Abstract

By combining tunable broadband pulse generation with the technique of nonlinear spectral compression we demonstrate a prototype scheme for highly selective detection of air molecules by backward stimulated Raman scattering. The experimental results allow to extrapolate the laser parameters required for standoff sensing based on the recently demonstrated backward atmospheric lasing.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. P. Cracknell and L. Hayes, Introduction to Remote Sensing (Taylor & Francis, 2006).
  2. C. Weitkamp, ed., Range-Resolved Optical Remote Sensing of the Atmosphere (Springer, 2005).
  3. G. Turrell and J. Corset, Raman Microscopy: Developments and Applications (Academic Press, 1996).
  4. J. Kasparian and J.-P. Wolf, “A new transient SRS analysis method of aerosols and application to a nonlinear femtosecond lidar,” Opt. Commun.152(4-6), 355–360 (1998).
    [CrossRef]
  5. O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett.92(17), 171116 (2008).
    [CrossRef]
  6. H. Li, D. A. Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, “Standoff and arms-length detection of chemicals with single-beam coherent anti-Stokes Raman scattering,” Appl. Opt.48(4), B17–B22 (2009).
    [CrossRef] [PubMed]
  7. P. R. Hemmer, R. B. Miles, P. Polynkin, T. Siebert, A. V. Sokolov, P. Sprangle, and M. O. Scully, “Standoff spectroscopy via remote generation of a backward-propagating laser beam,” Proc. Natl. Acad. Sci. U.S.A.108(8), 3130–3134 (2011).
    [CrossRef] [PubMed]
  8. Y. V. Rostovtsev, Z.-E. Sariyanni, and M. O. Scully, “Electromagnetically induced coherent backscattering,” Phys. Rev. Lett.97(11), 113001 (2006).
    [CrossRef] [PubMed]
  9. L. Yuan, K. E. Dorfman, A. M. Zheltikov, and M. O. Scully, “Plasma-assisted coherent backscattering for standoff spectroscopy,” Opt. Lett.37(5), 987–989 (2012).
    [CrossRef] [PubMed]
  10. A. M. Zheltikov, M. N. Shneider, and R. B. Miles, “Radar return enhanced by a grating of species-selective multiphoton ionization as a probe for trace impurities in the atmosphere,” Appl. Phys. B83(1), 149–153 (2006).
    [CrossRef]
  11. A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science331(6016), 442–445 (2011).
    [CrossRef] [PubMed]
  12. D. Kartashov, S. Ališauskas, A. Pugzlys, A. Baltuška, M. Shneider, and A. Zheltikov, “Free-space nitrogen laser from a mid-infrared filament,” in Research in Optical Sciences, OSA Technical Digest (Optical Society of America, 2012), paper HW3C.2.
  13. E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B87(3), 389–393 (2007).
    [CrossRef]
  14. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
    [CrossRef] [PubMed]
  15. M. Maier, W. Kaiser, and J. A. Giordmaine, “Backward stimulated Raman scattering,” Phys. Rev.177(2), 580–599 (1969).
    [CrossRef]
  16. K. Moutzouris, E. Adler, F. Sotier, D. Träutlein, and A. Leitenstorfer, “Multimilliwatt ultrashort pulses continuously tunable in the visible from a compact fiber source,” Opt. Lett.31(8), 1148–1150 (2006).
    [CrossRef] [PubMed]
  17. M. A. Marangoni, D. Brida, M. Quintavalle, G. Cirmi, F. M. Pigozzo, C. Manzoni, F. Baronio, A. D. Capobianco, and G. Cerullo, “Narrow-bandwidth picosecond pulses by spectral compression of femtosecond pulses in second-order nonlinear crystals,” Opt. Express15(14), 8884–8891 (2007).
    [CrossRef] [PubMed]
  18. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
    [CrossRef]
  19. E. Pontecorvo, S. M. Kapetanaki, M. Badioli, D. Brida, M. Marangoni, G. Cerullo, and T. Scopigno, “Femtosecond stimulated Raman spectrometer in the 320-520nm range,” Opt. Express19(2), 1107–1112 (2011).
    [CrossRef] [PubMed]
  20. J. W. Hahn and E. S. Lee, “Measurement of nonresonant third-order susceptibilities of various gases by the nonlinear interferometric technique,” J. Opt. Soc. Am. B12(6), 1021–1027 (1995).
    [CrossRef]
  21. G. Andriukaitis, T. Balčiūnas, S. Ališauskas, A. Pugžlys, A. Baltuška, T. Popmintchev, M.-C. Chen, M. M. Murnane, and H. C. Kapteyn, “90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier,” Opt. Lett.36(15), 2755–2757 (2011).
    [CrossRef] [PubMed]
  22. S. Brunsgaard Hansen, R. W. Berg, and E. H. Stenby, “Raman spectroscopic studies of methane–ethane mixtures as a function of pressure,” Appl. Spectrosc.55(6), 745–749 (2001).
    [CrossRef]
  23. H. W. Schrötter and H. W. Klöckner, “Raman scattering cross sections in gases and liquids,” in Raman Spectroscopy of Gases and Liquids, A. Weber, ed. (Springer, 1979).
  24. (dσ/dΩ)N2 ≈4.32 × 10−31 cm2/srad, (dσ/dΩ)O2 ≈4.75 × 10−31 cm2/srad, (dσ/dΩ)CO ≈4.3 × 10−31 cm2/srad, (dσ/dΩ)SO2 ≈17 × 10−31 cm2/srad, (dσ/dΩ)NO2 ≈1.9 × 10−31 cm2/srad, and (dσ/dΩ)NH3 ≈28 × 10−31 cm2/srad.

2012 (1)

2011 (4)

P. R. Hemmer, R. B. Miles, P. Polynkin, T. Siebert, A. V. Sokolov, P. Sprangle, and M. O. Scully, “Standoff spectroscopy via remote generation of a backward-propagating laser beam,” Proc. Natl. Acad. Sci. U.S.A.108(8), 3130–3134 (2011).
[CrossRef] [PubMed]

A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science331(6016), 442–445 (2011).
[CrossRef] [PubMed]

E. Pontecorvo, S. M. Kapetanaki, M. Badioli, D. Brida, M. Marangoni, G. Cerullo, and T. Scopigno, “Femtosecond stimulated Raman spectrometer in the 320-520nm range,” Opt. Express19(2), 1107–1112 (2011).
[CrossRef] [PubMed]

G. Andriukaitis, T. Balčiūnas, S. Ališauskas, A. Pugžlys, A. Baltuška, T. Popmintchev, M.-C. Chen, M. M. Murnane, and H. C. Kapteyn, “90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier,” Opt. Lett.36(15), 2755–2757 (2011).
[CrossRef] [PubMed]

2009 (1)

2008 (2)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett.92(17), 171116 (2008).
[CrossRef]

2007 (2)

2006 (3)

K. Moutzouris, E. Adler, F. Sotier, D. Träutlein, and A. Leitenstorfer, “Multimilliwatt ultrashort pulses continuously tunable in the visible from a compact fiber source,” Opt. Lett.31(8), 1148–1150 (2006).
[CrossRef] [PubMed]

Y. V. Rostovtsev, Z.-E. Sariyanni, and M. O. Scully, “Electromagnetically induced coherent backscattering,” Phys. Rev. Lett.97(11), 113001 (2006).
[CrossRef] [PubMed]

A. M. Zheltikov, M. N. Shneider, and R. B. Miles, “Radar return enhanced by a grating of species-selective multiphoton ionization as a probe for trace impurities in the atmosphere,” Appl. Phys. B83(1), 149–153 (2006).
[CrossRef]

2001 (1)

1998 (1)

J. Kasparian and J.-P. Wolf, “A new transient SRS analysis method of aerosols and application to a nonlinear femtosecond lidar,” Opt. Commun.152(4-6), 355–360 (1998).
[CrossRef]

1995 (1)

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

1969 (1)

M. Maier, W. Kaiser, and J. A. Giordmaine, “Backward stimulated Raman scattering,” Phys. Rev.177(2), 580–599 (1969).
[CrossRef]

Adler, E.

Ališauskas, S.

Andriukaitis, G.

Badioli, M.

Balciunas, T.

Baltuška, A.

Baronio, F.

Berg, R. W.

Berner, S.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B87(3), 389–393 (2007).
[CrossRef]

Brida, D.

Brunsgaard Hansen, S.

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

Capobianco, A. D.

Cerullo, G.

Chen, M.-C.

Cirmi, G.

Dantus, M.

Dogariu, A.

A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science331(6016), 442–445 (2011).
[CrossRef] [PubMed]

Dorfman, K. E.

Fejer, M. M.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

Freudiger, C. W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Gilch, P.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B87(3), 389–393 (2007).
[CrossRef]

Giordmaine, J. A.

M. Maier, W. Kaiser, and J. A. Giordmaine, “Backward stimulated Raman scattering,” Phys. Rev.177(2), 580–599 (1969).
[CrossRef]

Hahn, J. W.

Harris, D. A.

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Hemmer, P. R.

P. R. Hemmer, R. B. Miles, P. Polynkin, T. Siebert, A. V. Sokolov, P. Sprangle, and M. O. Scully, “Standoff spectroscopy via remote generation of a backward-propagating laser beam,” Proc. Natl. Acad. Sci. U.S.A.108(8), 3130–3134 (2011).
[CrossRef] [PubMed]

Holtom, G. R.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

Kaiser, W.

M. Maier, W. Kaiser, and J. A. Giordmaine, “Backward stimulated Raman scattering,” Phys. Rev.177(2), 580–599 (1969).
[CrossRef]

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Kapetanaki, S. M.

Kapteyn, H. C.

Kasparian, J.

J. Kasparian and J.-P. Wolf, “A new transient SRS analysis method of aerosols and application to a nonlinear femtosecond lidar,” Opt. Commun.152(4-6), 355–360 (1998).
[CrossRef]

Katz, O.

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett.92(17), 171116 (2008).
[CrossRef]

Laimgruber, S.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B87(3), 389–393 (2007).
[CrossRef]

Lee, E. S.

Leitenstorfer, A.

Li, H.

Lozovoy, V. V.

Lu, S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

Maier, M.

M. Maier, W. Kaiser, and J. A. Giordmaine, “Backward stimulated Raman scattering,” Phys. Rev.177(2), 580–599 (1969).
[CrossRef]

Manzoni, C.

Marangoni, M.

Marangoni, M. A.

Michael, J. B.

A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science331(6016), 442–445 (2011).
[CrossRef] [PubMed]

Miles, R. B.

A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science331(6016), 442–445 (2011).
[CrossRef] [PubMed]

P. R. Hemmer, R. B. Miles, P. Polynkin, T. Siebert, A. V. Sokolov, P. Sprangle, and M. O. Scully, “Standoff spectroscopy via remote generation of a backward-propagating laser beam,” Proc. Natl. Acad. Sci. U.S.A.108(8), 3130–3134 (2011).
[CrossRef] [PubMed]

A. M. Zheltikov, M. N. Shneider, and R. B. Miles, “Radar return enhanced by a grating of species-selective multiphoton ionization as a probe for trace impurities in the atmosphere,” Appl. Phys. B83(1), 149–153 (2006).
[CrossRef]

Min, W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Moutzouris, K.

Murnane, M. M.

Natan, A.

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett.92(17), 171116 (2008).
[CrossRef]

Pigozzo, F. M.

Ploetz, E.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B87(3), 389–393 (2007).
[CrossRef]

Polynkin, P.

P. R. Hemmer, R. B. Miles, P. Polynkin, T. Siebert, A. V. Sokolov, P. Sprangle, and M. O. Scully, “Standoff spectroscopy via remote generation of a backward-propagating laser beam,” Proc. Natl. Acad. Sci. U.S.A.108(8), 3130–3134 (2011).
[CrossRef] [PubMed]

Pontecorvo, E.

Popmintchev, T.

Pugžlys, A.

Quintavalle, M.

Rosenwaks, S.

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett.92(17), 171116 (2008).
[CrossRef]

Rostovtsev, Y. V.

Y. V. Rostovtsev, Z.-E. Sariyanni, and M. O. Scully, “Electromagnetically induced coherent backscattering,” Phys. Rev. Lett.97(11), 113001 (2006).
[CrossRef] [PubMed]

Saar, B. G.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Sariyanni, Z.-E.

Y. V. Rostovtsev, Z.-E. Sariyanni, and M. O. Scully, “Electromagnetically induced coherent backscattering,” Phys. Rev. Lett.97(11), 113001 (2006).
[CrossRef] [PubMed]

Scopigno, T.

Scully, M. O.

L. Yuan, K. E. Dorfman, A. M. Zheltikov, and M. O. Scully, “Plasma-assisted coherent backscattering for standoff spectroscopy,” Opt. Lett.37(5), 987–989 (2012).
[CrossRef] [PubMed]

A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science331(6016), 442–445 (2011).
[CrossRef] [PubMed]

P. R. Hemmer, R. B. Miles, P. Polynkin, T. Siebert, A. V. Sokolov, P. Sprangle, and M. O. Scully, “Standoff spectroscopy via remote generation of a backward-propagating laser beam,” Proc. Natl. Acad. Sci. U.S.A.108(8), 3130–3134 (2011).
[CrossRef] [PubMed]

Y. V. Rostovtsev, Z.-E. Sariyanni, and M. O. Scully, “Electromagnetically induced coherent backscattering,” Phys. Rev. Lett.97(11), 113001 (2006).
[CrossRef] [PubMed]

Shneider, M. N.

A. M. Zheltikov, M. N. Shneider, and R. B. Miles, “Radar return enhanced by a grating of species-selective multiphoton ionization as a probe for trace impurities in the atmosphere,” Appl. Phys. B83(1), 149–153 (2006).
[CrossRef]

Siebert, T.

P. R. Hemmer, R. B. Miles, P. Polynkin, T. Siebert, A. V. Sokolov, P. Sprangle, and M. O. Scully, “Standoff spectroscopy via remote generation of a backward-propagating laser beam,” Proc. Natl. Acad. Sci. U.S.A.108(8), 3130–3134 (2011).
[CrossRef] [PubMed]

Silberberg, Y.

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett.92(17), 171116 (2008).
[CrossRef]

Sokolov, A. V.

P. R. Hemmer, R. B. Miles, P. Polynkin, T. Siebert, A. V. Sokolov, P. Sprangle, and M. O. Scully, “Standoff spectroscopy via remote generation of a backward-propagating laser beam,” Proc. Natl. Acad. Sci. U.S.A.108(8), 3130–3134 (2011).
[CrossRef] [PubMed]

Sotier, F.

Sprangle, P.

P. R. Hemmer, R. B. Miles, P. Polynkin, T. Siebert, A. V. Sokolov, P. Sprangle, and M. O. Scully, “Standoff spectroscopy via remote generation of a backward-propagating laser beam,” Proc. Natl. Acad. Sci. U.S.A.108(8), 3130–3134 (2011).
[CrossRef] [PubMed]

Stenby, E. H.

Träutlein, D.

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Wolf, J.-P.

J. Kasparian and J.-P. Wolf, “A new transient SRS analysis method of aerosols and application to a nonlinear femtosecond lidar,” Opt. Commun.152(4-6), 355–360 (1998).
[CrossRef]

Wrzesinski, P. J.

Xie, X. S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Xu, B.

Yuan, L.

Zheltikov, A. M.

L. Yuan, K. E. Dorfman, A. M. Zheltikov, and M. O. Scully, “Plasma-assisted coherent backscattering for standoff spectroscopy,” Opt. Lett.37(5), 987–989 (2012).
[CrossRef] [PubMed]

A. M. Zheltikov, M. N. Shneider, and R. B. Miles, “Radar return enhanced by a grating of species-selective multiphoton ionization as a probe for trace impurities in the atmosphere,” Appl. Phys. B83(1), 149–153 (2006).
[CrossRef]

Zinth, W.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B87(3), 389–393 (2007).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (2)

A. M. Zheltikov, M. N. Shneider, and R. B. Miles, “Radar return enhanced by a grating of species-selective multiphoton ionization as a probe for trace impurities in the atmosphere,” Appl. Phys. B83(1), 149–153 (2006).
[CrossRef]

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B87(3), 389–393 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett.92(17), 171116 (2008).
[CrossRef]

Appl. Spectrosc. (1)

IEEE J. Quantum Electron. (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

J. Kasparian and J.-P. Wolf, “A new transient SRS analysis method of aerosols and application to a nonlinear femtosecond lidar,” Opt. Commun.152(4-6), 355–360 (1998).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. (1)

M. Maier, W. Kaiser, and J. A. Giordmaine, “Backward stimulated Raman scattering,” Phys. Rev.177(2), 580–599 (1969).
[CrossRef]

Phys. Rev. Lett. (1)

Y. V. Rostovtsev, Z.-E. Sariyanni, and M. O. Scully, “Electromagnetically induced coherent backscattering,” Phys. Rev. Lett.97(11), 113001 (2006).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

P. R. Hemmer, R. B. Miles, P. Polynkin, T. Siebert, A. V. Sokolov, P. Sprangle, and M. O. Scully, “Standoff spectroscopy via remote generation of a backward-propagating laser beam,” Proc. Natl. Acad. Sci. U.S.A.108(8), 3130–3134 (2011).
[CrossRef] [PubMed]

Science (2)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science331(6016), 442–445 (2011).
[CrossRef] [PubMed]

Other (6)

D. Kartashov, S. Ališauskas, A. Pugzlys, A. Baltuška, M. Shneider, and A. Zheltikov, “Free-space nitrogen laser from a mid-infrared filament,” in Research in Optical Sciences, OSA Technical Digest (Optical Society of America, 2012), paper HW3C.2.

A. P. Cracknell and L. Hayes, Introduction to Remote Sensing (Taylor & Francis, 2006).

C. Weitkamp, ed., Range-Resolved Optical Remote Sensing of the Atmosphere (Springer, 2005).

G. Turrell and J. Corset, Raman Microscopy: Developments and Applications (Academic Press, 1996).

H. W. Schrötter and H. W. Klöckner, “Raman scattering cross sections in gases and liquids,” in Raman Spectroscopy of Gases and Liquids, A. Weber, ed. (Springer, 1979).

(dσ/dΩ)N2 ≈4.32 × 10−31 cm2/srad, (dσ/dΩ)O2 ≈4.75 × 10−31 cm2/srad, (dσ/dΩ)CO ≈4.3 × 10−31 cm2/srad, (dσ/dΩ)SO2 ≈17 × 10−31 cm2/srad, (dσ/dΩ)NO2 ≈1.9 × 10−31 cm2/srad, and (dσ/dΩ)NH3 ≈28 × 10−31 cm2/srad.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Conceptual scheme of remote atmospheric sensing using backward SRS from an atmospheric laser. For details see text. The desired tunability range of the pump (Stokes) radiation is determined by taking into account the Raman shift of H2 molecule at atmospheric pressure, which amounts to 4155 cm−1.

Fig. 2
Fig. 2

Setups of the proof-of-principle backward SRS experiment with ps pump/ps Stokes (a) and ps pump/ns Stokes (b).

Fig. 3
Fig. 3

(a) typical spectrum of OPA output (red solid line) and second harmonic (filled area); in order to highlight increased spectral brightness the area under the curves is normalized to pulse energy; (b) spectra of Stokes and pump pulses used in the experiments with picosecond pulses; the area under the curves is normalized to pulse energy; (c) intensity profile of the pulse generated by Yb:KGW CPA system (FFYB) and cross-correlation functions between the FFYB pulse and spectrally compressed THYB and SHOPA pulses.

Fig. 4
Fig. 4

(a) SRG signal from N2 in atmosphere measured in a co-propagating geometry, representing a cross-correlation between Stokes and pump pulses; (b) SRG signals measured from N2 and O2 in atmosphere in a counter-propagating geometry and in a ps/ps configuration; dots represent experimental data, solid curves are the calculated response (for details see text).

Fig. 5
Fig. 5

(a) SRG spectrum from CH4 measured in counter-propagating geometry at a 5 bar pressure in ps/ps configuration; (b) dependence of the CH4 SRG signal on the delay between Stokes and pump pulses; experiments are done in counter-propagating geometry in ps/ps configuration; dots represent experimental points, solid lines are the results of calculations.

Fig. 6
Fig. 6

(a) Dependence of the CH4 SRG signal on pressure; dots represent experimental points, black solid line is the result of calculations; (b) SRG signals from CH4 as a function of delay between pump and Stokes pulses for three different pressures (indicated in the panel). Experiments have been performed in counter-propagating geometry and in ps/ps configuration.

Fig. 7
Fig. 7

Spectrum of CH4 (dots) and its theoretical fit (solid line) in the case of 5 bar pressure and 135-μJ Stokes energy. In the insets the spectra of Stokes and pump as measured with the spectrometers having respectively spectral resolution of 4 cm−1 and 20 cm−1 are given. Experiments have been performed in counter-propagating geometry in ps/ns configuration.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

SRG= Δ I S I S +Im( χ (3) ) I p L
SRL= Δ I p I p Im( χ (3) ) I S L
L spatial min( 2 z Rp ,2 z RS )
L temp 1 2 cmax( Δ t p ,Δ t S )
L eff =min( L spatial , L temp )
SR S ns SR S ps I ns L ns I ps L ps B ps B ns U ns L ns B ps Δ t ps U ps L ps B ns Δ t ns =1.2

Metrics