura, S. Furuta, M. Yamanishi, and F. Capasso, “Dipolar modeling and experimental demonstration of multi-beam plasmonic collimators,” New J. Phys.13(5), 053057 (2011).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Gorodetski, Y.

N. Shitrit, I. Bretner, Y. Gorodetski, V. Kleiner, and E. Hasman, “Optical spin Hall effects in plasmonic chains,” Nano Lett.11(5), 2038–2042 (2011).
[CrossRef] [PubMed]

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett.9(8), 3016–3019 (2009).
[CrossRef] [PubMed]

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett.101(4), 043903 (2008).
[CrossRef] [PubMed]

Hasman, E.

N. Shitrit, S. Nechayev, V. Kleiner, and E. Hasman, “Spin-dependent plasmonics based on interfering topological defects,” Nano Lett.12(3), 1620–1623 (2012).
[CrossRef] [PubMed]

N. Shitrit, I. Bretner, Y. Gorodetski, V. Kleiner, and E. Hasman, “Optical spin Hall effects in plasmonic chains,” Nano Lett.11(5), 2038–2042 (2011).
[CrossRef] [PubMed]

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett.9(8), 3016–3019 (2009).
[CrossRef] [PubMed]

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett.101(4), 043903 (2008).
[CrossRef] [PubMed]

Hiller, J. M.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett.5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Hua, J.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett.5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Kats, M. A.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett.100(1), 013101 (2012).
[CrossRef]

J. Tetienne, R. Blanchard, N. Yu, P. Genevet, M. A. Kats, J. A. Fan, T. Edamura, S. Furuta, M. Yamanishi, and F. Capasso, “Dipolar modeling and experimental demonstration of multi-beam plasmonic collimators,” New J. Phys.13(5), 053057 (2011).
[CrossRef]

Kim, H.

B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron.34(2), 47–87 (2010).
[CrossRef]

Kim, S.

B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron.34(2), 47–87 (2010).
[CrossRef]

Kimball, C. W.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett.5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Kleiner, V.

N. Shitrit, S. Nechayev, V. Kleiner, and E. Hasman, “Spin-dependent plasmonics based on interfering topological defects,” Nano Lett.12(3), 1620–1623 (2012).
[CrossRef] [PubMed]

N. Shitrit, I. Bretner, Y. Gorodetski, V. Kleiner, and E. Hasman, “Optical spin Hall effects in plasmonic chains,” Nano Lett.11(5), 2038–2042 (2011).
[CrossRef] [PubMed]

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett.9(8), 3016–3019 (2009).
[CrossRef] [PubMed]

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett.101(4), 043903 (2008).
[CrossRef] [PubMed]

Lee, B.

B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron.34(2), 47–87 (2010).
[CrossRef]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Lezec, H. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Lim, Y.

B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron.34(2), 47–87 (2010).
[CrossRef]

Lin, J.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett.100(1), 013101 (2012).
[CrossRef]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Nechayev, S.

N. Shitrit, S. Nechayev, V. Kleiner, and E. Hasman, “Spin-dependent plasmonics based on interfering topological defects,” Nano Lett.12(3), 1620–1623 (2012).
[CrossRef] [PubMed]

Nelson, R. L.

Niv, A.

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett.101(4), 043903 (2008).
[CrossRef] [PubMed]

Pearson, J.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett.5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).

Rui, G.

Scully, M. O.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett.100(1), 013101 (2012).
[CrossRef]

Shitrit, N.

N. Shitrit, S. Nechayev, V. Kleiner, and E. Hasman, “Spin-dependent plasmonics based on interfering topological defects,” Nano Lett.12(3), 1620–1623 (2012).
[CrossRef] [PubMed]

N. Shitrit, I. Bretner, Y. Gorodetski, V. Kleiner, and E. Hasman, “Optical spin Hall effects in plasmonic chains,” Nano Lett.11(5), 2038–2042 (2011).
[CrossRef] [PubMed]

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett.9(8), 3016–3019 (2009).
[CrossRef] [PubMed]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Tetienne, J.

J. Tetienne, R. Blanchard, N. Yu, P. Genevet, M. A. Kats, J. A. Fan, T. Edamura, S. Furuta, M. Yamanishi, and F. Capasso, “Dipolar modeling and experimental demonstration of multi-beam plasmonic collimators,” New J. Phys.13(5), 053057 (2011).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Trevino, J.

J. Trevino, H. Cao, and L. Dal Negro, “Circularly symmetric light scattering from nanoplasmonic spirals,” Nano Lett.11(5), 2008–2016 (2011).
[CrossRef] [PubMed]

Vlasko-Vlasov, V. K.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett.5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Welp, U.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett.5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Wu, Z.

Yamanishi, M.

J. Tetienne, R. Blanchard, N. Yu, P. Genevet, M. A. Kats, J. A. Fan, T. Edamura, S. Furuta, M. Yamanishi, and F. Capasso, “Dipolar modeling and experimental demonstration of multi-beam plasmonic collimators,” New J. Phys.13(5), 053057 (2011).
[CrossRef]

Yang, S.

Yin, L.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett.5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Yu, N.

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett.100(1), 013101 (2012).
[CrossRef]

J. Tetienne, R. Blanchard, N. Yu, P. Genevet, M. A. Kats, J. A. Fan, T. Edamura, S. Furuta, M. Yamanishi, and F. Capasso, “Dipolar modeling and experimental demonstration of multi-beam plasmonic collimators,” New J. Phys.13(5), 053057 (2011).
[CrossRef]

Zhan, Q.

Zhang, X.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett.100(1), 013101 (2012).
[CrossRef]

Nano Lett. (6)

J. Trevino, H. Cao, and L. Dal Negro, “Circularly symmetric light scattering from nanoplasmonic spirals,” Nano Lett.11(5), 2008–2016 (2011).
[CrossRef] [PubMed]

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett.10(6), 2075–2079 (2010).
[CrossRef] [PubMed]

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett.5(7), 1399–1402 (2005).
[CrossRef] [PubMed]

Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, and E. Hasman, “Observation of optical spin symmetry breaking in nanoapertures,” Nano Lett.9(8), 3016–3019 (2009).
[CrossRef] [PubMed]

N. Shitrit, I. Bretner, Y. Gorodetski, V. Kleiner, and E. Hasman, “Optical spin Hall effects in plasmonic chains,” Nano Lett.11(5), 2038–2042 (2011).
[CrossRef] [PubMed]

N. Shitrit, S. Nechayev, V. Kleiner, and E. Hasman, “Spin-dependent plasmonics based on interfering topological defects,” Nano Lett.12(3), 1620–1623 (2012).
[CrossRef] [PubMed]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

New J. Phys. (1)

J. Tetienne, R. Blanchard, N. Yu, P. Genevet, M. A. Kats, J. A. Fan, T. Edamura, S. Furuta, M. Yamanishi, and F. Capasso, “Dipolar modeling and experimental demonstration of multi-beam plasmonic collimators,” New J. Phys.13(5), 053057 (2011).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).

Phys. Rev. Lett. (1)

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett.101(4), 043903 (2008).
[CrossRef] [PubMed]

Prog. Quantum Electron. (1)

B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quantum Electron.34(2), 47–87 (2010).
[CrossRef]

Science (2)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Illustration of a right hand spiral structure and the coordinates setup for the far field calculation. The inset illustrates the spiral structure viewed from the left and the coordinates used in the analytical calculation.

Fig. 2
Fig. 2

Analytical calculation results for the intensity distribution (a, b, c, d) and Ex phase distribution (e, f, g, h) and Ey phase distribution (i, j, k, l) of the spiral structure with different geometric topological charge m. The charge m varies from 0 to 3 with increment of 1. The green colored closed contours shown on both intensity and phase plots illustrate the topological charge.

Fig. 3
Fig. 3

Diagram of the spiral antenna structure (m = 0, 1, 2, 3) used in the numerical simulation. An electric dipole is located 5 nm above the center of the spiral surface. The oscillating direction of the electric dipole is illustrated by the red arrow. The spiral re-radiates the emission of electric dipole into the free space on the other side of the dipole source.

Fig. 4
Fig. 4

Numerical simulation results for 4-turn spiral structures with different geometric topological charge m. (Top panel: intensity distribution, middle panel: polarization map superimposed on zoom-in intensity distribution, bottom panel: phase distribution of Ex for the main lobe, the area corresponding to the dark center of the intensity is blocked with a solid circle). The topological charge m varies from 0 to 3 with increment of 1. The green colored closed contours shown in both of the intensity and phase plots illustrate the topological charge within the main lobe.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

r= r 0 + m λ spp 2π θ,
E (z,ρ,ϕ)= exp[i k 0 (z+ ρ 2 2z )] i λ 0 z 0 0 2π g(r,θ)exp[i 2π λ 0 z rρcos(θϕ)]r e r dθdr ,
E x (z,ρ,ϕ)= e x exp[i k 0 (z+ ρ 2 2z )] i λ 0 z E 0 Δr 0 2π cosθr e i k r r exp[i 2π λ 0 z ( r 0 + m λ spp 2π θ)ρcos(θϕ)]dθ ,
E x (z,ρ,ϕ)= e x exp[i k 0 (z+ ρ 2 2z )] i λ 0 z E 0 Δr× 0 2π r 0 cosθ e i 2π λ spp ( r 0 + m λ spp 2π θ) exp[i 2π λ 0 z ( r 0 + m λ spp 2π θ)ρcos(θϕ)]dθ = e x r 0 exp[i k 0 (z+ ρ 2 2z )] i λ 0 z E 0 Δr e i 2π r 0 λ spp 0 2π cosθ e i 2π r 0 ρ λ 0 z cos(θϕ) e imθ[1 λ spp λ 0 ρ z cos(θϕ)] d θ.
E x (z,ρ,ϕ)= e x r 0 exp[i k 0 (z+ ρ 2 2z )] i λ 0 z E 0 Δr e i 2π r 0 λ spp 0 2π cosθ e i 2π r 0 ρ λ 0 z cos(θϕ) e imθ d θ = e x π r 0 exp[i k 0 (z+ ρ 2 2z )] i λ 0 z E 0 Δr e i 2π r 0 λ spp × [ i m+1 J m+1 ( 2π r 0 ρ λ 0 z ) e i( m+1 )ϕ + i m1 J m1 ( 2π r 0 ρ λ 0 z ) e i( m1 )ϕ ].
E y (z,ρ,ϕ)= e y iπ r 0 exp[i k 0 (z+ ρ 2 2z )] i λ 0 z E 0 Δr e i 2π r 0 λ spp × [ i m+1 J m+1 ( 2π r 0 ρ λ 0 z ) e i( m+1 )ϕ i m1 J m1 ( 2π r 0 ρ λ 0 z ) e i( m1 )ϕ ].

Metrics