Abstract

We report a spectroscopic investigation and an efficient Ho:LiLuF4 laser in-band pumped at 1938 nm. This represents the first laser emission of a fluoride crystal grown by micro–Pulling Down method in the 2 μm wavelength range. The Ho:LiLuF4 laser yielded a maximum output power of 7.1W with a slope efficiency of 41% and a threshold around 5W, at lasing wavelength of 2054.2 nm.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. J. Johnson, G. D. Boyd, and K. Nassau, “Optical maser characteristics of Ho3+ in CaWO4,” Proc. IRE, 50, 87 (1962).
  2. B. M. Walsh, “Review of Tm and Ho Materials; Spectroscopy and Lasers,” Laser Phys.19(4), 855–866 (2009).
    [CrossRef]
  3. M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B93(2-3), 269–316 (2008).
    [CrossRef]
  4. N. P. Barnes, B. M. Walsh, and E. D. Filer, “Ho:Ho upconversion: applications to Ho lasers,” J. Opt. Soc. Am. B20(6), 1212 (2003).
    [CrossRef]
  5. P. A. Budni, C. R. Ibach, S. D. Setzler, E. J. Gustafson, R. T. Castro, and E. P. Chicklis, “50-mJ, Q-switched, 2.09-μm holmium laser resonantly pumped by a diode-pumped 1.9-μm thulium laser,” Opt. Lett.28(12), 1016–1018 (2003).
    [CrossRef] [PubMed]
  6. A. Dergachev, D. Armstrong, A. Smith, T. Drake, and M. Dubois, “3.4-μm ZGP RISTRA nanosecond optical parametric oscillator pumped by a 2.05-μm Ho:YLF MOPA system,” Opt. Express15(22), 14404 (2007).
    [CrossRef]
  7. L. R. Botha, C. Bollig, M. J. D. Esser, R. N. Campbell, C. Jacobs, and D. R. Preussler, “Ho:YLF pumped HBr laser,” Opt. Express17(22), 20615–20622 (2009).
    [CrossRef] [PubMed]
  8. M. Schellhorn, “High-energy, in-band pumped Q-switched Ho3+:LuLiF4 2 μm laser,” Opt. Lett.35(15), 2609–2611 (2010).
    [CrossRef] [PubMed]
  9. F. Cornacchia, A. Toncelli, and M. Tonelli, “2-μm lasers with fluoride crystals: Research and development,” Prog. Quantum Electron.33(2-4), 61–109 (2009).
    [CrossRef]
  10. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys.98, 103514 (2005).
    [CrossRef]
  11. D. H. Yoon, I. Yonenaga, T. Fukuda, and N. Ohnishi, “Crystal growth of dislocation-free LiNbO3 single crystals by micro pulling down method,” J. Cryst. Growth142(3-4), 339–343 (1994).
    [CrossRef]
  12. D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, A. Brenier, P. Georges, O. Tillement, and J. M. Fourmigue, “High power laser operation with crystal fibers,” Appl. Phys. B97(2), 263–273 (2009).
    [CrossRef]
  13. D. Maier, D. Rhede, R. Bertram, D. Klimm, and R. Fornari, “Dopant segregations in oxide single-crystal fibers grown by the micro-pulling-down method,” Opt. Mater.30(1), 11–14 (2007).
    [CrossRef]
  14. K. Y. Huang, K. Y. Hsu, D. Y. Jheng, W. J. Zhuo, P. Y. Chen, P. S. Yeh, and S. L. Huang, “Low-loss propagation in Cr4+:YAG double-clad crystal fiber fabricated by sapphire tube assisted CDLHPG technique,” Opt. Express16(16), 12264–12271 (2008).
    [CrossRef] [PubMed]
  15. A. Yoshikawa and V. Chani, “Growth of Optical Crystals by the Micro-Pulling-Down Method,” MRS Bull.34(04), 266–270 (2009).
    [CrossRef]
  16. M. H. Pham, M. M. Cadatal, T. Tatsumi, A. Saiki, Y. Furukawa, T. Nakazato, E. Estacio, N. Sarukura, T. Suyama, K. Fukuda, K. J. Kim, A. Yoshikawa, and F. Saito, “Laser quality Ce3+:LiCaAlF6 grown by micro-pulling-down method,” Jpn. J. Appl. Phys.47(7), 5605–5607 (2008).
    [CrossRef]
  17. A. A. Kaminskii, “Laser crystals,” Springer-Verlag Series in Optical Science v.14 (1990).
  18. P. Rogin and J. Hulliger, “Liquid phase epitaxy of LiYF4,” J. Cryst. Growth179(3-4), 551–558 (1997).
    [CrossRef]
  19. S. Veronesi, Y. Z. Zhang, M. Tonelli, A. Agnesi, A. Greborio, F. Pirzio, and G. Reali, “Spectroscopy and efficient laser emission of Yb3+: LuAG single crystal grown by μ-PD,” Opt. Commun.285(3), 315–321 (2012).
    [CrossRef]
  20. J. W. Kim, J. I. Mackenzie, D. Parisi, S. Veronesi, M. Tonelli, and W. A. Clarkson, “Efficient in-band pumped Ho:LuLiF4 2 μm laser,” Opt. Lett.35(3), 420–422 (2010).
    [CrossRef] [PubMed]
  21. H. Kühn, S. T. Fredrich-Thornton, C. Kränkel, R. Peters, and K. Petermann, “Model for the calculation of radiation trapping and description of the pinhole method,” Opt. Lett.32(13), 1908–1910 (2007).
    [CrossRef] [PubMed]
  22. J. W. Kim, J. I. Mackenzie, D. Parisi, S. Veronesi, M. Tonelli, and W. A. Clarkson, “Efficient fiber-laser pumped Ho:LuLiF4 laser,” Solid State Lasers and Amplifiers IV, and High-Power Lasers. Edited by Graf, Thomas; MacKenzie, Jacob I.; Jelinková, Helena; Paulus, Gerhard G.; Bagnoud, Vincent; Le Blanc, Catherine. Proceedings of the SPIE, Volume 7721, pp. 77210V (2010).
  23. M. Schellhorn, “A comparison of resonantly pumped Ho:YLF and Ho:LLF lasers in CW and Q-switched operation under identical pump conditions,” Appl. Phys. B103(4), 777–788 (2011).
    [CrossRef]
  24. LASCAD, LAS-CAD GmbH, Brunhildenstrasse 9, 80639 Munich, Germany, http://www.las-cad.com .
  25. X. Peng, L. Xu, and A. Asundi, “High-power efficient continuous-wave TEM00 intracavity frequency-doubled diode-pumped Nd:YLF laser,” Appl. Opt.44(5), 800–807 (2005).
    [CrossRef] [PubMed]
  26. J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron.24(6), 1077–1099 (1988).
    [CrossRef]

2012 (1)

S. Veronesi, Y. Z. Zhang, M. Tonelli, A. Agnesi, A. Greborio, F. Pirzio, and G. Reali, “Spectroscopy and efficient laser emission of Yb3+: LuAG single crystal grown by μ-PD,” Opt. Commun.285(3), 315–321 (2012).
[CrossRef]

2011 (1)

M. Schellhorn, “A comparison of resonantly pumped Ho:YLF and Ho:LLF lasers in CW and Q-switched operation under identical pump conditions,” Appl. Phys. B103(4), 777–788 (2011).
[CrossRef]

2010 (2)

2009 (5)

F. Cornacchia, A. Toncelli, and M. Tonelli, “2-μm lasers with fluoride crystals: Research and development,” Prog. Quantum Electron.33(2-4), 61–109 (2009).
[CrossRef]

B. M. Walsh, “Review of Tm and Ho Materials; Spectroscopy and Lasers,” Laser Phys.19(4), 855–866 (2009).
[CrossRef]

A. Yoshikawa and V. Chani, “Growth of Optical Crystals by the Micro-Pulling-Down Method,” MRS Bull.34(04), 266–270 (2009).
[CrossRef]

L. R. Botha, C. Bollig, M. J. D. Esser, R. N. Campbell, C. Jacobs, and D. R. Preussler, “Ho:YLF pumped HBr laser,” Opt. Express17(22), 20615–20622 (2009).
[CrossRef] [PubMed]

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, A. Brenier, P. Georges, O. Tillement, and J. M. Fourmigue, “High power laser operation with crystal fibers,” Appl. Phys. B97(2), 263–273 (2009).
[CrossRef]

2008 (3)

M. H. Pham, M. M. Cadatal, T. Tatsumi, A. Saiki, Y. Furukawa, T. Nakazato, E. Estacio, N. Sarukura, T. Suyama, K. Fukuda, K. J. Kim, A. Yoshikawa, and F. Saito, “Laser quality Ce3+:LiCaAlF6 grown by micro-pulling-down method,” Jpn. J. Appl. Phys.47(7), 5605–5607 (2008).
[CrossRef]

M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B93(2-3), 269–316 (2008).
[CrossRef]

K. Y. Huang, K. Y. Hsu, D. Y. Jheng, W. J. Zhuo, P. Y. Chen, P. S. Yeh, and S. L. Huang, “Low-loss propagation in Cr4+:YAG double-clad crystal fiber fabricated by sapphire tube assisted CDLHPG technique,” Opt. Express16(16), 12264–12271 (2008).
[CrossRef] [PubMed]

2007 (3)

2005 (2)

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys.98, 103514 (2005).
[CrossRef]

X. Peng, L. Xu, and A. Asundi, “High-power efficient continuous-wave TEM00 intracavity frequency-doubled diode-pumped Nd:YLF laser,” Appl. Opt.44(5), 800–807 (2005).
[CrossRef] [PubMed]

2003 (2)

1997 (1)

P. Rogin and J. Hulliger, “Liquid phase epitaxy of LiYF4,” J. Cryst. Growth179(3-4), 551–558 (1997).
[CrossRef]

1994 (1)

D. H. Yoon, I. Yonenaga, T. Fukuda, and N. Ohnishi, “Crystal growth of dislocation-free LiNbO3 single crystals by micro pulling down method,” J. Cryst. Growth142(3-4), 339–343 (1994).
[CrossRef]

1988 (1)

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron.24(6), 1077–1099 (1988).
[CrossRef]

Aggarwal, R. L.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys.98, 103514 (2005).
[CrossRef]

Agnesi, A.

S. Veronesi, Y. Z. Zhang, M. Tonelli, A. Agnesi, A. Greborio, F. Pirzio, and G. Reali, “Spectroscopy and efficient laser emission of Yb3+: LuAG single crystal grown by μ-PD,” Opt. Commun.285(3), 315–321 (2012).
[CrossRef]

Armstrong, D.

Asundi, A.

Aubry, N.

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, A. Brenier, P. Georges, O. Tillement, and J. M. Fourmigue, “High power laser operation with crystal fibers,” Appl. Phys. B97(2), 263–273 (2009).
[CrossRef]

Balembois, F.

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, A. Brenier, P. Georges, O. Tillement, and J. M. Fourmigue, “High power laser operation with crystal fibers,” Appl. Phys. B97(2), 263–273 (2009).
[CrossRef]

Barnes, N. P.

Bertram, R.

D. Maier, D. Rhede, R. Bertram, D. Klimm, and R. Fornari, “Dopant segregations in oxide single-crystal fibers grown by the micro-pulling-down method,” Opt. Mater.30(1), 11–14 (2007).
[CrossRef]

Bollig, C.

Botha, L. R.

Brenier, A.

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, A. Brenier, P. Georges, O. Tillement, and J. M. Fourmigue, “High power laser operation with crystal fibers,” Appl. Phys. B97(2), 263–273 (2009).
[CrossRef]

Budni, P. A.

Cadatal, M. M.

M. H. Pham, M. M. Cadatal, T. Tatsumi, A. Saiki, Y. Furukawa, T. Nakazato, E. Estacio, N. Sarukura, T. Suyama, K. Fukuda, K. J. Kim, A. Yoshikawa, and F. Saito, “Laser quality Ce3+:LiCaAlF6 grown by micro-pulling-down method,” Jpn. J. Appl. Phys.47(7), 5605–5607 (2008).
[CrossRef]

Caird, J. A.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron.24(6), 1077–1099 (1988).
[CrossRef]

Campbell, R. N.

Castro, R. T.

Chani, V.

A. Yoshikawa and V. Chani, “Growth of Optical Crystals by the Micro-Pulling-Down Method,” MRS Bull.34(04), 266–270 (2009).
[CrossRef]

Chase, L. L.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron.24(6), 1077–1099 (1988).
[CrossRef]

Chen, P. Y.

Chicklis, E. P.

Clarkson, W. A.

Cornacchia, F.

F. Cornacchia, A. Toncelli, and M. Tonelli, “2-μm lasers with fluoride crystals: Research and development,” Prog. Quantum Electron.33(2-4), 61–109 (2009).
[CrossRef]

Dergachev, A.

Didierjean, J.

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, A. Brenier, P. Georges, O. Tillement, and J. M. Fourmigue, “High power laser operation with crystal fibers,” Appl. Phys. B97(2), 263–273 (2009).
[CrossRef]

Drake, T.

Dubois, M.

Eichhorn, M.

M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B93(2-3), 269–316 (2008).
[CrossRef]

Esser, M. J. D.

Estacio, E.

M. H. Pham, M. M. Cadatal, T. Tatsumi, A. Saiki, Y. Furukawa, T. Nakazato, E. Estacio, N. Sarukura, T. Suyama, K. Fukuda, K. J. Kim, A. Yoshikawa, and F. Saito, “Laser quality Ce3+:LiCaAlF6 grown by micro-pulling-down method,” Jpn. J. Appl. Phys.47(7), 5605–5607 (2008).
[CrossRef]

Fan, T. Y.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys.98, 103514 (2005).
[CrossRef]

Filer, E. D.

Fornari, R.

D. Maier, D. Rhede, R. Bertram, D. Klimm, and R. Fornari, “Dopant segregations in oxide single-crystal fibers grown by the micro-pulling-down method,” Opt. Mater.30(1), 11–14 (2007).
[CrossRef]

Fourmigue, J. M.

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, A. Brenier, P. Georges, O. Tillement, and J. M. Fourmigue, “High power laser operation with crystal fibers,” Appl. Phys. B97(2), 263–273 (2009).
[CrossRef]

Fredrich-Thornton, S. T.

Fukuda, K.

M. H. Pham, M. M. Cadatal, T. Tatsumi, A. Saiki, Y. Furukawa, T. Nakazato, E. Estacio, N. Sarukura, T. Suyama, K. Fukuda, K. J. Kim, A. Yoshikawa, and F. Saito, “Laser quality Ce3+:LiCaAlF6 grown by micro-pulling-down method,” Jpn. J. Appl. Phys.47(7), 5605–5607 (2008).
[CrossRef]

Fukuda, T.

D. H. Yoon, I. Yonenaga, T. Fukuda, and N. Ohnishi, “Crystal growth of dislocation-free LiNbO3 single crystals by micro pulling down method,” J. Cryst. Growth142(3-4), 339–343 (1994).
[CrossRef]

Furukawa, Y.

M. H. Pham, M. M. Cadatal, T. Tatsumi, A. Saiki, Y. Furukawa, T. Nakazato, E. Estacio, N. Sarukura, T. Suyama, K. Fukuda, K. J. Kim, A. Yoshikawa, and F. Saito, “Laser quality Ce3+:LiCaAlF6 grown by micro-pulling-down method,” Jpn. J. Appl. Phys.47(7), 5605–5607 (2008).
[CrossRef]

Georges, P.

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, A. Brenier, P. Georges, O. Tillement, and J. M. Fourmigue, “High power laser operation with crystal fibers,” Appl. Phys. B97(2), 263–273 (2009).
[CrossRef]

Greborio, A.

S. Veronesi, Y. Z. Zhang, M. Tonelli, A. Agnesi, A. Greborio, F. Pirzio, and G. Reali, “Spectroscopy and efficient laser emission of Yb3+: LuAG single crystal grown by μ-PD,” Opt. Commun.285(3), 315–321 (2012).
[CrossRef]

Gustafson, E. J.

Hsu, K. Y.

Huang, K. Y.

Huang, S. L.

Hulliger, J.

P. Rogin and J. Hulliger, “Liquid phase epitaxy of LiYF4,” J. Cryst. Growth179(3-4), 551–558 (1997).
[CrossRef]

Ibach, C. R.

Jacobs, C.

Jheng, D. Y.

Kim, J. W.

Kim, K. J.

M. H. Pham, M. M. Cadatal, T. Tatsumi, A. Saiki, Y. Furukawa, T. Nakazato, E. Estacio, N. Sarukura, T. Suyama, K. Fukuda, K. J. Kim, A. Yoshikawa, and F. Saito, “Laser quality Ce3+:LiCaAlF6 grown by micro-pulling-down method,” Jpn. J. Appl. Phys.47(7), 5605–5607 (2008).
[CrossRef]

Klimm, D.

D. Maier, D. Rhede, R. Bertram, D. Klimm, and R. Fornari, “Dopant segregations in oxide single-crystal fibers grown by the micro-pulling-down method,” Opt. Mater.30(1), 11–14 (2007).
[CrossRef]

Kränkel, C.

Krupke, W. F.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron.24(6), 1077–1099 (1988).
[CrossRef]

Kühn, H.

Lebbou, K.

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, A. Brenier, P. Georges, O. Tillement, and J. M. Fourmigue, “High power laser operation with crystal fibers,” Appl. Phys. B97(2), 263–273 (2009).
[CrossRef]

Mackenzie, J. I.

Maier, D.

D. Maier, D. Rhede, R. Bertram, D. Klimm, and R. Fornari, “Dopant segregations in oxide single-crystal fibers grown by the micro-pulling-down method,” Opt. Mater.30(1), 11–14 (2007).
[CrossRef]

Martial, I.

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, A. Brenier, P. Georges, O. Tillement, and J. M. Fourmigue, “High power laser operation with crystal fibers,” Appl. Phys. B97(2), 263–273 (2009).
[CrossRef]

Nakazato, T.

M. H. Pham, M. M. Cadatal, T. Tatsumi, A. Saiki, Y. Furukawa, T. Nakazato, E. Estacio, N. Sarukura, T. Suyama, K. Fukuda, K. J. Kim, A. Yoshikawa, and F. Saito, “Laser quality Ce3+:LiCaAlF6 grown by micro-pulling-down method,” Jpn. J. Appl. Phys.47(7), 5605–5607 (2008).
[CrossRef]

Ochoa, J. R.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys.98, 103514 (2005).
[CrossRef]

Ohnishi, N.

D. H. Yoon, I. Yonenaga, T. Fukuda, and N. Ohnishi, “Crystal growth of dislocation-free LiNbO3 single crystals by micro pulling down method,” J. Cryst. Growth142(3-4), 339–343 (1994).
[CrossRef]

Parisi, D.

Payne, S. A.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron.24(6), 1077–1099 (1988).
[CrossRef]

Peng, X.

Perrodin, D.

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, A. Brenier, P. Georges, O. Tillement, and J. M. Fourmigue, “High power laser operation with crystal fibers,” Appl. Phys. B97(2), 263–273 (2009).
[CrossRef]

Petermann, K.

Peters, R.

Pham, M. H.

M. H. Pham, M. M. Cadatal, T. Tatsumi, A. Saiki, Y. Furukawa, T. Nakazato, E. Estacio, N. Sarukura, T. Suyama, K. Fukuda, K. J. Kim, A. Yoshikawa, and F. Saito, “Laser quality Ce3+:LiCaAlF6 grown by micro-pulling-down method,” Jpn. J. Appl. Phys.47(7), 5605–5607 (2008).
[CrossRef]

Pirzio, F.

S. Veronesi, Y. Z. Zhang, M. Tonelli, A. Agnesi, A. Greborio, F. Pirzio, and G. Reali, “Spectroscopy and efficient laser emission of Yb3+: LuAG single crystal grown by μ-PD,” Opt. Commun.285(3), 315–321 (2012).
[CrossRef]

Preussler, D. R.

Ramponi, A. J.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron.24(6), 1077–1099 (1988).
[CrossRef]

Reali, G.

S. Veronesi, Y. Z. Zhang, M. Tonelli, A. Agnesi, A. Greborio, F. Pirzio, and G. Reali, “Spectroscopy and efficient laser emission of Yb3+: LuAG single crystal grown by μ-PD,” Opt. Commun.285(3), 315–321 (2012).
[CrossRef]

Rhede, D.

D. Maier, D. Rhede, R. Bertram, D. Klimm, and R. Fornari, “Dopant segregations in oxide single-crystal fibers grown by the micro-pulling-down method,” Opt. Mater.30(1), 11–14 (2007).
[CrossRef]

Ripin, D. J.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys.98, 103514 (2005).
[CrossRef]

Rogin, P.

P. Rogin and J. Hulliger, “Liquid phase epitaxy of LiYF4,” J. Cryst. Growth179(3-4), 551–558 (1997).
[CrossRef]

Saiki, A.

M. H. Pham, M. M. Cadatal, T. Tatsumi, A. Saiki, Y. Furukawa, T. Nakazato, E. Estacio, N. Sarukura, T. Suyama, K. Fukuda, K. J. Kim, A. Yoshikawa, and F. Saito, “Laser quality Ce3+:LiCaAlF6 grown by micro-pulling-down method,” Jpn. J. Appl. Phys.47(7), 5605–5607 (2008).
[CrossRef]

Saito, F.

M. H. Pham, M. M. Cadatal, T. Tatsumi, A. Saiki, Y. Furukawa, T. Nakazato, E. Estacio, N. Sarukura, T. Suyama, K. Fukuda, K. J. Kim, A. Yoshikawa, and F. Saito, “Laser quality Ce3+:LiCaAlF6 grown by micro-pulling-down method,” Jpn. J. Appl. Phys.47(7), 5605–5607 (2008).
[CrossRef]

Sangla, D.

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, A. Brenier, P. Georges, O. Tillement, and J. M. Fourmigue, “High power laser operation with crystal fibers,” Appl. Phys. B97(2), 263–273 (2009).
[CrossRef]

Sarukura, N.

M. H. Pham, M. M. Cadatal, T. Tatsumi, A. Saiki, Y. Furukawa, T. Nakazato, E. Estacio, N. Sarukura, T. Suyama, K. Fukuda, K. J. Kim, A. Yoshikawa, and F. Saito, “Laser quality Ce3+:LiCaAlF6 grown by micro-pulling-down method,” Jpn. J. Appl. Phys.47(7), 5605–5607 (2008).
[CrossRef]

Schellhorn, M.

M. Schellhorn, “A comparison of resonantly pumped Ho:YLF and Ho:LLF lasers in CW and Q-switched operation under identical pump conditions,” Appl. Phys. B103(4), 777–788 (2011).
[CrossRef]

M. Schellhorn, “High-energy, in-band pumped Q-switched Ho3+:LuLiF4 2 μm laser,” Opt. Lett.35(15), 2609–2611 (2010).
[CrossRef] [PubMed]

Setzler, S. D.

Smith, A.

Staber, P. R.

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron.24(6), 1077–1099 (1988).
[CrossRef]

Suyama, T.

M. H. Pham, M. M. Cadatal, T. Tatsumi, A. Saiki, Y. Furukawa, T. Nakazato, E. Estacio, N. Sarukura, T. Suyama, K. Fukuda, K. J. Kim, A. Yoshikawa, and F. Saito, “Laser quality Ce3+:LiCaAlF6 grown by micro-pulling-down method,” Jpn. J. Appl. Phys.47(7), 5605–5607 (2008).
[CrossRef]

Tatsumi, T.

M. H. Pham, M. M. Cadatal, T. Tatsumi, A. Saiki, Y. Furukawa, T. Nakazato, E. Estacio, N. Sarukura, T. Suyama, K. Fukuda, K. J. Kim, A. Yoshikawa, and F. Saito, “Laser quality Ce3+:LiCaAlF6 grown by micro-pulling-down method,” Jpn. J. Appl. Phys.47(7), 5605–5607 (2008).
[CrossRef]

Tillement, O.

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, A. Brenier, P. Georges, O. Tillement, and J. M. Fourmigue, “High power laser operation with crystal fibers,” Appl. Phys. B97(2), 263–273 (2009).
[CrossRef]

Toncelli, A.

F. Cornacchia, A. Toncelli, and M. Tonelli, “2-μm lasers with fluoride crystals: Research and development,” Prog. Quantum Electron.33(2-4), 61–109 (2009).
[CrossRef]

Tonelli, M.

S. Veronesi, Y. Z. Zhang, M. Tonelli, A. Agnesi, A. Greborio, F. Pirzio, and G. Reali, “Spectroscopy and efficient laser emission of Yb3+: LuAG single crystal grown by μ-PD,” Opt. Commun.285(3), 315–321 (2012).
[CrossRef]

J. W. Kim, J. I. Mackenzie, D. Parisi, S. Veronesi, M. Tonelli, and W. A. Clarkson, “Efficient in-band pumped Ho:LuLiF4 2 μm laser,” Opt. Lett.35(3), 420–422 (2010).
[CrossRef] [PubMed]

F. Cornacchia, A. Toncelli, and M. Tonelli, “2-μm lasers with fluoride crystals: Research and development,” Prog. Quantum Electron.33(2-4), 61–109 (2009).
[CrossRef]

Veronesi, S.

S. Veronesi, Y. Z. Zhang, M. Tonelli, A. Agnesi, A. Greborio, F. Pirzio, and G. Reali, “Spectroscopy and efficient laser emission of Yb3+: LuAG single crystal grown by μ-PD,” Opt. Commun.285(3), 315–321 (2012).
[CrossRef]

J. W. Kim, J. I. Mackenzie, D. Parisi, S. Veronesi, M. Tonelli, and W. A. Clarkson, “Efficient in-band pumped Ho:LuLiF4 2 μm laser,” Opt. Lett.35(3), 420–422 (2010).
[CrossRef] [PubMed]

Walsh, B. M.

B. M. Walsh, “Review of Tm and Ho Materials; Spectroscopy and Lasers,” Laser Phys.19(4), 855–866 (2009).
[CrossRef]

N. P. Barnes, B. M. Walsh, and E. D. Filer, “Ho:Ho upconversion: applications to Ho lasers,” J. Opt. Soc. Am. B20(6), 1212 (2003).
[CrossRef]

Xu, L.

Yeh, P. S.

Yonenaga, I.

D. H. Yoon, I. Yonenaga, T. Fukuda, and N. Ohnishi, “Crystal growth of dislocation-free LiNbO3 single crystals by micro pulling down method,” J. Cryst. Growth142(3-4), 339–343 (1994).
[CrossRef]

Yoon, D. H.

D. H. Yoon, I. Yonenaga, T. Fukuda, and N. Ohnishi, “Crystal growth of dislocation-free LiNbO3 single crystals by micro pulling down method,” J. Cryst. Growth142(3-4), 339–343 (1994).
[CrossRef]

Yoshikawa, A.

A. Yoshikawa and V. Chani, “Growth of Optical Crystals by the Micro-Pulling-Down Method,” MRS Bull.34(04), 266–270 (2009).
[CrossRef]

M. H. Pham, M. M. Cadatal, T. Tatsumi, A. Saiki, Y. Furukawa, T. Nakazato, E. Estacio, N. Sarukura, T. Suyama, K. Fukuda, K. J. Kim, A. Yoshikawa, and F. Saito, “Laser quality Ce3+:LiCaAlF6 grown by micro-pulling-down method,” Jpn. J. Appl. Phys.47(7), 5605–5607 (2008).
[CrossRef]

Zhang, Y. Z.

S. Veronesi, Y. Z. Zhang, M. Tonelli, A. Agnesi, A. Greborio, F. Pirzio, and G. Reali, “Spectroscopy and efficient laser emission of Yb3+: LuAG single crystal grown by μ-PD,” Opt. Commun.285(3), 315–321 (2012).
[CrossRef]

Zhuo, W. J.

Appl. Opt. (1)

Appl. Phys. B (3)

M. Schellhorn, “A comparison of resonantly pumped Ho:YLF and Ho:LLF lasers in CW and Q-switched operation under identical pump conditions,” Appl. Phys. B103(4), 777–788 (2011).
[CrossRef]

M. Eichhorn, “Quasi-three-level solid-state lasers in the near and mid infrared based on trivalent rare earth ions,” Appl. Phys. B93(2-3), 269–316 (2008).
[CrossRef]

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, A. Brenier, P. Georges, O. Tillement, and J. M. Fourmigue, “High power laser operation with crystal fibers,” Appl. Phys. B97(2), 263–273 (2009).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. A. Caird, S. A. Payne, P. R. Staber, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron.24(6), 1077–1099 (1988).
[CrossRef]

J. Appl. Phys. (1)

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys.98, 103514 (2005).
[CrossRef]

J. Cryst. Growth (2)

D. H. Yoon, I. Yonenaga, T. Fukuda, and N. Ohnishi, “Crystal growth of dislocation-free LiNbO3 single crystals by micro pulling down method,” J. Cryst. Growth142(3-4), 339–343 (1994).
[CrossRef]

P. Rogin and J. Hulliger, “Liquid phase epitaxy of LiYF4,” J. Cryst. Growth179(3-4), 551–558 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

M. H. Pham, M. M. Cadatal, T. Tatsumi, A. Saiki, Y. Furukawa, T. Nakazato, E. Estacio, N. Sarukura, T. Suyama, K. Fukuda, K. J. Kim, A. Yoshikawa, and F. Saito, “Laser quality Ce3+:LiCaAlF6 grown by micro-pulling-down method,” Jpn. J. Appl. Phys.47(7), 5605–5607 (2008).
[CrossRef]

Laser Phys. (1)

B. M. Walsh, “Review of Tm and Ho Materials; Spectroscopy and Lasers,” Laser Phys.19(4), 855–866 (2009).
[CrossRef]

MRS Bull. (1)

A. Yoshikawa and V. Chani, “Growth of Optical Crystals by the Micro-Pulling-Down Method,” MRS Bull.34(04), 266–270 (2009).
[CrossRef]

Opt. Commun. (1)

S. Veronesi, Y. Z. Zhang, M. Tonelli, A. Agnesi, A. Greborio, F. Pirzio, and G. Reali, “Spectroscopy and efficient laser emission of Yb3+: LuAG single crystal grown by μ-PD,” Opt. Commun.285(3), 315–321 (2012).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Opt. Mater. (1)

D. Maier, D. Rhede, R. Bertram, D. Klimm, and R. Fornari, “Dopant segregations in oxide single-crystal fibers grown by the micro-pulling-down method,” Opt. Mater.30(1), 11–14 (2007).
[CrossRef]

Prog. Quantum Electron. (1)

F. Cornacchia, A. Toncelli, and M. Tonelli, “2-μm lasers with fluoride crystals: Research and development,” Prog. Quantum Electron.33(2-4), 61–109 (2009).
[CrossRef]

Other (4)

L. J. Johnson, G. D. Boyd, and K. Nassau, “Optical maser characteristics of Ho3+ in CaWO4,” Proc. IRE, 50, 87 (1962).

A. A. Kaminskii, “Laser crystals,” Springer-Verlag Series in Optical Science v.14 (1990).

J. W. Kim, J. I. Mackenzie, D. Parisi, S. Veronesi, M. Tonelli, and W. A. Clarkson, “Efficient fiber-laser pumped Ho:LuLiF4 laser,” Solid State Lasers and Amplifiers IV, and High-Power Lasers. Edited by Graf, Thomas; MacKenzie, Jacob I.; Jelinková, Helena; Paulus, Gerhard G.; Bagnoud, Vincent; Le Blanc, Catherine. Proceedings of the SPIE, Volume 7721, pp. 77210V (2010).

LASCAD, LAS-CAD GmbH, Brunhildenstrasse 9, 80639 Munich, Germany, http://www.las-cad.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Photograph of a 0.25% doped Ho:LLF crystal grown by µ-PD method.

Fig. 2
Fig. 2

(a) Helium–Neon laser beam profile without the Ho:LLF sample. (b) Laser beam profile after propagation through the Ho:LLF sample..

Fig. 3
Fig. 3

Comparison of the 5I85I7 room temperature optical absorption spectra of Ho:LLF samples grown by the μ-PD and CZ methods around 2 µm for (a) π- and (b) σ-polarization.

Fig. 4
Fig. 4

Room temperature fluorescence signal of Ho:LLF samples around 2 µm.

Fig. 5
Fig. 5

Resonator setup for the laser experiments.

Fig. 6
Fig. 6

Output power of Ho:LLF laser with a 21 mm long µ-PD crystal as a function of (a) pump power and (b) absorbed pump power for different reflectivities of the output coupler. Straight lines are result of a linear fit and the calculated slope efficiencies are given. The inset in (a) shows the wavelength distribution observed with TOC = 9%.

Fig. 7
Fig. 7

Diameter of laser beam as a function of distance after focusing. Solid lines represent fits to a standard Gaussian beam propagation expression.

Fig. 8
Fig. 8

Output power of Ho:LLF laser with a 41 mm long µ-PD crystal as a function of (a) pump power and (b) absorbed pump power for different reflectivities of the output coupler. Straight lines are result of a linear fit and the calculated slope efficiencies are given. . The inset in (a) shows the wavelength distribution observed with TOC = 9%.

Fig. 9
Fig. 9

Diameter of laser beam as a function of distance after focusing. Solid lines represent fits to a standard Gaussian beam propagation expression.

Metrics