Abstract

Determining the emission polarization properties of sub-wavelength structures like optical nanoantennas, nanocavities and photonic crystals is important to understand their physical properties and to optimize their use in applications. Recently we have shown that angle-resolved cathodoluminescence imaging spectroscopy (ARCIS), which uses a 30 keV electron beam as an excitation source, is a useful technique to study the far-field properties of such structures. Here we extend the technique with polarization-sensitive angular detection. As proof-of-principle, we experimentally probe the emission polarization properties of three orthogonal dipolar emitters of which the polarization is well-known and find excellent agreement between experiment and theory. We access these dipole orientations by exciting an unstructured gold surface and a ridge nanoantenna with an in-plane dipolar plasmon resonance. The light emission is collected with an aluminum half paraboloid mirror. We show how to take the effect of the paraboloid mirror on the emission polarization into account and how to predict the polarization-filtered pattern if the emission polarization is known. Furthermore, we calculate that by introducing a slit in the beam path the polarization contrast in cathodoluminescence spectroscopy can be strongly enhanced. Finally, we reconstruct the emission polarization from the experimental data and show that from these field patterns we can infer the orientation of the induced dipole moment. The ability to measure the emission polarization, in combination with the sensitivity to the local density of optical states, broad spectral range and high excitation resolution, can be employed to study photonic nanostructures in great detail.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Jackson, “Classical Electrodynamics” (John Wiley and Sons, Hoboken, 1999).
  2. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, New York, 2006), 251–362.
  3. N. J. Halas, S. Lal, W. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev.111 (6), 3913–3961 (2011).
    [CrossRef] [PubMed]
  4. L. Cao, J. S. White, J. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater.8, 643–647 (2009).
    [CrossRef] [PubMed]
  5. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983).
  6. K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92, 183901 (2004).
    [CrossRef]
  7. O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Optical scattering resonances of single and coupled dimer plasmonic nanoantennas,” Opt. Express15, 17736–17746 (2007).
    [CrossRef] [PubMed]
  8. M. A. Lieb, J. M. Zavislan, and L. Novotny, “Single-molecule orientations determined by direct emission pattern imaging,” J. Opt. Soc. Am. B21, 1210–1215 (2004).
    [CrossRef]
  9. I. Sersic, C. Tuambilangana, and A. F. Koenderink, “Fourier microscopy of single plasmonic scatterers,” New. J. Phys.13, 083019 (2011).
    [CrossRef]
  10. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
    [CrossRef] [PubMed]
  11. K. G. Lee, X. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics5, 166–169 (2011).
    [CrossRef]
  12. T. Coenen, E. J. R. Vesseur, A. Polman, and A. F. Koenderink, “Directional emission from plasmonic Yagi Uda antennas probed by angle-resolved cathodoluminescence spectroscopy,” Nano Lett.11, 3779–3784 (2011).
    [CrossRef] [PubMed]
  13. T. Coenen, E. J. R. Vesseur, and A. Polman, “Angle-resolved cathodoluminescence spectroscopy,” Appl. Phys. Lett.99, 143103 (2011).
    [CrossRef]
  14. E. J. R. Vesseur and A. Polman, “Plasmonic whispering gallery cavities as optical antennas,” Nano Lett.11, 5524–5530 (2011).
    [CrossRef] [PubMed]
  15. T. Coenen, E. J. R. Vesseur, and A. Polman, “Deep subwavelength spatial characterization of angular emission from single-crystal Au plasmonic ridge nanoantennas,” ACS Nano6, 1742–1750 (2012).
    [CrossRef] [PubMed]
  16. M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B79, 113405 (2009).
    [CrossRef]
  17. F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys82, 209–275 (2010).
    [CrossRef]
  18. P. B. Jonhson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B6, 4370–4379 (1972).
    [CrossRef]
  19. K. Takeuchi and N. Yamamoto, “Visualization of surface plasmon polariton waves in two-dimensional plasmonic crystal by cathodoluminescence,” Opt. Express19, 12365–12374 (2011).
    [CrossRef] [PubMed]
  20. H. T. Lin, D. H. Rich, A. Konkar, P. Chen, and A. Madhukar, “Carrier relaxation and recombination in GaAs/AlGaAs quantum heterostructures and nanostructures probed with time-resolved cathodoluminescence,” J. Appl. Phys.81, 3186–3195 (1997).
    [CrossRef]
  21. D. H. Rich, Y. Tang, A. Konkar, P. Chen, and A. Madhukar, “Polarized cathodoluminescence study of selectively grown self-assembled InAs/GaAs quantum dots,” J. Appl. Phys.84, 6337–6344 (1998).
    [CrossRef]
  22. N. Yamamoto, S. Bhunia, and Y. Watanabe, “Polarized cathodoluminescence study of InP nanowire by transmission electron microscopy,” Appl. Phys. Lett.88, 154106 (2006).
    [CrossRef]
  23. J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and deconstructing the Fano lineshape in plasmonic nanoclusters,” Nano Lett.12, 1058–1062 (2012).
    [CrossRef] [PubMed]

2012

T. Coenen, E. J. R. Vesseur, and A. Polman, “Deep subwavelength spatial characterization of angular emission from single-crystal Au plasmonic ridge nanoantennas,” ACS Nano6, 1742–1750 (2012).
[CrossRef] [PubMed]

J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and deconstructing the Fano lineshape in plasmonic nanoclusters,” Nano Lett.12, 1058–1062 (2012).
[CrossRef] [PubMed]

2011

K. Takeuchi and N. Yamamoto, “Visualization of surface plasmon polariton waves in two-dimensional plasmonic crystal by cathodoluminescence,” Opt. Express19, 12365–12374 (2011).
[CrossRef] [PubMed]

I. Sersic, C. Tuambilangana, and A. F. Koenderink, “Fourier microscopy of single plasmonic scatterers,” New. J. Phys.13, 083019 (2011).
[CrossRef]

K. G. Lee, X. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics5, 166–169 (2011).
[CrossRef]

T. Coenen, E. J. R. Vesseur, A. Polman, and A. F. Koenderink, “Directional emission from plasmonic Yagi Uda antennas probed by angle-resolved cathodoluminescence spectroscopy,” Nano Lett.11, 3779–3784 (2011).
[CrossRef] [PubMed]

T. Coenen, E. J. R. Vesseur, and A. Polman, “Angle-resolved cathodoluminescence spectroscopy,” Appl. Phys. Lett.99, 143103 (2011).
[CrossRef]

E. J. R. Vesseur and A. Polman, “Plasmonic whispering gallery cavities as optical antennas,” Nano Lett.11, 5524–5530 (2011).
[CrossRef] [PubMed]

N. J. Halas, S. Lal, W. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev.111 (6), 3913–3961 (2011).
[CrossRef] [PubMed]

2010

F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys82, 209–275 (2010).
[CrossRef]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

2009

M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B79, 113405 (2009).
[CrossRef]

L. Cao, J. S. White, J. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater.8, 643–647 (2009).
[CrossRef] [PubMed]

2007

2006

N. Yamamoto, S. Bhunia, and Y. Watanabe, “Polarized cathodoluminescence study of InP nanowire by transmission electron microscopy,” Appl. Phys. Lett.88, 154106 (2006).
[CrossRef]

2004

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92, 183901 (2004).
[CrossRef]

M. A. Lieb, J. M. Zavislan, and L. Novotny, “Single-molecule orientations determined by direct emission pattern imaging,” J. Opt. Soc. Am. B21, 1210–1215 (2004).
[CrossRef]

1998

D. H. Rich, Y. Tang, A. Konkar, P. Chen, and A. Madhukar, “Polarized cathodoluminescence study of selectively grown self-assembled InAs/GaAs quantum dots,” J. Appl. Phys.84, 6337–6344 (1998).
[CrossRef]

1997

H. T. Lin, D. H. Rich, A. Konkar, P. Chen, and A. Madhukar, “Carrier relaxation and recombination in GaAs/AlGaAs quantum heterostructures and nanostructures probed with time-resolved cathodoluminescence,” J. Appl. Phys.81, 3186–3195 (1997).
[CrossRef]

1972

P. B. Jonhson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Atwater, H. A.

M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B79, 113405 (2009).
[CrossRef]

Bhunia, S.

N. Yamamoto, S. Bhunia, and Y. Watanabe, “Polarized cathodoluminescence study of InP nanowire by transmission electron microscopy,” Appl. Phys. Lett.88, 154106 (2006).
[CrossRef]

Brongersma, M. L.

L. Cao, J. S. White, J. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater.8, 643–647 (2009).
[CrossRef] [PubMed]

Cao, L.

L. Cao, J. S. White, J. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater.8, 643–647 (2009).
[CrossRef] [PubMed]

Chang, W.

N. J. Halas, S. Lal, W. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev.111 (6), 3913–3961 (2011).
[CrossRef] [PubMed]

Chen, P.

D. H. Rich, Y. Tang, A. Konkar, P. Chen, and A. Madhukar, “Polarized cathodoluminescence study of selectively grown self-assembled InAs/GaAs quantum dots,” J. Appl. Phys.84, 6337–6344 (1998).
[CrossRef]

H. T. Lin, D. H. Rich, A. Konkar, P. Chen, and A. Madhukar, “Carrier relaxation and recombination in GaAs/AlGaAs quantum heterostructures and nanostructures probed with time-resolved cathodoluminescence,” J. Appl. Phys.81, 3186–3195 (1997).
[CrossRef]

Chen, X.

K. G. Lee, X. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics5, 166–169 (2011).
[CrossRef]

Christy, R. W.

P. B. Jonhson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Clemens, B. M.

L. Cao, J. S. White, J. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater.8, 643–647 (2009).
[CrossRef] [PubMed]

Coenen, T.

T. Coenen, E. J. R. Vesseur, and A. Polman, “Deep subwavelength spatial characterization of angular emission from single-crystal Au plasmonic ridge nanoantennas,” ACS Nano6, 1742–1750 (2012).
[CrossRef] [PubMed]

T. Coenen, E. J. R. Vesseur, and A. Polman, “Angle-resolved cathodoluminescence spectroscopy,” Appl. Phys. Lett.99, 143103 (2011).
[CrossRef]

T. Coenen, E. J. R. Vesseur, A. Polman, and A. F. Koenderink, “Directional emission from plasmonic Yagi Uda antennas probed by angle-resolved cathodoluminescence spectroscopy,” Nano Lett.11, 3779–3784 (2011).
[CrossRef] [PubMed]

Curto, A. G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

Eghlidi, H.

K. G. Lee, X. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics5, 166–169 (2011).
[CrossRef]

Enoch, S.

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92, 183901 (2004).
[CrossRef]

García de Abajo, F. J.

F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys82, 209–275 (2010).
[CrossRef]

M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B79, 113405 (2009).
[CrossRef]

Giannini, V.

Gómez Rivas, J.

Götzinger, S.

K. G. Lee, X. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics5, 166–169 (2011).
[CrossRef]

Halas, N. J.

J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and deconstructing the Fano lineshape in plasmonic nanoclusters,” Nano Lett.12, 1058–1062 (2012).
[CrossRef] [PubMed]

N. J. Halas, S. Lal, W. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev.111 (6), 3913–3961 (2011).
[CrossRef] [PubMed]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, New York, 2006), 251–362.

Jackson, J. D.

J. D. Jackson, “Classical Electrodynamics” (John Wiley and Sons, Hoboken, 1999).

Jonhson, P. B.

P. B. Jonhson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Klein Koerkamp, K. J.

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92, 183901 (2004).
[CrossRef]

Knight, M. W.

J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and deconstructing the Fano lineshape in plasmonic nanoclusters,” Nano Lett.12, 1058–1062 (2012).
[CrossRef] [PubMed]

Koenderink, A. F.

I. Sersic, C. Tuambilangana, and A. F. Koenderink, “Fourier microscopy of single plasmonic scatterers,” New. J. Phys.13, 083019 (2011).
[CrossRef]

T. Coenen, E. J. R. Vesseur, A. Polman, and A. F. Koenderink, “Directional emission from plasmonic Yagi Uda antennas probed by angle-resolved cathodoluminescence spectroscopy,” Nano Lett.11, 3779–3784 (2011).
[CrossRef] [PubMed]

M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B79, 113405 (2009).
[CrossRef]

Konkar, A.

D. H. Rich, Y. Tang, A. Konkar, P. Chen, and A. Madhukar, “Polarized cathodoluminescence study of selectively grown self-assembled InAs/GaAs quantum dots,” J. Appl. Phys.84, 6337–6344 (1998).
[CrossRef]

H. T. Lin, D. H. Rich, A. Konkar, P. Chen, and A. Madhukar, “Carrier relaxation and recombination in GaAs/AlGaAs quantum heterostructures and nanostructures probed with time-resolved cathodoluminescence,” J. Appl. Phys.81, 3186–3195 (1997).
[CrossRef]

Kreuzer, M. P.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

Kuipers, L.

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92, 183901 (2004).
[CrossRef]

Kukura, P.

K. G. Lee, X. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics5, 166–169 (2011).
[CrossRef]

Kuttge, M.

M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B79, 113405 (2009).
[CrossRef]

Lal, S.

N. J. Halas, S. Lal, W. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev.111 (6), 3913–3961 (2011).
[CrossRef] [PubMed]

Lassiter, J. B.

J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and deconstructing the Fano lineshape in plasmonic nanoclusters,” Nano Lett.12, 1058–1062 (2012).
[CrossRef] [PubMed]

Lee, K. G.

K. G. Lee, X. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics5, 166–169 (2011).
[CrossRef]

Lettow, R.

K. G. Lee, X. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics5, 166–169 (2011).
[CrossRef]

Lezec, H. J.

M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B79, 113405 (2009).
[CrossRef]

Lieb, M. A.

Lin, H. T.

H. T. Lin, D. H. Rich, A. Konkar, P. Chen, and A. Madhukar, “Carrier relaxation and recombination in GaAs/AlGaAs quantum heterostructures and nanostructures probed with time-resolved cathodoluminescence,” J. Appl. Phys.81, 3186–3195 (1997).
[CrossRef]

Link, S.

N. J. Halas, S. Lal, W. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev.111 (6), 3913–3961 (2011).
[CrossRef] [PubMed]

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983).

Madhukar, A.

D. H. Rich, Y. Tang, A. Konkar, P. Chen, and A. Madhukar, “Polarized cathodoluminescence study of selectively grown self-assembled InAs/GaAs quantum dots,” J. Appl. Phys.84, 6337–6344 (1998).
[CrossRef]

H. T. Lin, D. H. Rich, A. Konkar, P. Chen, and A. Madhukar, “Carrier relaxation and recombination in GaAs/AlGaAs quantum heterostructures and nanostructures probed with time-resolved cathodoluminescence,” J. Appl. Phys.81, 3186–3195 (1997).
[CrossRef]

Mielczarek, W. S.

J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and deconstructing the Fano lineshape in plasmonic nanoclusters,” Nano Lett.12, 1058–1062 (2012).
[CrossRef] [PubMed]

Muskens, O. L.

Nordlander, P.

J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and deconstructing the Fano lineshape in plasmonic nanoclusters,” Nano Lett.12, 1058–1062 (2012).
[CrossRef] [PubMed]

N. J. Halas, S. Lal, W. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev.111 (6), 3913–3961 (2011).
[CrossRef] [PubMed]

Novotny, L.

Park, J.

L. Cao, J. S. White, J. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater.8, 643–647 (2009).
[CrossRef] [PubMed]

Polman, A.

T. Coenen, E. J. R. Vesseur, and A. Polman, “Deep subwavelength spatial characterization of angular emission from single-crystal Au plasmonic ridge nanoantennas,” ACS Nano6, 1742–1750 (2012).
[CrossRef] [PubMed]

T. Coenen, E. J. R. Vesseur, and A. Polman, “Angle-resolved cathodoluminescence spectroscopy,” Appl. Phys. Lett.99, 143103 (2011).
[CrossRef]

T. Coenen, E. J. R. Vesseur, A. Polman, and A. F. Koenderink, “Directional emission from plasmonic Yagi Uda antennas probed by angle-resolved cathodoluminescence spectroscopy,” Nano Lett.11, 3779–3784 (2011).
[CrossRef] [PubMed]

E. J. R. Vesseur and A. Polman, “Plasmonic whispering gallery cavities as optical antennas,” Nano Lett.11, 5524–5530 (2011).
[CrossRef] [PubMed]

M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B79, 113405 (2009).
[CrossRef]

Quidant, R.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

Renn, A.

K. G. Lee, X. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics5, 166–169 (2011).
[CrossRef]

Rich, D. H.

D. H. Rich, Y. Tang, A. Konkar, P. Chen, and A. Madhukar, “Polarized cathodoluminescence study of selectively grown self-assembled InAs/GaAs quantum dots,” J. Appl. Phys.84, 6337–6344 (1998).
[CrossRef]

H. T. Lin, D. H. Rich, A. Konkar, P. Chen, and A. Madhukar, “Carrier relaxation and recombination in GaAs/AlGaAs quantum heterostructures and nanostructures probed with time-resolved cathodoluminescence,” J. Appl. Phys.81, 3186–3195 (1997).
[CrossRef]

Sánchez-Gil, J. A.

Sandoghdar, V.

K. G. Lee, X. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics5, 166–169 (2011).
[CrossRef]

Schuller, J. A.

L. Cao, J. S. White, J. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater.8, 643–647 (2009).
[CrossRef] [PubMed]

Segerink, F. B.

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92, 183901 (2004).
[CrossRef]

Sersic, I.

I. Sersic, C. Tuambilangana, and A. F. Koenderink, “Fourier microscopy of single plasmonic scatterers,” New. J. Phys.13, 083019 (2011).
[CrossRef]

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983).

Sobhani, H.

J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and deconstructing the Fano lineshape in plasmonic nanoclusters,” Nano Lett.12, 1058–1062 (2012).
[CrossRef] [PubMed]

Takeuchi, K.

Taminiau, T. H.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

Tang, Y.

D. H. Rich, Y. Tang, A. Konkar, P. Chen, and A. Madhukar, “Polarized cathodoluminescence study of selectively grown self-assembled InAs/GaAs quantum dots,” J. Appl. Phys.84, 6337–6344 (1998).
[CrossRef]

Tuambilangana, C.

I. Sersic, C. Tuambilangana, and A. F. Koenderink, “Fourier microscopy of single plasmonic scatterers,” New. J. Phys.13, 083019 (2011).
[CrossRef]

van Hulst, N. F.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92, 183901 (2004).
[CrossRef]

Vesseur, E. J. R.

T. Coenen, E. J. R. Vesseur, and A. Polman, “Deep subwavelength spatial characterization of angular emission from single-crystal Au plasmonic ridge nanoantennas,” ACS Nano6, 1742–1750 (2012).
[CrossRef] [PubMed]

T. Coenen, E. J. R. Vesseur, and A. Polman, “Angle-resolved cathodoluminescence spectroscopy,” Appl. Phys. Lett.99, 143103 (2011).
[CrossRef]

T. Coenen, E. J. R. Vesseur, A. Polman, and A. F. Koenderink, “Directional emission from plasmonic Yagi Uda antennas probed by angle-resolved cathodoluminescence spectroscopy,” Nano Lett.11, 3779–3784 (2011).
[CrossRef] [PubMed]

E. J. R. Vesseur and A. Polman, “Plasmonic whispering gallery cavities as optical antennas,” Nano Lett.11, 5524–5530 (2011).
[CrossRef] [PubMed]

M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B79, 113405 (2009).
[CrossRef]

Volpe, G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

Watanabe, Y.

N. Yamamoto, S. Bhunia, and Y. Watanabe, “Polarized cathodoluminescence study of InP nanowire by transmission electron microscopy,” Appl. Phys. Lett.88, 154106 (2006).
[CrossRef]

White, J. S.

L. Cao, J. S. White, J. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater.8, 643–647 (2009).
[CrossRef] [PubMed]

Yamamoto, N.

K. Takeuchi and N. Yamamoto, “Visualization of surface plasmon polariton waves in two-dimensional plasmonic crystal by cathodoluminescence,” Opt. Express19, 12365–12374 (2011).
[CrossRef] [PubMed]

N. Yamamoto, S. Bhunia, and Y. Watanabe, “Polarized cathodoluminescence study of InP nanowire by transmission electron microscopy,” Appl. Phys. Lett.88, 154106 (2006).
[CrossRef]

Zavislan, J. M.

ACS Nano

T. Coenen, E. J. R. Vesseur, and A. Polman, “Deep subwavelength spatial characterization of angular emission from single-crystal Au plasmonic ridge nanoantennas,” ACS Nano6, 1742–1750 (2012).
[CrossRef] [PubMed]

Appl. Phys. Lett.

T. Coenen, E. J. R. Vesseur, and A. Polman, “Angle-resolved cathodoluminescence spectroscopy,” Appl. Phys. Lett.99, 143103 (2011).
[CrossRef]

N. Yamamoto, S. Bhunia, and Y. Watanabe, “Polarized cathodoluminescence study of InP nanowire by transmission electron microscopy,” Appl. Phys. Lett.88, 154106 (2006).
[CrossRef]

Chem. Rev.

N. J. Halas, S. Lal, W. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev.111 (6), 3913–3961 (2011).
[CrossRef] [PubMed]

J. Appl. Phys.

H. T. Lin, D. H. Rich, A. Konkar, P. Chen, and A. Madhukar, “Carrier relaxation and recombination in GaAs/AlGaAs quantum heterostructures and nanostructures probed with time-resolved cathodoluminescence,” J. Appl. Phys.81, 3186–3195 (1997).
[CrossRef]

D. H. Rich, Y. Tang, A. Konkar, P. Chen, and A. Madhukar, “Polarized cathodoluminescence study of selectively grown self-assembled InAs/GaAs quantum dots,” J. Appl. Phys.84, 6337–6344 (1998).
[CrossRef]

J. Opt. Soc. Am. B

Nano Lett.

J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and deconstructing the Fano lineshape in plasmonic nanoclusters,” Nano Lett.12, 1058–1062 (2012).
[CrossRef] [PubMed]

E. J. R. Vesseur and A. Polman, “Plasmonic whispering gallery cavities as optical antennas,” Nano Lett.11, 5524–5530 (2011).
[CrossRef] [PubMed]

T. Coenen, E. J. R. Vesseur, A. Polman, and A. F. Koenderink, “Directional emission from plasmonic Yagi Uda antennas probed by angle-resolved cathodoluminescence spectroscopy,” Nano Lett.11, 3779–3784 (2011).
[CrossRef] [PubMed]

Nat. Mater.

L. Cao, J. S. White, J. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater.8, 643–647 (2009).
[CrossRef] [PubMed]

Nat. Photonics

K. G. Lee, X. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photonics5, 166–169 (2011).
[CrossRef]

New. J. Phys.

I. Sersic, C. Tuambilangana, and A. F. Koenderink, “Fourier microscopy of single plasmonic scatterers,” New. J. Phys.13, 083019 (2011).
[CrossRef]

Opt. Express

Phys. Rev. B

M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, “Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence,” Phys. Rev. B79, 113405 (2009).
[CrossRef]

P. B. Jonhson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett.

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92, 183901 (2004).
[CrossRef]

Rev. Mod. Phys

F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys82, 209–275 (2010).
[CrossRef]

Science

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

Other

J. D. Jackson, “Classical Electrodynamics” (John Wiley and Sons, Hoboken, 1999).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, New York, 2006), 251–362.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Scanning electron micrograph of a 300 nm long ridge antenna taken at a 52° inclination of the microscope stage. The scale bar represents 500 nm (b) Schematic overview of the experimental setup. The electron beam (blue arrow) excites the sample generating CL (red arrows) which is collected by the paraboloid mirror and converted into a parallel beam. The beam goes through a linear polarizer set at an angle β and is projected onto a 2D CCD array. β = 0° corresponds to alignment of the polarizer with the z-direction. (c) Front view, (d) side view, and (c) top view perspective of the paraboloid mirror showing the coordinate system that is used. For clarity only the mirror contours are shown.

Fig. 2
Fig. 2

(a) Caluclated normalized cathodoluminescence emission intensity as function of zenithal angle θ and azimuthal angle ϕ for TR on a gold substrate which is similar to the pattern for a vertically oriented dipole μ̂ (black arrow). (b) Calculated angular pattern for an in-plane point dipole like the ridge antenna, aligned along y. (c,d) Cross cuts through (a) and (b) along the blue dashed lines showing the angular patterns as function of θ. For each emission direction d̂ there is a corresponding electric field orientation ê which is indicated by the red arrows for a selection of emission directions.

Fig. 3
Fig. 3

Calculated radiation patterns for a z-and y-dipole collected with a ‘perfect’ optical microscope objective (NA=0.96).

Fig. 4
Fig. 4

Experimental (first two columns) and calculated (last two columns) angular cathodoluminescence emission patterns for different dipole orientations and polarizer angles measured at λ0 = 650 nm (30 keV electrons). The black area around ϕ = 0° is not collected by the mirror. The hole is located at θ = 0° in the center of the polar plot.

Fig. 5
Fig. 5

(a) Reflectivity as function of angle of incidence (AoI) for an aluminum surface at λ0 = 650 nm calculated for s-and p-polarized light. The inset shows the real (solid curves) and imaginary (dashed curves) parts of the Fresnel reflection coefficients for s-and p-polarized light. (b) Angle of incidence on the mirror surface for all emission angles θ and ϕ collected by the mirror. Angles that are not collected are colored black. (c) Reflectivity of the mirror for p-polarized light and (d) s-polarized light.

Fig. 6
Fig. 6

Experimental (top row) and calculated (bottom row) polarization-filtered angular cathodoluminescence emission patterns for transition radiation measured for different polarizer angles at λ0 =650 nm. Radiation patterns are shown for β = 0°, 30°, 60°, 90°, 120°, and 150° respectively.

Fig. 7
Fig. 7

(a) Front view of the mirror. The white dashed lines indicate the edge of a rectangular 3 mm slit placed in front of the mirror. The total width of the mirror is 23 mm. The part of the mirror from which light is collected is indicated by the red area and the parts that are blocked are shown in gray. The black dot in the center corresponds to the hole in the mirror (b) Polar plot showing which angles are blocked by the slit. (c) Experimental (solid curves) and calculated (dashed curves) polarization contrast for a z-, y-and x-oriented dipole as function of slit width. The slit was introduced numerically by appropriately clipping the experimental and calculated polarization-filtered angular patterns shown in Fig. 4. The red dashed line shows the amount of collected solid angle as function of slit width.

Fig. 8
Fig. 8

(a) Normalized cathodoluminescence intensity as function of polarizer angle (β) for θ = 35° and ϕ = 180° for the three dipole orientations. The open circles represent the experimental data and the solid curves are the numerical fits. (b) Vector field plot showing the orientation of the electric field projected onto the xy-plane (top view of the vector field) for different emission angles (the gray concentric circles correspond to θ = 30°, 60°, and 90° respectively) reconstructed from the experimental data for the z-dipole, (c) x-dipole, and (d) y-dipole. The light gray colored area corresponds to angles that are not collected by the mirror.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d ^ = [ sin θ cos ϕ sin θ cos ϕ cos θ ]
c = [ a r 2 r cos α r sin α ]
n = α c × r c
E out = [ E y E z ] [ cos 2 β sin β cos β sin β cos β sin 2 β ]

Metrics