Abstract

A new type of Anti Resonant Reflecting Optical Waveguide (ARROW) fiber with a low refractive index contrast is reported. This waveguide is similar to a Bragg fiber for which the high index rings are replaced by discontinuous rings made of circular High Index Inclusions (HII). As compared to conventional Bragg fibers, such a new structure enables true Photonic BandGap (PBG) guidance and limits the number of cladding modes located within the high index regions, thus enhancing the guiding properties. A Mode Field Diameter (MFD) of 26 μm is reported at a wavelength of 1400 nm. Single Mode (SM) behavior is also observed beyond 1400 nm for a 1 m-long fiber.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Fini, “Bend-resistant design of conventional and microstructure fibers with very large mode area,” Opt. Express14, 69–81 (2006).
    [CrossRef] [PubMed]
  2. K. Saitoh, Y. Tsuchida, L. Rosa, M. Koshiba, F. Poli, A. Cucinotta, S. Selleri, M. Pal, M. Paul, D. Ghosh, and S. Bhadra, “Design of all-solid leakage channel fibers with large mode area and low bending loss,” Opt. Express17, 4913–4919 (2009).
    [CrossRef] [PubMed]
  3. S. R. Petersen, T. T. Alkeskjold, F. Poli, E. Coscelli, M. M. Jorgensen, M. Laurila, J. Lægsgaard, and J. Broeng, “Hybrid Ytterbium-doped large-mode-area photonic crystal fiber amplifier for long wavelengths,” Opt. Express20, 6010–6020 (2012).
    [CrossRef] [PubMed]
  4. T. Murao, K. Saitoh, and M. Koshiba, “Multiple resonant coupling mechanism for suppression of higher-order modes in all-solid photonic bandgap fibers with heterostructured cladding,” Opt. Express19, 1713–1727 (2011).
    [CrossRef] [PubMed]
  5. S. S. Aleshkina, M. E. Likhachev, A. D. Pryamikov, D. A. Gaponov, A. N. Denisov, M. M. Bubnov, M. Y. Salganskii, A. Y. Laptev, A. N. Guryanov, Y. A. Uspenskii, N. L. Popov, and S. Février, “Very-large-mode-area photonic bandgap Bragg fiber polarizing in a wide spectral range,” Opt. Lett.36, 3566–3568 (2011).
    [CrossRef] [PubMed]
  6. S. L. Semjonov, O. N. Egorova, A. D. Pryamikov, D. A. Gaponov, A. S. Biriukov, E. M. Dianov, M. Y. Salganskii, V. F. Khopin, and A. N. Guryanov, “Mode structure of large mode area all-solid photonic bandgap fiber,” CLEO, cmhh6 (2009).
  7. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett.27, 1592–1594 (2002).
    [CrossRef]
  8. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am.68, 1196–1201 (1978).
    [CrossRef]
  9. K. J. Rowland, S. Afshar V., and T. M. Monro, “Novel low-loss bandgaps in all-silica bragg fibers,” J. Lightwave Technol.26, 43–51 (2008).
    [CrossRef]
  10. F. Gérôme, S. Février, A. D. Pryamikov, J. L. Auguste, R. Jamier, J. M. Blondy, M. E. Likhachev, M. M. Bubnov, S. L. Semjonov, and E. M. Dianov, “Highly dispersive large mode area photonic bandgap fiber,” Opt. Lett.32, 1208–1210 (2007).
    [CrossRef] [PubMed]
  11. S. Février, R. Jamier, J. M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low loss large mode area Bragg fiber,” ECOC6, 41–42 (2005).
  12. C. Baskiotis, Y. Jaoun, R. Gabet, G. Bouwmans, Y. Quiquempois, M. Douay, and P. Sillard, “Microbending behavior of large-effective-area Bragg fibers,” Opt. Lett.34, 3490–3492 (2009).
    [CrossRef] [PubMed]
  13. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton Univ. Press, 2008).
  14. K. Otsuka, “Self-induced phase turbulence and chaotic itinerancy in coupled laser systems,” Phys. Rev. Lett.65, 329–332 (1990).
    [CrossRef] [PubMed]
  15. A. Argyros, I. M. Bassett, M. A. van Eijkelenborg, and M. C. J. Large, “Analysis of ring-structured Bragg fibres for single TE mode guidance,” Opt. Express12, 2688–2698 (2004).
    [CrossRef] [PubMed]
  16. G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, “Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (¡ 20 dB/km) around 1550 nm,” Opt. Express13, 8452–8459 (2005).
    [CrossRef] [PubMed]
  17. Y. Ould Agha, F. Zolla, A. Nicollet, and S. Guenneau, “On the use of PML for the computation of leaky modes,” Compel27, 95–109 (2008).
  18. A. Bétourne, V. Pureur, G. Bouwmans, Y. Quiquempois, L. Bigot, M. Perrin, and M. Douay, “Solid photonic bandgap fiber assisted by an extra air-clad structure for low-loss operation around 1.5 μm,” Opt. Express15, 316–324 (2007).
    [CrossRef] [PubMed]
  19. S. Ghosh, S. Dasgupta, R. K. Varshney, D. J. Richardson, and B. P. Pal, “Design of a Bragg fiber with large mode area for mid-infrared applications,” Opt. Express19, 21295–21304 (2011).
    [CrossRef] [PubMed]
  20. E. Marcatili and R. Schmeltzer, “Hollow metallic and Dielectric Waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J.43, 1783–1809 (1964).
  21. J. L. Archambault, R. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Light-wave Technol.11, 416–423 (1993).
    [CrossRef]
  22. L. Bigot, G. Bouwmans, Y. Quiquempois, A Le Rouge, V. Pureur, O. Vanvincq, and M. Douay, “Efficient fiber Bragg gratings in 2D all-solid photonic bandgap fiber,” Opt. Express17, 10105–10112 (2009).
    [CrossRef] [PubMed]
  23. F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. Eur. Opt. Soc.4, 09004–09009 (2009).
    [CrossRef]
  24. T. A. Birks, D. M. Bird, T. D. Hedley, J. M. Pottage, and P. St. J. Russell, “Scaling laws and vector effects in bandgap- guiding fibres,” Opt. Express12, 69–74 (2004).
    [CrossRef] [PubMed]
  25. J. Jasapara, T. H. Her, R. Bise, R. Windeler, and D. J. DiGiovanni, “Group-velocity dispersion measurements in a photonic bandgap fiber,” J. Opt. Soc. Am. B20, 1611–1615 (2003).
    [CrossRef]
  26. V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett.92, 061113–061115 (2008).
    [CrossRef]
  27. R. Goto, I. Fsaifes, A. Baz, L. Bigot, K. Takenaga, S. Matsuo S, and S. D. Jackson, “UV-induced Bragg grating inscription into single-polarization all-solid hybrid microstructured optical fiber,” Opt. Express19, 13525–13530 (2011).
    [CrossRef] [PubMed]

2012 (1)

2011 (4)

2009 (4)

2008 (3)

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett.92, 061113–061115 (2008).
[CrossRef]

Y. Ould Agha, F. Zolla, A. Nicollet, and S. Guenneau, “On the use of PML for the computation of leaky modes,” Compel27, 95–109 (2008).

K. J. Rowland, S. Afshar V., and T. M. Monro, “Novel low-loss bandgaps in all-silica bragg fibers,” J. Lightwave Technol.26, 43–51 (2008).
[CrossRef]

2007 (2)

2006 (1)

2005 (2)

G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, “Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (¡ 20 dB/km) around 1550 nm,” Opt. Express13, 8452–8459 (2005).
[CrossRef] [PubMed]

S. Février, R. Jamier, J. M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low loss large mode area Bragg fiber,” ECOC6, 41–42 (2005).

2004 (2)

2003 (1)

2002 (1)

1993 (1)

J. L. Archambault, R. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Light-wave Technol.11, 416–423 (1993).
[CrossRef]

1990 (1)

K. Otsuka, “Self-induced phase turbulence and chaotic itinerancy in coupled laser systems,” Phys. Rev. Lett.65, 329–332 (1990).
[CrossRef] [PubMed]

1978 (1)

1964 (1)

E. Marcatili and R. Schmeltzer, “Hollow metallic and Dielectric Waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J.43, 1783–1809 (1964).

Abeeluck, A. K.

Afshar V., S.

Aleshkina, S. S.

Alkeskjold, T. T.

Archambault, J. L.

J. L. Archambault, R. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Light-wave Technol.11, 416–423 (1993).
[CrossRef]

Argyros, A.

Auguste, J. L.

Baskiotis, C.

Bassett, I. M.

Baz, A.

Benabid, F.

F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. Eur. Opt. Soc.4, 09004–09009 (2009).
[CrossRef]

Bétourne, A.

Bhadra, S.

Bigot, L.

Bird, D. M.

Biriukov, A. S.

S. L. Semjonov, O. N. Egorova, A. D. Pryamikov, D. A. Gaponov, A. S. Biriukov, E. M. Dianov, M. Y. Salganskii, V. F. Khopin, and A. N. Guryanov, “Mode structure of large mode area all-solid photonic bandgap fiber,” CLEO, cmhh6 (2009).

Birks, T. A.

Bise, R.

Black, R.

J. L. Archambault, R. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Light-wave Technol.11, 416–423 (1993).
[CrossRef]

Blondy, J. M.

F. Gérôme, S. Février, A. D. Pryamikov, J. L. Auguste, R. Jamier, J. M. Blondy, M. E. Likhachev, M. M. Bubnov, S. L. Semjonov, and E. M. Dianov, “Highly dispersive large mode area photonic bandgap fiber,” Opt. Lett.32, 1208–1210 (2007).
[CrossRef] [PubMed]

S. Février, R. Jamier, J. M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low loss large mode area Bragg fiber,” ECOC6, 41–42 (2005).

Bouwmans, G.

Broeng, J.

Bubnov, M. M.

Bures, J.

J. L. Archambault, R. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Light-wave Technol.11, 416–423 (1993).
[CrossRef]

Coscelli, E.

Couny, F.

F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. Eur. Opt. Soc.4, 09004–09009 (2009).
[CrossRef]

Cucinotta, A.

Dasgupta, S.

Denisov, A. N.

Dianov, E. M.

F. Gérôme, S. Février, A. D. Pryamikov, J. L. Auguste, R. Jamier, J. M. Blondy, M. E. Likhachev, M. M. Bubnov, S. L. Semjonov, and E. M. Dianov, “Highly dispersive large mode area photonic bandgap fiber,” Opt. Lett.32, 1208–1210 (2007).
[CrossRef] [PubMed]

S. Février, R. Jamier, J. M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low loss large mode area Bragg fiber,” ECOC6, 41–42 (2005).

S. L. Semjonov, O. N. Egorova, A. D. Pryamikov, D. A. Gaponov, A. S. Biriukov, E. M. Dianov, M. Y. Salganskii, V. F. Khopin, and A. N. Guryanov, “Mode structure of large mode area all-solid photonic bandgap fiber,” CLEO, cmhh6 (2009).

DiGiovanni, D. J.

Douay, M.

Eggleton, B. J.

Egorova, O. N.

S. L. Semjonov, O. N. Egorova, A. D. Pryamikov, D. A. Gaponov, A. S. Biriukov, E. M. Dianov, M. Y. Salganskii, V. F. Khopin, and A. N. Guryanov, “Mode structure of large mode area all-solid photonic bandgap fiber,” CLEO, cmhh6 (2009).

Février, S.

Fini, J. M.

Fsaifes, I.

Gabet, R.

Gaponov, D. A.

S. S. Aleshkina, M. E. Likhachev, A. D. Pryamikov, D. A. Gaponov, A. N. Denisov, M. M. Bubnov, M. Y. Salganskii, A. Y. Laptev, A. N. Guryanov, Y. A. Uspenskii, N. L. Popov, and S. Février, “Very-large-mode-area photonic bandgap Bragg fiber polarizing in a wide spectral range,” Opt. Lett.36, 3566–3568 (2011).
[CrossRef] [PubMed]

S. L. Semjonov, O. N. Egorova, A. D. Pryamikov, D. A. Gaponov, A. S. Biriukov, E. M. Dianov, M. Y. Salganskii, V. F. Khopin, and A. N. Guryanov, “Mode structure of large mode area all-solid photonic bandgap fiber,” CLEO, cmhh6 (2009).

Gérôme, F.

Ghosh, D.

Ghosh, S.

Goto, R.

Guenneau, S.

Y. Ould Agha, F. Zolla, A. Nicollet, and S. Guenneau, “On the use of PML for the computation of leaky modes,” Compel27, 95–109 (2008).

Guryanov, A. N.

S. S. Aleshkina, M. E. Likhachev, A. D. Pryamikov, D. A. Gaponov, A. N. Denisov, M. M. Bubnov, M. Y. Salganskii, A. Y. Laptev, A. N. Guryanov, Y. A. Uspenskii, N. L. Popov, and S. Février, “Very-large-mode-area photonic bandgap Bragg fiber polarizing in a wide spectral range,” Opt. Lett.36, 3566–3568 (2011).
[CrossRef] [PubMed]

S. Février, R. Jamier, J. M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low loss large mode area Bragg fiber,” ECOC6, 41–42 (2005).

S. L. Semjonov, O. N. Egorova, A. D. Pryamikov, D. A. Gaponov, A. S. Biriukov, E. M. Dianov, M. Y. Salganskii, V. F. Khopin, and A. N. Guryanov, “Mode structure of large mode area all-solid photonic bandgap fiber,” CLEO, cmhh6 (2009).

Headley, C.

Hedley, T. D.

Her, T. H.

Jackson, S. D.

Jamier, R.

F. Gérôme, S. Février, A. D. Pryamikov, J. L. Auguste, R. Jamier, J. M. Blondy, M. E. Likhachev, M. M. Bubnov, S. L. Semjonov, and E. M. Dianov, “Highly dispersive large mode area photonic bandgap fiber,” Opt. Lett.32, 1208–1210 (2007).
[CrossRef] [PubMed]

S. Février, R. Jamier, J. M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low loss large mode area Bragg fiber,” ECOC6, 41–42 (2005).

Jaouen, Y.

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett.92, 061113–061115 (2008).
[CrossRef]

Jaoun, Y.

Jasapara, J.

Joannopoulos, J. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton Univ. Press, 2008).

Johnson, S. G.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton Univ. Press, 2008).

Jorgensen, M. M.

Khopin, V. F.

S. Février, R. Jamier, J. M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low loss large mode area Bragg fiber,” ECOC6, 41–42 (2005).

S. L. Semjonov, O. N. Egorova, A. D. Pryamikov, D. A. Gaponov, A. S. Biriukov, E. M. Dianov, M. Y. Salganskii, V. F. Khopin, and A. N. Guryanov, “Mode structure of large mode area all-solid photonic bandgap fiber,” CLEO, cmhh6 (2009).

Koshiba, M.

Lacroix, S.

J. L. Archambault, R. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Light-wave Technol.11, 416–423 (1993).
[CrossRef]

Lægsgaard, J.

Laptev, A. Y.

Large, M. C. J.

Laurila, M.

Le Rouge, A

Light, P. S.

F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. Eur. Opt. Soc.4, 09004–09009 (2009).
[CrossRef]

Likhachev, M. E.

Litchinitser, N. M.

Lopez, F.

Marcatili, E.

E. Marcatili and R. Schmeltzer, “Hollow metallic and Dielectric Waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J.43, 1783–1809 (1964).

Marom, E.

Matsuo S, S.

Meade, R. D.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton Univ. Press, 2008).

Monro, T. M.

Murao, T.

Nicollet, A.

Y. Ould Agha, F. Zolla, A. Nicollet, and S. Guenneau, “On the use of PML for the computation of leaky modes,” Compel27, 95–109 (2008).

Otsuka, K.

K. Otsuka, “Self-induced phase turbulence and chaotic itinerancy in coupled laser systems,” Phys. Rev. Lett.65, 329–332 (1990).
[CrossRef] [PubMed]

Ould Agha, Y.

Y. Ould Agha, F. Zolla, A. Nicollet, and S. Guenneau, “On the use of PML for the computation of leaky modes,” Compel27, 95–109 (2008).

Pal, B. P.

Pal, M.

Paul, M.

Perrin, M.

Petersen, S. R.

Poli, F.

Popov, N. L.

Pottage, J. M.

Provino, L.

Pryamikov, A. D.

Pureur, V.

Quiquempois, Y.

Richardson, D. J.

Roberts, P. J.

F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. Eur. Opt. Soc.4, 09004–09009 (2009).
[CrossRef]

Rosa, L.

Rowland, K. J.

Russell, P. St. J.

Saitoh, K.

Salganskii, M. Y.

S. S. Aleshkina, M. E. Likhachev, A. D. Pryamikov, D. A. Gaponov, A. N. Denisov, M. M. Bubnov, M. Y. Salganskii, A. Y. Laptev, A. N. Guryanov, Y. A. Uspenskii, N. L. Popov, and S. Février, “Very-large-mode-area photonic bandgap Bragg fiber polarizing in a wide spectral range,” Opt. Lett.36, 3566–3568 (2011).
[CrossRef] [PubMed]

S. Février, R. Jamier, J. M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low loss large mode area Bragg fiber,” ECOC6, 41–42 (2005).

S. L. Semjonov, O. N. Egorova, A. D. Pryamikov, D. A. Gaponov, A. S. Biriukov, E. M. Dianov, M. Y. Salganskii, V. F. Khopin, and A. N. Guryanov, “Mode structure of large mode area all-solid photonic bandgap fiber,” CLEO, cmhh6 (2009).

Schmeltzer, R.

E. Marcatili and R. Schmeltzer, “Hollow metallic and Dielectric Waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J.43, 1783–1809 (1964).

Selleri, S.

Semjonov, S. L.

F. Gérôme, S. Février, A. D. Pryamikov, J. L. Auguste, R. Jamier, J. M. Blondy, M. E. Likhachev, M. M. Bubnov, S. L. Semjonov, and E. M. Dianov, “Highly dispersive large mode area photonic bandgap fiber,” Opt. Lett.32, 1208–1210 (2007).
[CrossRef] [PubMed]

S. Février, R. Jamier, J. M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low loss large mode area Bragg fiber,” ECOC6, 41–42 (2005).

S. L. Semjonov, O. N. Egorova, A. D. Pryamikov, D. A. Gaponov, A. S. Biriukov, E. M. Dianov, M. Y. Salganskii, V. F. Khopin, and A. N. Guryanov, “Mode structure of large mode area all-solid photonic bandgap fiber,” CLEO, cmhh6 (2009).

Sillard, P.

Takenaga, K.

Tsuchida, Y.

Uspenskii, Y. A.

van Eijkelenborg, M. A.

Vanvincq, O.

Varshney, R. K.

Windeler, R.

Winn, J. N.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton Univ. Press, 2008).

Yariv, A.

Yeh, P.

Zolla, F.

Y. Ould Agha, F. Zolla, A. Nicollet, and S. Guenneau, “On the use of PML for the computation of leaky modes,” Compel27, 95–109 (2008).

Appl. Phys. Lett. (1)

V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett.92, 061113–061115 (2008).
[CrossRef]

Bell Syst. Tech. J. (1)

E. Marcatili and R. Schmeltzer, “Hollow metallic and Dielectric Waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J.43, 1783–1809 (1964).

Compel (1)

Y. Ould Agha, F. Zolla, A. Nicollet, and S. Guenneau, “On the use of PML for the computation of leaky modes,” Compel27, 95–109 (2008).

ECOC (1)

S. Février, R. Jamier, J. M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low loss large mode area Bragg fiber,” ECOC6, 41–42 (2005).

J. Eur. Opt. Soc. (1)

F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. Eur. Opt. Soc.4, 09004–09009 (2009).
[CrossRef]

J. Light-wave Technol. (1)

J. L. Archambault, R. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Light-wave Technol.11, 416–423 (1993).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Opt. Express (11)

T. A. Birks, D. M. Bird, T. D. Hedley, J. M. Pottage, and P. St. J. Russell, “Scaling laws and vector effects in bandgap- guiding fibres,” Opt. Express12, 69–74 (2004).
[CrossRef] [PubMed]

A. Argyros, I. M. Bassett, M. A. van Eijkelenborg, and M. C. J. Large, “Analysis of ring-structured Bragg fibres for single TE mode guidance,” Opt. Express12, 2688–2698 (2004).
[CrossRef] [PubMed]

G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, “Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (¡ 20 dB/km) around 1550 nm,” Opt. Express13, 8452–8459 (2005).
[CrossRef] [PubMed]

J. M. Fini, “Bend-resistant design of conventional and microstructure fibers with very large mode area,” Opt. Express14, 69–81 (2006).
[CrossRef] [PubMed]

A. Bétourne, V. Pureur, G. Bouwmans, Y. Quiquempois, L. Bigot, M. Perrin, and M. Douay, “Solid photonic bandgap fiber assisted by an extra air-clad structure for low-loss operation around 1.5 μm,” Opt. Express15, 316–324 (2007).
[CrossRef] [PubMed]

K. Saitoh, Y. Tsuchida, L. Rosa, M. Koshiba, F. Poli, A. Cucinotta, S. Selleri, M. Pal, M. Paul, D. Ghosh, and S. Bhadra, “Design of all-solid leakage channel fibers with large mode area and low bending loss,” Opt. Express17, 4913–4919 (2009).
[CrossRef] [PubMed]

L. Bigot, G. Bouwmans, Y. Quiquempois, A Le Rouge, V. Pureur, O. Vanvincq, and M. Douay, “Efficient fiber Bragg gratings in 2D all-solid photonic bandgap fiber,” Opt. Express17, 10105–10112 (2009).
[CrossRef] [PubMed]

T. Murao, K. Saitoh, and M. Koshiba, “Multiple resonant coupling mechanism for suppression of higher-order modes in all-solid photonic bandgap fibers with heterostructured cladding,” Opt. Express19, 1713–1727 (2011).
[CrossRef] [PubMed]

R. Goto, I. Fsaifes, A. Baz, L. Bigot, K. Takenaga, S. Matsuo S, and S. D. Jackson, “UV-induced Bragg grating inscription into single-polarization all-solid hybrid microstructured optical fiber,” Opt. Express19, 13525–13530 (2011).
[CrossRef] [PubMed]

S. Ghosh, S. Dasgupta, R. K. Varshney, D. J. Richardson, and B. P. Pal, “Design of a Bragg fiber with large mode area for mid-infrared applications,” Opt. Express19, 21295–21304 (2011).
[CrossRef] [PubMed]

S. R. Petersen, T. T. Alkeskjold, F. Poli, E. Coscelli, M. M. Jorgensen, M. Laurila, J. Lægsgaard, and J. Broeng, “Hybrid Ytterbium-doped large-mode-area photonic crystal fiber amplifier for long wavelengths,” Opt. Express20, 6010–6020 (2012).
[CrossRef] [PubMed]

Opt. Lett. (4)

Phys. Rev. Lett. (1)

K. Otsuka, “Self-induced phase turbulence and chaotic itinerancy in coupled laser systems,” Phys. Rev. Lett.65, 329–332 (1990).
[CrossRef] [PubMed]

Other (2)

S. L. Semjonov, O. N. Egorova, A. D. Pryamikov, D. A. Gaponov, A. S. Biriukov, E. M. Dianov, M. Y. Salganskii, V. F. Khopin, and A. N. Guryanov, “Mode structure of large mode area all-solid photonic bandgap fiber,” CLEO, cmhh6 (2009).

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton Univ. Press, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Cross section of a Bragg fiber, (b) the corresponding Pixelated Bragg fiber and (c) SEM picture of the realized fiber. In the 2 first schemes, darker blue stands for higher refractive index. Lighter gray corresponds to Ge-doped silica in the SEM picture (c).

Fig. 2
Fig. 2

Top: effective indices of the 4 first core-guided modes: LP01 (black), LP11 (green), LP21 (red) and LP02 (blue). The 40 LP01 ring supermodes of the first ring HII (open red circles) are also displayed above the silica line together with the 80 LP11 ring supermodes. Refractive index of silica is also shown in dashed blue. Bottom: CL of the LP01 (black), LP11 (green), LP21 (red) and LP02 (blue) core-guided modes for the modeled PiBF.

Fig. 3
Fig. 3

Top: Attenuation spectrum of the PiBF obtained by the cut-back technique. Bottom: Group Velocity Dispersion for the LP01 core mode. Red circles correspond to the experimental data, the black line being the GVD for the theoretical PiBF, and the blue one being the one of silica.

Fig. 4
Fig. 4

Near field patterns of the core-guided modes. From left to right: figures obtaines with a shift of the pump beam of Δx with respect to the core center. Each line corresponds to a wavelength. Intensity patterns are displayed in log scale so that intensities in the low index annular rings can be seen without saturation of the intensity within the core.

Fig. 5
Fig. 5

Transverse cut of the intensity for the LP01 core-guided mode, recorded at λ = 1400 nm (linear scale). Inset: spatial profile shown in linear scale.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

κ l m Δ r = π
κ l m = [ ( n k 0 ) 2 β l m 2 ] 1 / 2 = u l m r c

Metrics