Abstract

We have fabricated thin erbium-doped amorphous silicon sub-oxide (a-SiOx<Er>) photonic crystal membrane using focused gallium ion beam (FIB). The photonic crystal is composed of a hexagonal lattice with a H1 defect supporting two quasi-doubly degenerate second order dipole states. 2-D simulation was used for the design of the structure and full 3-D FDTD (Finite-Difference Time-Domain) numerical simulations were performed for a complete analysis of the structure. The simulation predicted a quality factor for the structure of Q = 350 with a spontaneous emission enhancement of 7. Micro photoluminescence measurements showed an integrated emission intensity enhancement of ~2 times with a Q = 130. We show that the discrepancy between simulation and measurement is due to the conical shape of the photonic crystal holes and the optical losses induced by FIB milling.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Pavesi and D. J. Lockwood, eds., “Silicon Photonics,” in Topics in Applied Physics (Springer, 2004).
  2. H. Ennen, J. Scheneider, G. Pomrenke, and A. Axmann, “1.54‐μm luminescence of erbium‐implanted III‐V semiconductors and silicon,” Appl. Phys. Lett.43(10), 943–945 (1983).
    [CrossRef]
  3. L. R. Tessler, “Erbium in a-Si:H,” Braz. J. Phys.29(4), 616–622 (1999).
    [CrossRef]
  4. J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photon. Rev.5(3), 368–403 (2011).
    [CrossRef]
  5. O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B16(2), 275–285 (1999).
    [CrossRef]
  6. M. Makarova, V. Sih, J. Warga, R. Li, L. Dal Negro, and J. Vuckovic, “Enhanced light emission in photonic crystal nanocavities with erbium-doped silicon nanocrystals,” Appl. Phys. Lett.92(16), 161107 (2008).
    [CrossRef]
  7. Y. Gong, M. Makarova, S. Yerci, R. Li, M. J. Stevens, B. Baek, S. W. Nam, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. Vuckovic, and L. Dal Negro, “Linewidth narrowing and Purcell enhancement in photonic crystal cavities on an Er-doped silicon nitride platform,” Opt. Express18(3), 2601–2612 (2010).
    [CrossRef] [PubMed]
  8. Y. Gong, M. Makarova, S. Yerci, R. Li, M. J. Stevens, B. Baek, S. W. Nam, L. Dal Negro, and J. Vuckovic, “Observation of transparency of erbium-doped silicon nitride in photonic crystal nanobeam cavities,” Opt. Express18(13), 13863–13873 (2010).
    [CrossRef] [PubMed]
  9. Q. Quan, I. B. Burgess, S. K. Y. Tang, D. L. Floyd, and M. Loncar, “High-Q, low index-contrast polymeric photonic crystal nanobeam cavities,” Opt. Express19(22), 22191–22197 (2011).
    [CrossRef] [PubMed]
  10. Y. Gong and J. Vučković, “Photonic crystal cavities in silicon dioxide,” Appl. Phys. Lett.96(3), 031107 (2010).
    [CrossRef]
  11. Y. Gong, S. Ishikawa, S. Cheng, M. Gunji, Y. Nishi, and J. Vučković, “Photoluminescence from silicon dioxide photonic crystal cavities with embedded silicon nanocrystals,” Phys. Rev. B81(23), 235317 (2010).
    [CrossRef]
  12. C. Kreuzer, J. Riedrich-Möller, E. Neu, and C. Becher, “Design of Photonic Crystal Microcavities in Diamond Films,” Opt. Express16(3), 1632–1644 (2008).
    [CrossRef] [PubMed]
  13. M. Barth, N. Nüsse, J. Stingl, B. Löchel, and O. Benson, “Emission properties of high-Q silicon nitride photonic crystal heterostructure cavities,” Appl. Phys. Lett.93(2), 021112 (2008).
    [CrossRef]
  14. M. Makarova, J. Vuckovic, H. Sanda, and Y. Nishi, “Silicon based photonic crystal nanocavity light emitters,” Appl. Phys. Lett.89(22), 221101 (2006).
    [CrossRef]
  15. K. Hennessy, C. Högerle, E. Hu, A. Badolato, and A. Imamoğlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett.89(4), 041118 (2006).
    [CrossRef]
  16. K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express15(12), 7506–7514 (2007).
    [CrossRef] [PubMed]
  17. D. S. L. Figueira, D. Mustafa, L. R. Tessler, and N. C. Frateschi, “Resonant structures based on amorphous silicon sub-oxide doped with Er3+ with silicon nanoclusters for an efficient emission at 1550 nm,” J. Vac. Sci. Technol. B27(6), L38– L41 (2009).
    [CrossRef]
  18. R. Lang, D. S. L. Figueira, F. Vallini, and N. C. Frateschi, “Highly luminescent a-SiOx<Er>/SiO2/Si multilayer structure,” IEEE Photon. J.4(4), 1115–1123 (2012).
    [CrossRef]
  19. A. Tandaechanurat, S. Iwamoto, M. Nomura, N. Kumagai, and Y. Arakawa, “Increase of Q-factor in photonic crystal H1-defect nanocavities after closing of photonic bandgap with optimal slab thickness,” Opt. Express16(1), 448–455 (2008).
    [CrossRef] [PubMed]
  20. T. M. Babinec, J. T. Choy, K. J. M. Smith, M. Khan, and M. Lončar, “Design and focused ion beam fabrication of single crystal diamond nanobeam cavities,” J. Vac. Sci. Technol. B29(1), 010601 (2011).
    [CrossRef]
  21. J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotechnol.7(1), 69–74 (2011).
    [CrossRef] [PubMed]
  22. A. Chelnokov, K. Wang, S. Rowson, P. Garoche, and J.-M. Lourtioz, “Near-infrared Yablonovitelike photonic crystals by focused-ion-beam etching of macroporous silicon,” Appl. Phys. Lett.77(19), 2943–2945 (2000).
    [CrossRef]
  23. L. A. M. Barea, F. Vallini, A. R. Vaz, J. R. Mialichi, and N. C. Frateschi, “Low-roughness active microdisk resonators fabricated by focused ion beam,” J. Vac. Sci. Technol. B27(6), 2979–2981 (2009).
    [CrossRef]
  24. F. Vallini, L. A. M. Barea, E. F. dos Reis, A. A. von Zuben, and N. C. Frateschi, “Focused ion beam damages induced optical losses in optoelectronic devices,” JICS (to be published).
  25. G. S. Wiederhecker, S. Manipatruni, S. Lee, and M. Lipson, “Broadband tuning of optomechanical cavities,” Opt. Express19(3), 2782–2790 (2011).
    [CrossRef] [PubMed]
  26. J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478(7367), 89–92 (2011).
    [CrossRef] [PubMed]
  27. H. Ryu, H. Park, and Y. Lee, “Two-Dimensional Photonic Crystal Semiconductor Lasers: Computational Design, Fabrication, and Characterization,” IEEE J. Sel. Top. Quant Electron.8(4), 891–908 (2002).
    [CrossRef]
  28. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Photonic crystal nanocavity laser with a single quantum dot gain,” Opt. Express17(18), 15975–15982 (2009).
    [CrossRef] [PubMed]
  29. D. Sridharan, R. Bose, H. Kim, G. S. Solomon, and E. Waks, “A reversibly tunable photonic crystal nanocavity laser using photochromic thin film,” Opt. Express19(6), 5551–5558 (2011).
    [CrossRef] [PubMed]
  30. S. Khorasani and K. Mehrany, “Differential transfer-matrix method for solution of one-dimensional linear nonhomogeneous optical structures,” J. Opt. Soc. Am. B20(1), 91–96 (2003).
    [CrossRef]
  31. http://www.rsoftdesign.com/
  32. Y. Tang, A. M. Mintairov, J. L. Merz, V. Tokranov, and S. Oktyabrsky, “Characterization of 2D-Photonic Crystal Nanocavities by Polarization-Dependent and Near-Field Photoluminescence,” in Proceedings of IEEE Conference on Nanotechnology (Nagoya, Japan, 2005), pp 35–38.
  33. D. S. L. Figueira and N. C. Frateschi, “Evidences of the simultaneous presence of bow-tie and diamond scars in rare-earth doped amorphous silicon microstadium resonators,” J. Appl. Phys.103(6), 063106 (2008).
    [CrossRef]
  34. D. S. L. Figueira and N. C. Frateschi, Rare-earth Doped Amorphous Silicon Microdisk Resonator Structures (John Wiley & Sons, 2006)
  35. J. H. Shin, R. Serna, G. N. Hoven, A. Polman, W. G. J. H. M. Sark, and A. M. Vrendenberg, “Luminescence quenching in erbium‐doped hydrogenated amorphous silicon,” Appl. Phys. Lett.68(1), 46–48 (1996).
    [CrossRef]
  36. J. Kalkman, A. Tchebotareva, A. Polman, T. J. Kippengerb, B. Min, and K. J. Vahala, “Fabrication and characterization of erbium-doped toroidal microcavity lasers,” J. Appl. Phys.99(8), 83103–83111 (2006).
    [CrossRef]
  37. J. E. Fredrickson, C. N. Waddell, W. G. Spitzer, and G. K. Hubler, “Effects of thermal annealing on the refractive index of amorphous silicon produced by ion implantation,” Appl. Phys. Lett.40(2), 172–174 (1982).
    [CrossRef]
  38. J. D. Hoyland and D. Sands, “Temperature dependent refractive index of amorphous silicon determined by time-resolved reflectivity during low fluence excimer laser heating,” J. Appl. Phys.99(6), 063516 (2006).
    [CrossRef]
  39. F. Vallini, D. S. L. Figueira, P. F. Jarschel, L. A. M. Barea, A. A. G. V. zuben, and N. C. Frateschi, “Effects of Ga+ milling on InGaAsP Quantum Well Laser with mirrors etched by focused ion beam,” J. Vac. Sci. Technol. B27(5), 25–27 (2009).
    [CrossRef]
  40. E. Desurvire, in Erbium Doped Fiber Amplifiers, (John Wiley, 1994), pp. 207–306.
  41. B. Gayral and J. M. Gérard, “Photoluminescence experiment on quantum dots embedded in a large purcell-factor microcavity,” Phys. Rev. B78(23), 235306 (2008).
    [CrossRef]

2012 (1)

R. Lang, D. S. L. Figueira, F. Vallini, and N. C. Frateschi, “Highly luminescent a-SiOx<Er>/SiO2/Si multilayer structure,” IEEE Photon. J.4(4), 1115–1123 (2012).
[CrossRef]

2011 (7)

T. M. Babinec, J. T. Choy, K. J. M. Smith, M. Khan, and M. Lončar, “Design and focused ion beam fabrication of single crystal diamond nanobeam cavities,” J. Vac. Sci. Technol. B29(1), 010601 (2011).
[CrossRef]

J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotechnol.7(1), 69–74 (2011).
[CrossRef] [PubMed]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478(7367), 89–92 (2011).
[CrossRef] [PubMed]

J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photon. Rev.5(3), 368–403 (2011).
[CrossRef]

G. S. Wiederhecker, S. Manipatruni, S. Lee, and M. Lipson, “Broadband tuning of optomechanical cavities,” Opt. Express19(3), 2782–2790 (2011).
[CrossRef] [PubMed]

D. Sridharan, R. Bose, H. Kim, G. S. Solomon, and E. Waks, “A reversibly tunable photonic crystal nanocavity laser using photochromic thin film,” Opt. Express19(6), 5551–5558 (2011).
[CrossRef] [PubMed]

Q. Quan, I. B. Burgess, S. K. Y. Tang, D. L. Floyd, and M. Loncar, “High-Q, low index-contrast polymeric photonic crystal nanobeam cavities,” Opt. Express19(22), 22191–22197 (2011).
[CrossRef] [PubMed]

2010 (4)

2009 (4)

D. S. L. Figueira, D. Mustafa, L. R. Tessler, and N. C. Frateschi, “Resonant structures based on amorphous silicon sub-oxide doped with Er3+ with silicon nanoclusters for an efficient emission at 1550 nm,” J. Vac. Sci. Technol. B27(6), L38– L41 (2009).
[CrossRef]

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Photonic crystal nanocavity laser with a single quantum dot gain,” Opt. Express17(18), 15975–15982 (2009).
[CrossRef] [PubMed]

L. A. M. Barea, F. Vallini, A. R. Vaz, J. R. Mialichi, and N. C. Frateschi, “Low-roughness active microdisk resonators fabricated by focused ion beam,” J. Vac. Sci. Technol. B27(6), 2979–2981 (2009).
[CrossRef]

F. Vallini, D. S. L. Figueira, P. F. Jarschel, L. A. M. Barea, A. A. G. V. zuben, and N. C. Frateschi, “Effects of Ga+ milling on InGaAsP Quantum Well Laser with mirrors etched by focused ion beam,” J. Vac. Sci. Technol. B27(5), 25–27 (2009).
[CrossRef]

2008 (6)

B. Gayral and J. M. Gérard, “Photoluminescence experiment on quantum dots embedded in a large purcell-factor microcavity,” Phys. Rev. B78(23), 235306 (2008).
[CrossRef]

A. Tandaechanurat, S. Iwamoto, M. Nomura, N. Kumagai, and Y. Arakawa, “Increase of Q-factor in photonic crystal H1-defect nanocavities after closing of photonic bandgap with optimal slab thickness,” Opt. Express16(1), 448–455 (2008).
[CrossRef] [PubMed]

C. Kreuzer, J. Riedrich-Möller, E. Neu, and C. Becher, “Design of Photonic Crystal Microcavities in Diamond Films,” Opt. Express16(3), 1632–1644 (2008).
[CrossRef] [PubMed]

M. Makarova, V. Sih, J. Warga, R. Li, L. Dal Negro, and J. Vuckovic, “Enhanced light emission in photonic crystal nanocavities with erbium-doped silicon nanocrystals,” Appl. Phys. Lett.92(16), 161107 (2008).
[CrossRef]

M. Barth, N. Nüsse, J. Stingl, B. Löchel, and O. Benson, “Emission properties of high-Q silicon nitride photonic crystal heterostructure cavities,” Appl. Phys. Lett.93(2), 021112 (2008).
[CrossRef]

D. S. L. Figueira and N. C. Frateschi, “Evidences of the simultaneous presence of bow-tie and diamond scars in rare-earth doped amorphous silicon microstadium resonators,” J. Appl. Phys.103(6), 063106 (2008).
[CrossRef]

2007 (1)

2006 (4)

J. D. Hoyland and D. Sands, “Temperature dependent refractive index of amorphous silicon determined by time-resolved reflectivity during low fluence excimer laser heating,” J. Appl. Phys.99(6), 063516 (2006).
[CrossRef]

J. Kalkman, A. Tchebotareva, A. Polman, T. J. Kippengerb, B. Min, and K. J. Vahala, “Fabrication and characterization of erbium-doped toroidal microcavity lasers,” J. Appl. Phys.99(8), 83103–83111 (2006).
[CrossRef]

M. Makarova, J. Vuckovic, H. Sanda, and Y. Nishi, “Silicon based photonic crystal nanocavity light emitters,” Appl. Phys. Lett.89(22), 221101 (2006).
[CrossRef]

K. Hennessy, C. Högerle, E. Hu, A. Badolato, and A. Imamoğlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett.89(4), 041118 (2006).
[CrossRef]

2003 (1)

2002 (1)

H. Ryu, H. Park, and Y. Lee, “Two-Dimensional Photonic Crystal Semiconductor Lasers: Computational Design, Fabrication, and Characterization,” IEEE J. Sel. Top. Quant Electron.8(4), 891–908 (2002).
[CrossRef]

2000 (1)

A. Chelnokov, K. Wang, S. Rowson, P. Garoche, and J.-M. Lourtioz, “Near-infrared Yablonovitelike photonic crystals by focused-ion-beam etching of macroporous silicon,” Appl. Phys. Lett.77(19), 2943–2945 (2000).
[CrossRef]

1999 (2)

1996 (1)

J. H. Shin, R. Serna, G. N. Hoven, A. Polman, W. G. J. H. M. Sark, and A. M. Vrendenberg, “Luminescence quenching in erbium‐doped hydrogenated amorphous silicon,” Appl. Phys. Lett.68(1), 46–48 (1996).
[CrossRef]

1983 (1)

H. Ennen, J. Scheneider, G. Pomrenke, and A. Axmann, “1.54‐μm luminescence of erbium‐implanted III‐V semiconductors and silicon,” Appl. Phys. Lett.43(10), 943–945 (1983).
[CrossRef]

1982 (1)

J. E. Fredrickson, C. N. Waddell, W. G. Spitzer, and G. K. Hubler, “Effects of thermal annealing on the refractive index of amorphous silicon produced by ion implantation,” Appl. Phys. Lett.40(2), 172–174 (1982).
[CrossRef]

Alegre, T. P. M.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478(7367), 89–92 (2011).
[CrossRef] [PubMed]

Arakawa, Y.

Aspelmeyer, M.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478(7367), 89–92 (2011).
[CrossRef] [PubMed]

Axmann, A.

H. Ennen, J. Scheneider, G. Pomrenke, and A. Axmann, “1.54‐μm luminescence of erbium‐implanted III‐V semiconductors and silicon,” Appl. Phys. Lett.43(10), 943–945 (1983).
[CrossRef]

Baba, T.

Babinec, T. M.

T. M. Babinec, J. T. Choy, K. J. M. Smith, M. Khan, and M. Lončar, “Design and focused ion beam fabrication of single crystal diamond nanobeam cavities,” J. Vac. Sci. Technol. B29(1), 010601 (2011).
[CrossRef]

Badolato, A.

K. Hennessy, C. Högerle, E. Hu, A. Badolato, and A. Imamoğlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett.89(4), 041118 (2006).
[CrossRef]

Baek, B.

Barea, L. A. M.

F. Vallini, D. S. L. Figueira, P. F. Jarschel, L. A. M. Barea, A. A. G. V. zuben, and N. C. Frateschi, “Effects of Ga+ milling on InGaAsP Quantum Well Laser with mirrors etched by focused ion beam,” J. Vac. Sci. Technol. B27(5), 25–27 (2009).
[CrossRef]

L. A. M. Barea, F. Vallini, A. R. Vaz, J. R. Mialichi, and N. C. Frateschi, “Low-roughness active microdisk resonators fabricated by focused ion beam,” J. Vac. Sci. Technol. B27(6), 2979–2981 (2009).
[CrossRef]

F. Vallini, L. A. M. Barea, E. F. dos Reis, A. A. von Zuben, and N. C. Frateschi, “Focused ion beam damages induced optical losses in optoelectronic devices,” JICS (to be published).

Barth, M.

M. Barth, N. Nüsse, J. Stingl, B. Löchel, and O. Benson, “Emission properties of high-Q silicon nitride photonic crystal heterostructure cavities,” Appl. Phys. Lett.93(2), 021112 (2008).
[CrossRef]

Baur, A.

J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotechnol.7(1), 69–74 (2011).
[CrossRef] [PubMed]

Becher, C.

J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotechnol.7(1), 69–74 (2011).
[CrossRef] [PubMed]

C. Kreuzer, J. Riedrich-Möller, E. Neu, and C. Becher, “Design of Photonic Crystal Microcavities in Diamond Films,” Opt. Express16(3), 1632–1644 (2008).
[CrossRef] [PubMed]

Benson, O.

M. Barth, N. Nüsse, J. Stingl, B. Löchel, and O. Benson, “Emission properties of high-Q silicon nitride photonic crystal heterostructure cavities,” Appl. Phys. Lett.93(2), 021112 (2008).
[CrossRef]

Bose, R.

Bradley, J. D. B.

J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photon. Rev.5(3), 368–403 (2011).
[CrossRef]

Burgess, I. B.

Chan, J.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478(7367), 89–92 (2011).
[CrossRef] [PubMed]

Chelnokov, A.

A. Chelnokov, K. Wang, S. Rowson, P. Garoche, and J.-M. Lourtioz, “Near-infrared Yablonovitelike photonic crystals by focused-ion-beam etching of macroporous silicon,” Appl. Phys. Lett.77(19), 2943–2945 (2000).
[CrossRef]

Cheng, S.

Y. Gong, S. Ishikawa, S. Cheng, M. Gunji, Y. Nishi, and J. Vučković, “Photoluminescence from silicon dioxide photonic crystal cavities with embedded silicon nanocrystals,” Phys. Rev. B81(23), 235317 (2010).
[CrossRef]

Choy, J. T.

T. M. Babinec, J. T. Choy, K. J. M. Smith, M. Khan, and M. Lončar, “Design and focused ion beam fabrication of single crystal diamond nanobeam cavities,” J. Vac. Sci. Technol. B29(1), 010601 (2011).
[CrossRef]

Dal Negro, L.

Dorenbos, S. N.

dos Reis, E. F.

F. Vallini, L. A. M. Barea, E. F. dos Reis, A. A. von Zuben, and N. C. Frateschi, “Focused ion beam damages induced optical losses in optoelectronic devices,” JICS (to be published).

Ennen, H.

H. Ennen, J. Scheneider, G. Pomrenke, and A. Axmann, “1.54‐μm luminescence of erbium‐implanted III‐V semiconductors and silicon,” Appl. Phys. Lett.43(10), 943–945 (1983).
[CrossRef]

Figueira, D. S. L.

R. Lang, D. S. L. Figueira, F. Vallini, and N. C. Frateschi, “Highly luminescent a-SiOx<Er>/SiO2/Si multilayer structure,” IEEE Photon. J.4(4), 1115–1123 (2012).
[CrossRef]

F. Vallini, D. S. L. Figueira, P. F. Jarschel, L. A. M. Barea, A. A. G. V. zuben, and N. C. Frateschi, “Effects of Ga+ milling on InGaAsP Quantum Well Laser with mirrors etched by focused ion beam,” J. Vac. Sci. Technol. B27(5), 25–27 (2009).
[CrossRef]

D. S. L. Figueira, D. Mustafa, L. R. Tessler, and N. C. Frateschi, “Resonant structures based on amorphous silicon sub-oxide doped with Er3+ with silicon nanoclusters for an efficient emission at 1550 nm,” J. Vac. Sci. Technol. B27(6), L38– L41 (2009).
[CrossRef]

D. S. L. Figueira and N. C. Frateschi, “Evidences of the simultaneous presence of bow-tie and diamond scars in rare-earth doped amorphous silicon microstadium resonators,” J. Appl. Phys.103(6), 063106 (2008).
[CrossRef]

Fischer, M.

J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotechnol.7(1), 69–74 (2011).
[CrossRef] [PubMed]

Floyd, D. L.

Frateschi, N. C.

R. Lang, D. S. L. Figueira, F. Vallini, and N. C. Frateschi, “Highly luminescent a-SiOx<Er>/SiO2/Si multilayer structure,” IEEE Photon. J.4(4), 1115–1123 (2012).
[CrossRef]

F. Vallini, D. S. L. Figueira, P. F. Jarschel, L. A. M. Barea, A. A. G. V. zuben, and N. C. Frateschi, “Effects of Ga+ milling on InGaAsP Quantum Well Laser with mirrors etched by focused ion beam,” J. Vac. Sci. Technol. B27(5), 25–27 (2009).
[CrossRef]

L. A. M. Barea, F. Vallini, A. R. Vaz, J. R. Mialichi, and N. C. Frateschi, “Low-roughness active microdisk resonators fabricated by focused ion beam,” J. Vac. Sci. Technol. B27(6), 2979–2981 (2009).
[CrossRef]

D. S. L. Figueira, D. Mustafa, L. R. Tessler, and N. C. Frateschi, “Resonant structures based on amorphous silicon sub-oxide doped with Er3+ with silicon nanoclusters for an efficient emission at 1550 nm,” J. Vac. Sci. Technol. B27(6), L38– L41 (2009).
[CrossRef]

D. S. L. Figueira and N. C. Frateschi, “Evidences of the simultaneous presence of bow-tie and diamond scars in rare-earth doped amorphous silicon microstadium resonators,” J. Appl. Phys.103(6), 063106 (2008).
[CrossRef]

F. Vallini, L. A. M. Barea, E. F. dos Reis, A. A. von Zuben, and N. C. Frateschi, “Focused ion beam damages induced optical losses in optoelectronic devices,” JICS (to be published).

Fredrickson, J. E.

J. E. Fredrickson, C. N. Waddell, W. G. Spitzer, and G. K. Hubler, “Effects of thermal annealing on the refractive index of amorphous silicon produced by ion implantation,” Appl. Phys. Lett.40(2), 172–174 (1982).
[CrossRef]

Garoche, P.

A. Chelnokov, K. Wang, S. Rowson, P. Garoche, and J.-M. Lourtioz, “Near-infrared Yablonovitelike photonic crystals by focused-ion-beam etching of macroporous silicon,” Appl. Phys. Lett.77(19), 2943–2945 (2000).
[CrossRef]

Gayral, B.

B. Gayral and J. M. Gérard, “Photoluminescence experiment on quantum dots embedded in a large purcell-factor microcavity,” Phys. Rev. B78(23), 235306 (2008).
[CrossRef]

Gérard, J. M.

B. Gayral and J. M. Gérard, “Photoluminescence experiment on quantum dots embedded in a large purcell-factor microcavity,” Phys. Rev. B78(23), 235306 (2008).
[CrossRef]

Gong, Y.

Gröblacher, S.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478(7367), 89–92 (2011).
[CrossRef] [PubMed]

Gsell, S.

J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotechnol.7(1), 69–74 (2011).
[CrossRef] [PubMed]

Gunji, M.

Y. Gong, S. Ishikawa, S. Cheng, M. Gunji, Y. Nishi, and J. Vučković, “Photoluminescence from silicon dioxide photonic crystal cavities with embedded silicon nanocrystals,” Phys. Rev. B81(23), 235317 (2010).
[CrossRef]

Hadfield, R. H.

Hennessy, K.

K. Hennessy, C. Högerle, E. Hu, A. Badolato, and A. Imamoğlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett.89(4), 041118 (2006).
[CrossRef]

Hepp, C.

J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotechnol.7(1), 69–74 (2011).
[CrossRef] [PubMed]

Hill, J. T.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478(7367), 89–92 (2011).
[CrossRef] [PubMed]

Högerle, C.

K. Hennessy, C. Högerle, E. Hu, A. Badolato, and A. Imamoğlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett.89(4), 041118 (2006).
[CrossRef]

Hoven, G. N.

J. H. Shin, R. Serna, G. N. Hoven, A. Polman, W. G. J. H. M. Sark, and A. M. Vrendenberg, “Luminescence quenching in erbium‐doped hydrogenated amorphous silicon,” Appl. Phys. Lett.68(1), 46–48 (1996).
[CrossRef]

Hoyland, J. D.

J. D. Hoyland and D. Sands, “Temperature dependent refractive index of amorphous silicon determined by time-resolved reflectivity during low fluence excimer laser heating,” J. Appl. Phys.99(6), 063516 (2006).
[CrossRef]

Hu, E.

K. Hennessy, C. Högerle, E. Hu, A. Badolato, and A. Imamoğlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett.89(4), 041118 (2006).
[CrossRef]

Hubler, G. K.

J. E. Fredrickson, C. N. Waddell, W. G. Spitzer, and G. K. Hubler, “Effects of thermal annealing on the refractive index of amorphous silicon produced by ion implantation,” Appl. Phys. Lett.40(2), 172–174 (1982).
[CrossRef]

Imamoglu, A.

K. Hennessy, C. Högerle, E. Hu, A. Badolato, and A. Imamoğlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett.89(4), 041118 (2006).
[CrossRef]

Ishikawa, S.

Y. Gong, S. Ishikawa, S. Cheng, M. Gunji, Y. Nishi, and J. Vučković, “Photoluminescence from silicon dioxide photonic crystal cavities with embedded silicon nanocrystals,” Phys. Rev. B81(23), 235317 (2010).
[CrossRef]

Iwamoto, S.

Jarschel, P. F.

F. Vallini, D. S. L. Figueira, P. F. Jarschel, L. A. M. Barea, A. A. G. V. zuben, and N. C. Frateschi, “Effects of Ga+ milling on InGaAsP Quantum Well Laser with mirrors etched by focused ion beam,” J. Vac. Sci. Technol. B27(5), 25–27 (2009).
[CrossRef]

Kalkman, J.

J. Kalkman, A. Tchebotareva, A. Polman, T. J. Kippengerb, B. Min, and K. J. Vahala, “Fabrication and characterization of erbium-doped toroidal microcavity lasers,” J. Appl. Phys.99(8), 83103–83111 (2006).
[CrossRef]

Khan, M.

T. M. Babinec, J. T. Choy, K. J. M. Smith, M. Khan, and M. Lončar, “Design and focused ion beam fabrication of single crystal diamond nanobeam cavities,” J. Vac. Sci. Technol. B29(1), 010601 (2011).
[CrossRef]

Khorasani, S.

Kim, H.

Kipfstuhl, L.

J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotechnol.7(1), 69–74 (2011).
[CrossRef] [PubMed]

Kippengerb, T. J.

J. Kalkman, A. Tchebotareva, A. Polman, T. J. Kippengerb, B. Min, and K. J. Vahala, “Fabrication and characterization of erbium-doped toroidal microcavity lasers,” J. Appl. Phys.99(8), 83103–83111 (2006).
[CrossRef]

Kita, S.

Krause, A.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478(7367), 89–92 (2011).
[CrossRef] [PubMed]

Kreuzer, C.

Kumagai, N.

Lang, R.

R. Lang, D. S. L. Figueira, F. Vallini, and N. C. Frateschi, “Highly luminescent a-SiOx<Er>/SiO2/Si multilayer structure,” IEEE Photon. J.4(4), 1115–1123 (2012).
[CrossRef]

Lee, S.

Lee, Y.

H. Ryu, H. Park, and Y. Lee, “Two-Dimensional Photonic Crystal Semiconductor Lasers: Computational Design, Fabrication, and Characterization,” IEEE J. Sel. Top. Quant Electron.8(4), 891–908 (2002).
[CrossRef]

Li, R.

Lipson, M.

Löchel, B.

M. Barth, N. Nüsse, J. Stingl, B. Löchel, and O. Benson, “Emission properties of high-Q silicon nitride photonic crystal heterostructure cavities,” Appl. Phys. Lett.93(2), 021112 (2008).
[CrossRef]

Loncar, M.

Q. Quan, I. B. Burgess, S. K. Y. Tang, D. L. Floyd, and M. Loncar, “High-Q, low index-contrast polymeric photonic crystal nanobeam cavities,” Opt. Express19(22), 22191–22197 (2011).
[CrossRef] [PubMed]

T. M. Babinec, J. T. Choy, K. J. M. Smith, M. Khan, and M. Lončar, “Design and focused ion beam fabrication of single crystal diamond nanobeam cavities,” J. Vac. Sci. Technol. B29(1), 010601 (2011).
[CrossRef]

Lourtioz, J.-M.

A. Chelnokov, K. Wang, S. Rowson, P. Garoche, and J.-M. Lourtioz, “Near-infrared Yablonovitelike photonic crystals by focused-ion-beam etching of macroporous silicon,” Appl. Phys. Lett.77(19), 2943–2945 (2000).
[CrossRef]

Makarova, M.

Manipatruni, S.

Mehrany, K.

Mialichi, J. R.

L. A. M. Barea, F. Vallini, A. R. Vaz, J. R. Mialichi, and N. C. Frateschi, “Low-roughness active microdisk resonators fabricated by focused ion beam,” J. Vac. Sci. Technol. B27(6), 2979–2981 (2009).
[CrossRef]

Min, B.

J. Kalkman, A. Tchebotareva, A. Polman, T. J. Kippengerb, B. Min, and K. J. Vahala, “Fabrication and characterization of erbium-doped toroidal microcavity lasers,” J. Appl. Phys.99(8), 83103–83111 (2006).
[CrossRef]

Mücklich, F.

J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotechnol.7(1), 69–74 (2011).
[CrossRef] [PubMed]

Mustafa, D.

D. S. L. Figueira, D. Mustafa, L. R. Tessler, and N. C. Frateschi, “Resonant structures based on amorphous silicon sub-oxide doped with Er3+ with silicon nanoclusters for an efficient emission at 1550 nm,” J. Vac. Sci. Technol. B27(6), L38– L41 (2009).
[CrossRef]

Nam, S. W.

Neu, E.

J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotechnol.7(1), 69–74 (2011).
[CrossRef] [PubMed]

C. Kreuzer, J. Riedrich-Möller, E. Neu, and C. Becher, “Design of Photonic Crystal Microcavities in Diamond Films,” Opt. Express16(3), 1632–1644 (2008).
[CrossRef] [PubMed]

Nishi, Y.

Y. Gong, S. Ishikawa, S. Cheng, M. Gunji, Y. Nishi, and J. Vučković, “Photoluminescence from silicon dioxide photonic crystal cavities with embedded silicon nanocrystals,” Phys. Rev. B81(23), 235317 (2010).
[CrossRef]

M. Makarova, J. Vuckovic, H. Sanda, and Y. Nishi, “Silicon based photonic crystal nanocavity light emitters,” Appl. Phys. Lett.89(22), 221101 (2006).
[CrossRef]

Nomura, M.

Nozaki, K.

Nüsse, N.

M. Barth, N. Nüsse, J. Stingl, B. Löchel, and O. Benson, “Emission properties of high-Q silicon nitride photonic crystal heterostructure cavities,” Appl. Phys. Lett.93(2), 021112 (2008).
[CrossRef]

Ota, Y.

Painter, O.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478(7367), 89–92 (2011).
[CrossRef] [PubMed]

O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B16(2), 275–285 (1999).
[CrossRef]

Park, H.

H. Ryu, H. Park, and Y. Lee, “Two-Dimensional Photonic Crystal Semiconductor Lasers: Computational Design, Fabrication, and Characterization,” IEEE J. Sel. Top. Quant Electron.8(4), 891–908 (2002).
[CrossRef]

Pauly, C.

J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotechnol.7(1), 69–74 (2011).
[CrossRef] [PubMed]

Pollnau, M.

J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photon. Rev.5(3), 368–403 (2011).
[CrossRef]

Polman, A.

J. Kalkman, A. Tchebotareva, A. Polman, T. J. Kippengerb, B. Min, and K. J. Vahala, “Fabrication and characterization of erbium-doped toroidal microcavity lasers,” J. Appl. Phys.99(8), 83103–83111 (2006).
[CrossRef]

J. H. Shin, R. Serna, G. N. Hoven, A. Polman, W. G. J. H. M. Sark, and A. M. Vrendenberg, “Luminescence quenching in erbium‐doped hydrogenated amorphous silicon,” Appl. Phys. Lett.68(1), 46–48 (1996).
[CrossRef]

Pomrenke, G.

H. Ennen, J. Scheneider, G. Pomrenke, and A. Axmann, “1.54‐μm luminescence of erbium‐implanted III‐V semiconductors and silicon,” Appl. Phys. Lett.43(10), 943–945 (1983).
[CrossRef]

Quan, Q.

Riedrich-Möller, J.

J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotechnol.7(1), 69–74 (2011).
[CrossRef] [PubMed]

C. Kreuzer, J. Riedrich-Möller, E. Neu, and C. Becher, “Design of Photonic Crystal Microcavities in Diamond Films,” Opt. Express16(3), 1632–1644 (2008).
[CrossRef] [PubMed]

Rowson, S.

A. Chelnokov, K. Wang, S. Rowson, P. Garoche, and J.-M. Lourtioz, “Near-infrared Yablonovitelike photonic crystals by focused-ion-beam etching of macroporous silicon,” Appl. Phys. Lett.77(19), 2943–2945 (2000).
[CrossRef]

Ryu, H.

H. Ryu, H. Park, and Y. Lee, “Two-Dimensional Photonic Crystal Semiconductor Lasers: Computational Design, Fabrication, and Characterization,” IEEE J. Sel. Top. Quant Electron.8(4), 891–908 (2002).
[CrossRef]

Safavi-Naeini, A. H.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478(7367), 89–92 (2011).
[CrossRef] [PubMed]

Sanda, H.

M. Makarova, J. Vuckovic, H. Sanda, and Y. Nishi, “Silicon based photonic crystal nanocavity light emitters,” Appl. Phys. Lett.89(22), 221101 (2006).
[CrossRef]

Sands, D.

J. D. Hoyland and D. Sands, “Temperature dependent refractive index of amorphous silicon determined by time-resolved reflectivity during low fluence excimer laser heating,” J. Appl. Phys.99(6), 063516 (2006).
[CrossRef]

Sark, W. G. J. H. M.

J. H. Shin, R. Serna, G. N. Hoven, A. Polman, W. G. J. H. M. Sark, and A. M. Vrendenberg, “Luminescence quenching in erbium‐doped hydrogenated amorphous silicon,” Appl. Phys. Lett.68(1), 46–48 (1996).
[CrossRef]

Scheneider, J.

H. Ennen, J. Scheneider, G. Pomrenke, and A. Axmann, “1.54‐μm luminescence of erbium‐implanted III‐V semiconductors and silicon,” Appl. Phys. Lett.43(10), 943–945 (1983).
[CrossRef]

Scherer, A.

Schreck, M.

J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotechnol.7(1), 69–74 (2011).
[CrossRef] [PubMed]

Serna, R.

J. H. Shin, R. Serna, G. N. Hoven, A. Polman, W. G. J. H. M. Sark, and A. M. Vrendenberg, “Luminescence quenching in erbium‐doped hydrogenated amorphous silicon,” Appl. Phys. Lett.68(1), 46–48 (1996).
[CrossRef]

Shin, J. H.

J. H. Shin, R. Serna, G. N. Hoven, A. Polman, W. G. J. H. M. Sark, and A. M. Vrendenberg, “Luminescence quenching in erbium‐doped hydrogenated amorphous silicon,” Appl. Phys. Lett.68(1), 46–48 (1996).
[CrossRef]

Sih, V.

M. Makarova, V. Sih, J. Warga, R. Li, L. Dal Negro, and J. Vuckovic, “Enhanced light emission in photonic crystal nanocavities with erbium-doped silicon nanocrystals,” Appl. Phys. Lett.92(16), 161107 (2008).
[CrossRef]

Smith, K. J. M.

T. M. Babinec, J. T. Choy, K. J. M. Smith, M. Khan, and M. Lončar, “Design and focused ion beam fabrication of single crystal diamond nanobeam cavities,” J. Vac. Sci. Technol. B29(1), 010601 (2011).
[CrossRef]

Solomon, G. S.

Spitzer, W. G.

J. E. Fredrickson, C. N. Waddell, W. G. Spitzer, and G. K. Hubler, “Effects of thermal annealing on the refractive index of amorphous silicon produced by ion implantation,” Appl. Phys. Lett.40(2), 172–174 (1982).
[CrossRef]

Sridharan, D.

Stevens, M. J.

Stingl, J.

M. Barth, N. Nüsse, J. Stingl, B. Löchel, and O. Benson, “Emission properties of high-Q silicon nitride photonic crystal heterostructure cavities,” Appl. Phys. Lett.93(2), 021112 (2008).
[CrossRef]

Tandaechanurat, A.

Tang, S. K. Y.

Tchebotareva, A.

J. Kalkman, A. Tchebotareva, A. Polman, T. J. Kippengerb, B. Min, and K. J. Vahala, “Fabrication and characterization of erbium-doped toroidal microcavity lasers,” J. Appl. Phys.99(8), 83103–83111 (2006).
[CrossRef]

Tessler, L. R.

D. S. L. Figueira, D. Mustafa, L. R. Tessler, and N. C. Frateschi, “Resonant structures based on amorphous silicon sub-oxide doped with Er3+ with silicon nanoclusters for an efficient emission at 1550 nm,” J. Vac. Sci. Technol. B27(6), L38– L41 (2009).
[CrossRef]

L. R. Tessler, “Erbium in a-Si:H,” Braz. J. Phys.29(4), 616–622 (1999).
[CrossRef]

Vahala, K. J.

J. Kalkman, A. Tchebotareva, A. Polman, T. J. Kippengerb, B. Min, and K. J. Vahala, “Fabrication and characterization of erbium-doped toroidal microcavity lasers,” J. Appl. Phys.99(8), 83103–83111 (2006).
[CrossRef]

Vallini, F.

R. Lang, D. S. L. Figueira, F. Vallini, and N. C. Frateschi, “Highly luminescent a-SiOx<Er>/SiO2/Si multilayer structure,” IEEE Photon. J.4(4), 1115–1123 (2012).
[CrossRef]

F. Vallini, D. S. L. Figueira, P. F. Jarschel, L. A. M. Barea, A. A. G. V. zuben, and N. C. Frateschi, “Effects of Ga+ milling on InGaAsP Quantum Well Laser with mirrors etched by focused ion beam,” J. Vac. Sci. Technol. B27(5), 25–27 (2009).
[CrossRef]

L. A. M. Barea, F. Vallini, A. R. Vaz, J. R. Mialichi, and N. C. Frateschi, “Low-roughness active microdisk resonators fabricated by focused ion beam,” J. Vac. Sci. Technol. B27(6), 2979–2981 (2009).
[CrossRef]

F. Vallini, L. A. M. Barea, E. F. dos Reis, A. A. von Zuben, and N. C. Frateschi, “Focused ion beam damages induced optical losses in optoelectronic devices,” JICS (to be published).

Vaz, A. R.

L. A. M. Barea, F. Vallini, A. R. Vaz, J. R. Mialichi, and N. C. Frateschi, “Low-roughness active microdisk resonators fabricated by focused ion beam,” J. Vac. Sci. Technol. B27(6), 2979–2981 (2009).
[CrossRef]

von Zuben, A. A.

F. Vallini, L. A. M. Barea, E. F. dos Reis, A. A. von Zuben, and N. C. Frateschi, “Focused ion beam damages induced optical losses in optoelectronic devices,” JICS (to be published).

Vrendenberg, A. M.

J. H. Shin, R. Serna, G. N. Hoven, A. Polman, W. G. J. H. M. Sark, and A. M. Vrendenberg, “Luminescence quenching in erbium‐doped hydrogenated amorphous silicon,” Appl. Phys. Lett.68(1), 46–48 (1996).
[CrossRef]

Vuckovic, J.

Y. Gong, M. Makarova, S. Yerci, R. Li, M. J. Stevens, B. Baek, S. W. Nam, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. Vuckovic, and L. Dal Negro, “Linewidth narrowing and Purcell enhancement in photonic crystal cavities on an Er-doped silicon nitride platform,” Opt. Express18(3), 2601–2612 (2010).
[CrossRef] [PubMed]

Y. Gong and J. Vučković, “Photonic crystal cavities in silicon dioxide,” Appl. Phys. Lett.96(3), 031107 (2010).
[CrossRef]

Y. Gong, M. Makarova, S. Yerci, R. Li, M. J. Stevens, B. Baek, S. W. Nam, L. Dal Negro, and J. Vuckovic, “Observation of transparency of erbium-doped silicon nitride in photonic crystal nanobeam cavities,” Opt. Express18(13), 13863–13873 (2010).
[CrossRef] [PubMed]

Y. Gong, S. Ishikawa, S. Cheng, M. Gunji, Y. Nishi, and J. Vučković, “Photoluminescence from silicon dioxide photonic crystal cavities with embedded silicon nanocrystals,” Phys. Rev. B81(23), 235317 (2010).
[CrossRef]

M. Makarova, V. Sih, J. Warga, R. Li, L. Dal Negro, and J. Vuckovic, “Enhanced light emission in photonic crystal nanocavities with erbium-doped silicon nanocrystals,” Appl. Phys. Lett.92(16), 161107 (2008).
[CrossRef]

M. Makarova, J. Vuckovic, H. Sanda, and Y. Nishi, “Silicon based photonic crystal nanocavity light emitters,” Appl. Phys. Lett.89(22), 221101 (2006).
[CrossRef]

O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B16(2), 275–285 (1999).
[CrossRef]

Waddell, C. N.

J. E. Fredrickson, C. N. Waddell, W. G. Spitzer, and G. K. Hubler, “Effects of thermal annealing on the refractive index of amorphous silicon produced by ion implantation,” Appl. Phys. Lett.40(2), 172–174 (1982).
[CrossRef]

Waks, E.

Wandt, M.

J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotechnol.7(1), 69–74 (2011).
[CrossRef] [PubMed]

Wang, K.

A. Chelnokov, K. Wang, S. Rowson, P. Garoche, and J.-M. Lourtioz, “Near-infrared Yablonovitelike photonic crystals by focused-ion-beam etching of macroporous silicon,” Appl. Phys. Lett.77(19), 2943–2945 (2000).
[CrossRef]

Warga, J.

M. Makarova, V. Sih, J. Warga, R. Li, L. Dal Negro, and J. Vuckovic, “Enhanced light emission in photonic crystal nanocavities with erbium-doped silicon nanocrystals,” Appl. Phys. Lett.92(16), 161107 (2008).
[CrossRef]

Wiederhecker, G. S.

Wolff, S.

J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotechnol.7(1), 69–74 (2011).
[CrossRef] [PubMed]

Yerci, S.

zuben, A. A. G. V.

F. Vallini, D. S. L. Figueira, P. F. Jarschel, L. A. M. Barea, A. A. G. V. zuben, and N. C. Frateschi, “Effects of Ga+ milling on InGaAsP Quantum Well Laser with mirrors etched by focused ion beam,” J. Vac. Sci. Technol. B27(5), 25–27 (2009).
[CrossRef]

Zwiller, V.

Appl. Phys. Lett. (9)

H. Ennen, J. Scheneider, G. Pomrenke, and A. Axmann, “1.54‐μm luminescence of erbium‐implanted III‐V semiconductors and silicon,” Appl. Phys. Lett.43(10), 943–945 (1983).
[CrossRef]

M. Makarova, V. Sih, J. Warga, R. Li, L. Dal Negro, and J. Vuckovic, “Enhanced light emission in photonic crystal nanocavities with erbium-doped silicon nanocrystals,” Appl. Phys. Lett.92(16), 161107 (2008).
[CrossRef]

M. Barth, N. Nüsse, J. Stingl, B. Löchel, and O. Benson, “Emission properties of high-Q silicon nitride photonic crystal heterostructure cavities,” Appl. Phys. Lett.93(2), 021112 (2008).
[CrossRef]

M. Makarova, J. Vuckovic, H. Sanda, and Y. Nishi, “Silicon based photonic crystal nanocavity light emitters,” Appl. Phys. Lett.89(22), 221101 (2006).
[CrossRef]

K. Hennessy, C. Högerle, E. Hu, A. Badolato, and A. Imamoğlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett.89(4), 041118 (2006).
[CrossRef]

Y. Gong and J. Vučković, “Photonic crystal cavities in silicon dioxide,” Appl. Phys. Lett.96(3), 031107 (2010).
[CrossRef]

A. Chelnokov, K. Wang, S. Rowson, P. Garoche, and J.-M. Lourtioz, “Near-infrared Yablonovitelike photonic crystals by focused-ion-beam etching of macroporous silicon,” Appl. Phys. Lett.77(19), 2943–2945 (2000).
[CrossRef]

J. H. Shin, R. Serna, G. N. Hoven, A. Polman, W. G. J. H. M. Sark, and A. M. Vrendenberg, “Luminescence quenching in erbium‐doped hydrogenated amorphous silicon,” Appl. Phys. Lett.68(1), 46–48 (1996).
[CrossRef]

J. E. Fredrickson, C. N. Waddell, W. G. Spitzer, and G. K. Hubler, “Effects of thermal annealing on the refractive index of amorphous silicon produced by ion implantation,” Appl. Phys. Lett.40(2), 172–174 (1982).
[CrossRef]

Braz. J. Phys. (1)

L. R. Tessler, “Erbium in a-Si:H,” Braz. J. Phys.29(4), 616–622 (1999).
[CrossRef]

IEEE J. Sel. Top. Quant Electron. (1)

H. Ryu, H. Park, and Y. Lee, “Two-Dimensional Photonic Crystal Semiconductor Lasers: Computational Design, Fabrication, and Characterization,” IEEE J. Sel. Top. Quant Electron.8(4), 891–908 (2002).
[CrossRef]

IEEE Photon. J. (1)

R. Lang, D. S. L. Figueira, F. Vallini, and N. C. Frateschi, “Highly luminescent a-SiOx<Er>/SiO2/Si multilayer structure,” IEEE Photon. J.4(4), 1115–1123 (2012).
[CrossRef]

J. Appl. Phys. (3)

J. Kalkman, A. Tchebotareva, A. Polman, T. J. Kippengerb, B. Min, and K. J. Vahala, “Fabrication and characterization of erbium-doped toroidal microcavity lasers,” J. Appl. Phys.99(8), 83103–83111 (2006).
[CrossRef]

D. S. L. Figueira and N. C. Frateschi, “Evidences of the simultaneous presence of bow-tie and diamond scars in rare-earth doped amorphous silicon microstadium resonators,” J. Appl. Phys.103(6), 063106 (2008).
[CrossRef]

J. D. Hoyland and D. Sands, “Temperature dependent refractive index of amorphous silicon determined by time-resolved reflectivity during low fluence excimer laser heating,” J. Appl. Phys.99(6), 063516 (2006).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Vac. Sci. Technol. B (4)

D. S. L. Figueira, D. Mustafa, L. R. Tessler, and N. C. Frateschi, “Resonant structures based on amorphous silicon sub-oxide doped with Er3+ with silicon nanoclusters for an efficient emission at 1550 nm,” J. Vac. Sci. Technol. B27(6), L38– L41 (2009).
[CrossRef]

T. M. Babinec, J. T. Choy, K. J. M. Smith, M. Khan, and M. Lončar, “Design and focused ion beam fabrication of single crystal diamond nanobeam cavities,” J. Vac. Sci. Technol. B29(1), 010601 (2011).
[CrossRef]

L. A. M. Barea, F. Vallini, A. R. Vaz, J. R. Mialichi, and N. C. Frateschi, “Low-roughness active microdisk resonators fabricated by focused ion beam,” J. Vac. Sci. Technol. B27(6), 2979–2981 (2009).
[CrossRef]

F. Vallini, D. S. L. Figueira, P. F. Jarschel, L. A. M. Barea, A. A. G. V. zuben, and N. C. Frateschi, “Effects of Ga+ milling on InGaAsP Quantum Well Laser with mirrors etched by focused ion beam,” J. Vac. Sci. Technol. B27(5), 25–27 (2009).
[CrossRef]

JICS (1)

F. Vallini, L. A. M. Barea, E. F. dos Reis, A. A. von Zuben, and N. C. Frateschi, “Focused ion beam damages induced optical losses in optoelectronic devices,” JICS (to be published).

Laser Photon. Rev. (1)

J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photon. Rev.5(3), 368–403 (2011).
[CrossRef]

Nat. Nanotechnol. (1)

J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotechnol.7(1), 69–74 (2011).
[CrossRef] [PubMed]

Nature (1)

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478(7367), 89–92 (2011).
[CrossRef] [PubMed]

Opt. Express (9)

A. Tandaechanurat, S. Iwamoto, M. Nomura, N. Kumagai, and Y. Arakawa, “Increase of Q-factor in photonic crystal H1-defect nanocavities after closing of photonic bandgap with optimal slab thickness,” Opt. Express16(1), 448–455 (2008).
[CrossRef] [PubMed]

G. S. Wiederhecker, S. Manipatruni, S. Lee, and M. Lipson, “Broadband tuning of optomechanical cavities,” Opt. Express19(3), 2782–2790 (2011).
[CrossRef] [PubMed]

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Photonic crystal nanocavity laser with a single quantum dot gain,” Opt. Express17(18), 15975–15982 (2009).
[CrossRef] [PubMed]

D. Sridharan, R. Bose, H. Kim, G. S. Solomon, and E. Waks, “A reversibly tunable photonic crystal nanocavity laser using photochromic thin film,” Opt. Express19(6), 5551–5558 (2011).
[CrossRef] [PubMed]

Y. Gong, M. Makarova, S. Yerci, R. Li, M. J. Stevens, B. Baek, S. W. Nam, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. Vuckovic, and L. Dal Negro, “Linewidth narrowing and Purcell enhancement in photonic crystal cavities on an Er-doped silicon nitride platform,” Opt. Express18(3), 2601–2612 (2010).
[CrossRef] [PubMed]

Y. Gong, M. Makarova, S. Yerci, R. Li, M. J. Stevens, B. Baek, S. W. Nam, L. Dal Negro, and J. Vuckovic, “Observation of transparency of erbium-doped silicon nitride in photonic crystal nanobeam cavities,” Opt. Express18(13), 13863–13873 (2010).
[CrossRef] [PubMed]

Q. Quan, I. B. Burgess, S. K. Y. Tang, D. L. Floyd, and M. Loncar, “High-Q, low index-contrast polymeric photonic crystal nanobeam cavities,” Opt. Express19(22), 22191–22197 (2011).
[CrossRef] [PubMed]

C. Kreuzer, J. Riedrich-Möller, E. Neu, and C. Becher, “Design of Photonic Crystal Microcavities in Diamond Films,” Opt. Express16(3), 1632–1644 (2008).
[CrossRef] [PubMed]

K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express15(12), 7506–7514 (2007).
[CrossRef] [PubMed]

Phys. Rev. B (2)

Y. Gong, S. Ishikawa, S. Cheng, M. Gunji, Y. Nishi, and J. Vučković, “Photoluminescence from silicon dioxide photonic crystal cavities with embedded silicon nanocrystals,” Phys. Rev. B81(23), 235317 (2010).
[CrossRef]

B. Gayral and J. M. Gérard, “Photoluminescence experiment on quantum dots embedded in a large purcell-factor microcavity,” Phys. Rev. B78(23), 235306 (2008).
[CrossRef]

Other (5)

E. Desurvire, in Erbium Doped Fiber Amplifiers, (John Wiley, 1994), pp. 207–306.

L. Pavesi and D. J. Lockwood, eds., “Silicon Photonics,” in Topics in Applied Physics (Springer, 2004).

http://www.rsoftdesign.com/

Y. Tang, A. M. Mintairov, J. L. Merz, V. Tokranov, and S. Oktyabrsky, “Characterization of 2D-Photonic Crystal Nanocavities by Polarization-Dependent and Near-Field Photoluminescence,” in Proceedings of IEEE Conference on Nanotechnology (Nagoya, Japan, 2005), pp 35–38.

D. S. L. Figueira and N. C. Frateschi, Rare-earth Doped Amorphous Silicon Microdisk Resonator Structures (John Wiley & Sons, 2006)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic illustration of the designed structure. A photonic crystal resonator membrane made of a-SiOx<Er>/SiO2/Si multilayer is formed on top of an air gap. The inset shows a cross-section of the multilayer structure.

Fig. 2
Fig. 2

Band diagrams for the PC structure for both polarizations TM-like (a) and TE-like (b) as a function of the normalized frequency ω ¯ . The gray filled region corresponds to a photonic bandgap. The inset of the Fig. 2(a) shows the Brillouin zone and the way along the reciprocal lattice that the simulations were performed.

Fig. 3
Fig. 3

Electric field energy distribution on the slab calculated for the doubly degenerate TE-like dipole modes.

Fig. 4
Fig. 4

Photonic bandgap opening (shaded area) and normalized resonance frequencies (dashed blue line) as a function of r/a as evaluated by BandSOLVE. The red solid line shows the predicted bandgap center obtained by Eq. (2). The short-dashed purple line and the dash-dotted green line correspond to the first and second order resonances obtained by Eq. (3).

Fig. 5
Fig. 5

(a) Overview image of the air-bridge PC fully fabricated with FIB; (b) central region of PC in detail; (c) Cross section image of the holes showing a tilt angle of about 6°.

Fig. 6
Fig. 6

(a) µ-PL spectra obtained outside and on the photonic crystal structure. The inset shows the measured regions, its dimensions and a circle representing the pumping laser spot. (b) Reconstructed curve after the lorentzian fit of the experimental data.

Fig. 7
Fig. 7

Full 3D calculation of the photonic membrane band structure for hybrid polarization end even parity in the vertical direction. (a) Calculation for the as designed structure with cylindrical holes. (b) Calculation for the as fabricated structure with cylindrical holes.

Fig. 8
Fig. 8

TE-like stored energy decay simulation for the structures: (a) perfect 2-D, (b) perfect 3-D; (c) 3-D with conical holes, (d) 3-D with conical holes plus 3300 cm−1 loss on a 30 nm skin of the FIB milled surface. On the right, the TE-like spatial profiles corresponding to (a), (b) and (c) simulations.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Γ=(1/L) 0 L | E air (z)+ E SiO 2 (z) | 2 dz
( a λ ) gap 2 3 n ¯ 2 3[ n eff π( n eff 1) r 2 a 2 ]
( a λ ) res M 4 n eff ( 1 r a )
dp dt = ω Q V p= ω Q V Q R sp ω = Q R sp Q V

Metrics