Abstract

We report on the realization of a continuous-wave light source based on nonlinear interaction in KBBF at a wavelength of 191 nm. More than 1.3 mW of deep-ultraviolet power was generated in a mechanically robust setup pumped by an amplified grating stabilized diode laser. Mode hop-free tuning over 40 GHz at 191 nm could be demonstrated.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Basting, Excimer Laser Technology (Springer, 2005).
    [CrossRef]
  2. W. Köchner, Solid-State Laser Engineerung (Springer, 2006).
  3. H. Kouta and Y. Kuwano, “Attaining 186-nm light generation in cooled β-BaB2O4 crystal,” Opt. Lett.24, 1230–1232 (1999).
    [CrossRef]
  4. F. Seifert, J. Ringling, F. Noack, V. Petrov, and O. Kittelmann, “Generation of tunable femtosecond pulses to as low as 172.7 nm by sum-frequency mixing in lithium triborate,” Opt. Lett.19, 1538–1540 (1994).
    [CrossRef] [PubMed]
  5. C. Qu, M. Yoshimura, J. Tsunoda, Y. Kaneda, M. Imade, T. Sasaki, and Y. Mori, “189-nm wavelength generation with borate crystals,” Conference Proceedings CLEO: Science and Innovations, Nonlinear Materials and Devices, CF3A (2012).
  6. C. Chen, Y. Wang, Y. Xia, B. Wu, D. Tang, K. Wu, Z. Wenrong, L. Yu, and L. Mei, “New development of nonlinear optical crystals for the ultraviolet region with molecule engineering approach,” J. Appl. Phys.77, 2268–2272 (1994).
    [CrossRef]
  7. C. Chen, G. Wang, X. Wang, and Z. Xu, “Deep-UV nonlinear optical crystal KBe2BO3F2 - discovery, growth, optical properties and applications,” Appl. Phys. B97, 9–25 (2009).
    [CrossRef]
  8. T. Kanai, T. Kanda, T. Sekikawa, S. Watanabe, T. Togashi, C. Chen, C. Zhang, Z. Xu, and J. Wang, “Generation of vacuum-ultraviolet light below 160 nm in a KBBF crystal by the fifth harmonic of a single-mode Ti:sapphire laser,” J. Opt. Soc. Am. B21, 370–375 (2004).
    [CrossRef]
  9. X. Zhang, L. Wang, X. Wang, G. Wang, Y. Zhu, and C. Chen, “High-power sixth-harmonic generation of an Nd:YAG laser with KBe2BO3F2 prism-coupled devices,” accepted by Opt. Commun.
    [PubMed]
  10. D. Tang, Y. Xia, B. Wu, and C. Chen, “Growth of a new UV nonlinear optical crystal: KBe2(BO3)F2,” J. Cryst. Growth222, 125–129 (2001).
    [CrossRef]
  11. Z. Lin, Z. Wang, C. Chen, S. Chen, and M.-H. Lee, “Mechanism for linear and nonlinear optical effects in KBe2BO3F2 (KBBF) crystal,” Chem. Phys. Lett.367, 523–527 (2003).
    [CrossRef]
  12. G. Wang, C. Zhang, C. Chen, Z. Xu, and J. Wang, “Determination of nonlinear optical coefficients of KBe2BO3F2 crystals,” Chin. Phys. Lett.20, 243–245 (2003).
    [CrossRef]
  13. C. Chen, J. Lü, G. Wang, Z. Xu, J. Wang, C. Zhang, and Y. Liu, “Deep ultraviolet harmonic generation with KBe2BO3F2 crystal,” Chin. Phys. Lett.18, 1081 (2001).
    [CrossRef]
  14. Y. Zhou, G. Wang, C. Li, Q. Peng, D. Cui, Z. Xu, X. Wang, Y. Zhu, C. Chen, G. Liu, X. Dong, and X. Zhou, “Sixth harmonic of a Nd:YVO4 laser generation in KBBF for ARPES,” Chin. Phys. Lett.25, 963–965 (2008).
    [CrossRef]
  15. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1997).
  16. T. Freegarde, J. Coutts, J. Walz, D. Leibfried, and T. W. Hänsch, “General analysis of type I second-harmonic generation with elliptical Gaussian beams,” J. Opt. Soc. Am. B14, 2010–2016 (1997).
    [CrossRef]
  17. M. Scholz, “General treatment of sum-frequency mixing with elliptical Gaussian beams,” J. Opt. Soc. Am. B29, 1655–1660 (2012).
    [CrossRef]

2012 (2)

C. Qu, M. Yoshimura, J. Tsunoda, Y. Kaneda, M. Imade, T. Sasaki, and Y. Mori, “189-nm wavelength generation with borate crystals,” Conference Proceedings CLEO: Science and Innovations, Nonlinear Materials and Devices, CF3A (2012).

M. Scholz, “General treatment of sum-frequency mixing with elliptical Gaussian beams,” J. Opt. Soc. Am. B29, 1655–1660 (2012).
[CrossRef]

2009 (1)

C. Chen, G. Wang, X. Wang, and Z. Xu, “Deep-UV nonlinear optical crystal KBe2BO3F2 - discovery, growth, optical properties and applications,” Appl. Phys. B97, 9–25 (2009).
[CrossRef]

2008 (1)

Y. Zhou, G. Wang, C. Li, Q. Peng, D. Cui, Z. Xu, X. Wang, Y. Zhu, C. Chen, G. Liu, X. Dong, and X. Zhou, “Sixth harmonic of a Nd:YVO4 laser generation in KBBF for ARPES,” Chin. Phys. Lett.25, 963–965 (2008).
[CrossRef]

2004 (1)

2003 (2)

Z. Lin, Z. Wang, C. Chen, S. Chen, and M.-H. Lee, “Mechanism for linear and nonlinear optical effects in KBe2BO3F2 (KBBF) crystal,” Chem. Phys. Lett.367, 523–527 (2003).
[CrossRef]

G. Wang, C. Zhang, C. Chen, Z. Xu, and J. Wang, “Determination of nonlinear optical coefficients of KBe2BO3F2 crystals,” Chin. Phys. Lett.20, 243–245 (2003).
[CrossRef]

2001 (2)

C. Chen, J. Lü, G. Wang, Z. Xu, J. Wang, C. Zhang, and Y. Liu, “Deep ultraviolet harmonic generation with KBe2BO3F2 crystal,” Chin. Phys. Lett.18, 1081 (2001).
[CrossRef]

D. Tang, Y. Xia, B. Wu, and C. Chen, “Growth of a new UV nonlinear optical crystal: KBe2(BO3)F2,” J. Cryst. Growth222, 125–129 (2001).
[CrossRef]

1999 (1)

1997 (1)

1994 (2)

C. Chen, Y. Wang, Y. Xia, B. Wu, D. Tang, K. Wu, Z. Wenrong, L. Yu, and L. Mei, “New development of nonlinear optical crystals for the ultraviolet region with molecule engineering approach,” J. Appl. Phys.77, 2268–2272 (1994).
[CrossRef]

F. Seifert, J. Ringling, F. Noack, V. Petrov, and O. Kittelmann, “Generation of tunable femtosecond pulses to as low as 172.7 nm by sum-frequency mixing in lithium triborate,” Opt. Lett.19, 1538–1540 (1994).
[CrossRef] [PubMed]

Basting, D.

D. Basting, Excimer Laser Technology (Springer, 2005).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1997).

Chen, C.

C. Chen, G. Wang, X. Wang, and Z. Xu, “Deep-UV nonlinear optical crystal KBe2BO3F2 - discovery, growth, optical properties and applications,” Appl. Phys. B97, 9–25 (2009).
[CrossRef]

Y. Zhou, G. Wang, C. Li, Q. Peng, D. Cui, Z. Xu, X. Wang, Y. Zhu, C. Chen, G. Liu, X. Dong, and X. Zhou, “Sixth harmonic of a Nd:YVO4 laser generation in KBBF for ARPES,” Chin. Phys. Lett.25, 963–965 (2008).
[CrossRef]

T. Kanai, T. Kanda, T. Sekikawa, S. Watanabe, T. Togashi, C. Chen, C. Zhang, Z. Xu, and J. Wang, “Generation of vacuum-ultraviolet light below 160 nm in a KBBF crystal by the fifth harmonic of a single-mode Ti:sapphire laser,” J. Opt. Soc. Am. B21, 370–375 (2004).
[CrossRef]

Z. Lin, Z. Wang, C. Chen, S. Chen, and M.-H. Lee, “Mechanism for linear and nonlinear optical effects in KBe2BO3F2 (KBBF) crystal,” Chem. Phys. Lett.367, 523–527 (2003).
[CrossRef]

G. Wang, C. Zhang, C. Chen, Z. Xu, and J. Wang, “Determination of nonlinear optical coefficients of KBe2BO3F2 crystals,” Chin. Phys. Lett.20, 243–245 (2003).
[CrossRef]

D. Tang, Y. Xia, B. Wu, and C. Chen, “Growth of a new UV nonlinear optical crystal: KBe2(BO3)F2,” J. Cryst. Growth222, 125–129 (2001).
[CrossRef]

C. Chen, J. Lü, G. Wang, Z. Xu, J. Wang, C. Zhang, and Y. Liu, “Deep ultraviolet harmonic generation with KBe2BO3F2 crystal,” Chin. Phys. Lett.18, 1081 (2001).
[CrossRef]

C. Chen, Y. Wang, Y. Xia, B. Wu, D. Tang, K. Wu, Z. Wenrong, L. Yu, and L. Mei, “New development of nonlinear optical crystals for the ultraviolet region with molecule engineering approach,” J. Appl. Phys.77, 2268–2272 (1994).
[CrossRef]

X. Zhang, L. Wang, X. Wang, G. Wang, Y. Zhu, and C. Chen, “High-power sixth-harmonic generation of an Nd:YAG laser with KBe2BO3F2 prism-coupled devices,” accepted by Opt. Commun.
[PubMed]

Chen, S.

Z. Lin, Z. Wang, C. Chen, S. Chen, and M.-H. Lee, “Mechanism for linear and nonlinear optical effects in KBe2BO3F2 (KBBF) crystal,” Chem. Phys. Lett.367, 523–527 (2003).
[CrossRef]

Coutts, J.

Cui, D.

Y. Zhou, G. Wang, C. Li, Q. Peng, D. Cui, Z. Xu, X. Wang, Y. Zhu, C. Chen, G. Liu, X. Dong, and X. Zhou, “Sixth harmonic of a Nd:YVO4 laser generation in KBBF for ARPES,” Chin. Phys. Lett.25, 963–965 (2008).
[CrossRef]

Dong, X.

Y. Zhou, G. Wang, C. Li, Q. Peng, D. Cui, Z. Xu, X. Wang, Y. Zhu, C. Chen, G. Liu, X. Dong, and X. Zhou, “Sixth harmonic of a Nd:YVO4 laser generation in KBBF for ARPES,” Chin. Phys. Lett.25, 963–965 (2008).
[CrossRef]

Freegarde, T.

Hänsch, T. W.

Imade, M.

C. Qu, M. Yoshimura, J. Tsunoda, Y. Kaneda, M. Imade, T. Sasaki, and Y. Mori, “189-nm wavelength generation with borate crystals,” Conference Proceedings CLEO: Science and Innovations, Nonlinear Materials and Devices, CF3A (2012).

Kanai, T.

Kanda, T.

Kaneda, Y.

C. Qu, M. Yoshimura, J. Tsunoda, Y. Kaneda, M. Imade, T. Sasaki, and Y. Mori, “189-nm wavelength generation with borate crystals,” Conference Proceedings CLEO: Science and Innovations, Nonlinear Materials and Devices, CF3A (2012).

Kittelmann, O.

Köchner, W.

W. Köchner, Solid-State Laser Engineerung (Springer, 2006).

Kouta, H.

Kuwano, Y.

Lee, M.-H.

Z. Lin, Z. Wang, C. Chen, S. Chen, and M.-H. Lee, “Mechanism for linear and nonlinear optical effects in KBe2BO3F2 (KBBF) crystal,” Chem. Phys. Lett.367, 523–527 (2003).
[CrossRef]

Leibfried, D.

Li, C.

Y. Zhou, G. Wang, C. Li, Q. Peng, D. Cui, Z. Xu, X. Wang, Y. Zhu, C. Chen, G. Liu, X. Dong, and X. Zhou, “Sixth harmonic of a Nd:YVO4 laser generation in KBBF for ARPES,” Chin. Phys. Lett.25, 963–965 (2008).
[CrossRef]

Lin, Z.

Z. Lin, Z. Wang, C. Chen, S. Chen, and M.-H. Lee, “Mechanism for linear and nonlinear optical effects in KBe2BO3F2 (KBBF) crystal,” Chem. Phys. Lett.367, 523–527 (2003).
[CrossRef]

Liu, G.

Y. Zhou, G. Wang, C. Li, Q. Peng, D. Cui, Z. Xu, X. Wang, Y. Zhu, C. Chen, G. Liu, X. Dong, and X. Zhou, “Sixth harmonic of a Nd:YVO4 laser generation in KBBF for ARPES,” Chin. Phys. Lett.25, 963–965 (2008).
[CrossRef]

Liu, Y.

C. Chen, J. Lü, G. Wang, Z. Xu, J. Wang, C. Zhang, and Y. Liu, “Deep ultraviolet harmonic generation with KBe2BO3F2 crystal,” Chin. Phys. Lett.18, 1081 (2001).
[CrossRef]

Lü, J.

C. Chen, J. Lü, G. Wang, Z. Xu, J. Wang, C. Zhang, and Y. Liu, “Deep ultraviolet harmonic generation with KBe2BO3F2 crystal,” Chin. Phys. Lett.18, 1081 (2001).
[CrossRef]

Mei, L.

C. Chen, Y. Wang, Y. Xia, B. Wu, D. Tang, K. Wu, Z. Wenrong, L. Yu, and L. Mei, “New development of nonlinear optical crystals for the ultraviolet region with molecule engineering approach,” J. Appl. Phys.77, 2268–2272 (1994).
[CrossRef]

Mori, Y.

C. Qu, M. Yoshimura, J. Tsunoda, Y. Kaneda, M. Imade, T. Sasaki, and Y. Mori, “189-nm wavelength generation with borate crystals,” Conference Proceedings CLEO: Science and Innovations, Nonlinear Materials and Devices, CF3A (2012).

Noack, F.

Peng, Q.

Y. Zhou, G. Wang, C. Li, Q. Peng, D. Cui, Z. Xu, X. Wang, Y. Zhu, C. Chen, G. Liu, X. Dong, and X. Zhou, “Sixth harmonic of a Nd:YVO4 laser generation in KBBF for ARPES,” Chin. Phys. Lett.25, 963–965 (2008).
[CrossRef]

Petrov, V.

Qu, C.

C. Qu, M. Yoshimura, J. Tsunoda, Y. Kaneda, M. Imade, T. Sasaki, and Y. Mori, “189-nm wavelength generation with borate crystals,” Conference Proceedings CLEO: Science and Innovations, Nonlinear Materials and Devices, CF3A (2012).

Ringling, J.

Sasaki, T.

C. Qu, M. Yoshimura, J. Tsunoda, Y. Kaneda, M. Imade, T. Sasaki, and Y. Mori, “189-nm wavelength generation with borate crystals,” Conference Proceedings CLEO: Science and Innovations, Nonlinear Materials and Devices, CF3A (2012).

Scholz, M.

Seifert, F.

Sekikawa, T.

Tang, D.

D. Tang, Y. Xia, B. Wu, and C. Chen, “Growth of a new UV nonlinear optical crystal: KBe2(BO3)F2,” J. Cryst. Growth222, 125–129 (2001).
[CrossRef]

C. Chen, Y. Wang, Y. Xia, B. Wu, D. Tang, K. Wu, Z. Wenrong, L. Yu, and L. Mei, “New development of nonlinear optical crystals for the ultraviolet region with molecule engineering approach,” J. Appl. Phys.77, 2268–2272 (1994).
[CrossRef]

Togashi, T.

Tsunoda, J.

C. Qu, M. Yoshimura, J. Tsunoda, Y. Kaneda, M. Imade, T. Sasaki, and Y. Mori, “189-nm wavelength generation with borate crystals,” Conference Proceedings CLEO: Science and Innovations, Nonlinear Materials and Devices, CF3A (2012).

Walz, J.

Wang, G.

C. Chen, G. Wang, X. Wang, and Z. Xu, “Deep-UV nonlinear optical crystal KBe2BO3F2 - discovery, growth, optical properties and applications,” Appl. Phys. B97, 9–25 (2009).
[CrossRef]

Y. Zhou, G. Wang, C. Li, Q. Peng, D. Cui, Z. Xu, X. Wang, Y. Zhu, C. Chen, G. Liu, X. Dong, and X. Zhou, “Sixth harmonic of a Nd:YVO4 laser generation in KBBF for ARPES,” Chin. Phys. Lett.25, 963–965 (2008).
[CrossRef]

G. Wang, C. Zhang, C. Chen, Z. Xu, and J. Wang, “Determination of nonlinear optical coefficients of KBe2BO3F2 crystals,” Chin. Phys. Lett.20, 243–245 (2003).
[CrossRef]

C. Chen, J. Lü, G. Wang, Z. Xu, J. Wang, C. Zhang, and Y. Liu, “Deep ultraviolet harmonic generation with KBe2BO3F2 crystal,” Chin. Phys. Lett.18, 1081 (2001).
[CrossRef]

X. Zhang, L. Wang, X. Wang, G. Wang, Y. Zhu, and C. Chen, “High-power sixth-harmonic generation of an Nd:YAG laser with KBe2BO3F2 prism-coupled devices,” accepted by Opt. Commun.
[PubMed]

Wang, J.

T. Kanai, T. Kanda, T. Sekikawa, S. Watanabe, T. Togashi, C. Chen, C. Zhang, Z. Xu, and J. Wang, “Generation of vacuum-ultraviolet light below 160 nm in a KBBF crystal by the fifth harmonic of a single-mode Ti:sapphire laser,” J. Opt. Soc. Am. B21, 370–375 (2004).
[CrossRef]

G. Wang, C. Zhang, C. Chen, Z. Xu, and J. Wang, “Determination of nonlinear optical coefficients of KBe2BO3F2 crystals,” Chin. Phys. Lett.20, 243–245 (2003).
[CrossRef]

C. Chen, J. Lü, G. Wang, Z. Xu, J. Wang, C. Zhang, and Y. Liu, “Deep ultraviolet harmonic generation with KBe2BO3F2 crystal,” Chin. Phys. Lett.18, 1081 (2001).
[CrossRef]

Wang, L.

X. Zhang, L. Wang, X. Wang, G. Wang, Y. Zhu, and C. Chen, “High-power sixth-harmonic generation of an Nd:YAG laser with KBe2BO3F2 prism-coupled devices,” accepted by Opt. Commun.
[PubMed]

Wang, X.

C. Chen, G. Wang, X. Wang, and Z. Xu, “Deep-UV nonlinear optical crystal KBe2BO3F2 - discovery, growth, optical properties and applications,” Appl. Phys. B97, 9–25 (2009).
[CrossRef]

Y. Zhou, G. Wang, C. Li, Q. Peng, D. Cui, Z. Xu, X. Wang, Y. Zhu, C. Chen, G. Liu, X. Dong, and X. Zhou, “Sixth harmonic of a Nd:YVO4 laser generation in KBBF for ARPES,” Chin. Phys. Lett.25, 963–965 (2008).
[CrossRef]

X. Zhang, L. Wang, X. Wang, G. Wang, Y. Zhu, and C. Chen, “High-power sixth-harmonic generation of an Nd:YAG laser with KBe2BO3F2 prism-coupled devices,” accepted by Opt. Commun.
[PubMed]

Wang, Y.

C. Chen, Y. Wang, Y. Xia, B. Wu, D. Tang, K. Wu, Z. Wenrong, L. Yu, and L. Mei, “New development of nonlinear optical crystals for the ultraviolet region with molecule engineering approach,” J. Appl. Phys.77, 2268–2272 (1994).
[CrossRef]

Wang, Z.

Z. Lin, Z. Wang, C. Chen, S. Chen, and M.-H. Lee, “Mechanism for linear and nonlinear optical effects in KBe2BO3F2 (KBBF) crystal,” Chem. Phys. Lett.367, 523–527 (2003).
[CrossRef]

Watanabe, S.

Wenrong, Z.

C. Chen, Y. Wang, Y. Xia, B. Wu, D. Tang, K. Wu, Z. Wenrong, L. Yu, and L. Mei, “New development of nonlinear optical crystals for the ultraviolet region with molecule engineering approach,” J. Appl. Phys.77, 2268–2272 (1994).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1997).

Wu, B.

D. Tang, Y. Xia, B. Wu, and C. Chen, “Growth of a new UV nonlinear optical crystal: KBe2(BO3)F2,” J. Cryst. Growth222, 125–129 (2001).
[CrossRef]

C. Chen, Y. Wang, Y. Xia, B. Wu, D. Tang, K. Wu, Z. Wenrong, L. Yu, and L. Mei, “New development of nonlinear optical crystals for the ultraviolet region with molecule engineering approach,” J. Appl. Phys.77, 2268–2272 (1994).
[CrossRef]

Wu, K.

C. Chen, Y. Wang, Y. Xia, B. Wu, D. Tang, K. Wu, Z. Wenrong, L. Yu, and L. Mei, “New development of nonlinear optical crystals for the ultraviolet region with molecule engineering approach,” J. Appl. Phys.77, 2268–2272 (1994).
[CrossRef]

Xia, Y.

D. Tang, Y. Xia, B. Wu, and C. Chen, “Growth of a new UV nonlinear optical crystal: KBe2(BO3)F2,” J. Cryst. Growth222, 125–129 (2001).
[CrossRef]

C. Chen, Y. Wang, Y. Xia, B. Wu, D. Tang, K. Wu, Z. Wenrong, L. Yu, and L. Mei, “New development of nonlinear optical crystals for the ultraviolet region with molecule engineering approach,” J. Appl. Phys.77, 2268–2272 (1994).
[CrossRef]

Xu, Z.

C. Chen, G. Wang, X. Wang, and Z. Xu, “Deep-UV nonlinear optical crystal KBe2BO3F2 - discovery, growth, optical properties and applications,” Appl. Phys. B97, 9–25 (2009).
[CrossRef]

Y. Zhou, G. Wang, C. Li, Q. Peng, D. Cui, Z. Xu, X. Wang, Y. Zhu, C. Chen, G. Liu, X. Dong, and X. Zhou, “Sixth harmonic of a Nd:YVO4 laser generation in KBBF for ARPES,” Chin. Phys. Lett.25, 963–965 (2008).
[CrossRef]

T. Kanai, T. Kanda, T. Sekikawa, S. Watanabe, T. Togashi, C. Chen, C. Zhang, Z. Xu, and J. Wang, “Generation of vacuum-ultraviolet light below 160 nm in a KBBF crystal by the fifth harmonic of a single-mode Ti:sapphire laser,” J. Opt. Soc. Am. B21, 370–375 (2004).
[CrossRef]

G. Wang, C. Zhang, C. Chen, Z. Xu, and J. Wang, “Determination of nonlinear optical coefficients of KBe2BO3F2 crystals,” Chin. Phys. Lett.20, 243–245 (2003).
[CrossRef]

C. Chen, J. Lü, G. Wang, Z. Xu, J. Wang, C. Zhang, and Y. Liu, “Deep ultraviolet harmonic generation with KBe2BO3F2 crystal,” Chin. Phys. Lett.18, 1081 (2001).
[CrossRef]

Yoshimura, M.

C. Qu, M. Yoshimura, J. Tsunoda, Y. Kaneda, M. Imade, T. Sasaki, and Y. Mori, “189-nm wavelength generation with borate crystals,” Conference Proceedings CLEO: Science and Innovations, Nonlinear Materials and Devices, CF3A (2012).

Yu, L.

C. Chen, Y. Wang, Y. Xia, B. Wu, D. Tang, K. Wu, Z. Wenrong, L. Yu, and L. Mei, “New development of nonlinear optical crystals for the ultraviolet region with molecule engineering approach,” J. Appl. Phys.77, 2268–2272 (1994).
[CrossRef]

Zhang, C.

T. Kanai, T. Kanda, T. Sekikawa, S. Watanabe, T. Togashi, C. Chen, C. Zhang, Z. Xu, and J. Wang, “Generation of vacuum-ultraviolet light below 160 nm in a KBBF crystal by the fifth harmonic of a single-mode Ti:sapphire laser,” J. Opt. Soc. Am. B21, 370–375 (2004).
[CrossRef]

G. Wang, C. Zhang, C. Chen, Z. Xu, and J. Wang, “Determination of nonlinear optical coefficients of KBe2BO3F2 crystals,” Chin. Phys. Lett.20, 243–245 (2003).
[CrossRef]

C. Chen, J. Lü, G. Wang, Z. Xu, J. Wang, C. Zhang, and Y. Liu, “Deep ultraviolet harmonic generation with KBe2BO3F2 crystal,” Chin. Phys. Lett.18, 1081 (2001).
[CrossRef]

Zhang, X.

X. Zhang, L. Wang, X. Wang, G. Wang, Y. Zhu, and C. Chen, “High-power sixth-harmonic generation of an Nd:YAG laser with KBe2BO3F2 prism-coupled devices,” accepted by Opt. Commun.
[PubMed]

Zhou, X.

Y. Zhou, G. Wang, C. Li, Q. Peng, D. Cui, Z. Xu, X. Wang, Y. Zhu, C. Chen, G. Liu, X. Dong, and X. Zhou, “Sixth harmonic of a Nd:YVO4 laser generation in KBBF for ARPES,” Chin. Phys. Lett.25, 963–965 (2008).
[CrossRef]

Zhou, Y.

Y. Zhou, G. Wang, C. Li, Q. Peng, D. Cui, Z. Xu, X. Wang, Y. Zhu, C. Chen, G. Liu, X. Dong, and X. Zhou, “Sixth harmonic of a Nd:YVO4 laser generation in KBBF for ARPES,” Chin. Phys. Lett.25, 963–965 (2008).
[CrossRef]

Zhu, Y.

Y. Zhou, G. Wang, C. Li, Q. Peng, D. Cui, Z. Xu, X. Wang, Y. Zhu, C. Chen, G. Liu, X. Dong, and X. Zhou, “Sixth harmonic of a Nd:YVO4 laser generation in KBBF for ARPES,” Chin. Phys. Lett.25, 963–965 (2008).
[CrossRef]

X. Zhang, L. Wang, X. Wang, G. Wang, Y. Zhu, and C. Chen, “High-power sixth-harmonic generation of an Nd:YAG laser with KBe2BO3F2 prism-coupled devices,” accepted by Opt. Commun.
[PubMed]

Appl. Phys. B (1)

C. Chen, G. Wang, X. Wang, and Z. Xu, “Deep-UV nonlinear optical crystal KBe2BO3F2 - discovery, growth, optical properties and applications,” Appl. Phys. B97, 9–25 (2009).
[CrossRef]

Chem. Phys. Lett. (1)

Z. Lin, Z. Wang, C. Chen, S. Chen, and M.-H. Lee, “Mechanism for linear and nonlinear optical effects in KBe2BO3F2 (KBBF) crystal,” Chem. Phys. Lett.367, 523–527 (2003).
[CrossRef]

Chin. Phys. Lett. (3)

G. Wang, C. Zhang, C. Chen, Z. Xu, and J. Wang, “Determination of nonlinear optical coefficients of KBe2BO3F2 crystals,” Chin. Phys. Lett.20, 243–245 (2003).
[CrossRef]

C. Chen, J. Lü, G. Wang, Z. Xu, J. Wang, C. Zhang, and Y. Liu, “Deep ultraviolet harmonic generation with KBe2BO3F2 crystal,” Chin. Phys. Lett.18, 1081 (2001).
[CrossRef]

Y. Zhou, G. Wang, C. Li, Q. Peng, D. Cui, Z. Xu, X. Wang, Y. Zhu, C. Chen, G. Liu, X. Dong, and X. Zhou, “Sixth harmonic of a Nd:YVO4 laser generation in KBBF for ARPES,” Chin. Phys. Lett.25, 963–965 (2008).
[CrossRef]

Conference Proceedings CLEO: Science and Innovations, Nonlinear Materials and Devices, CF3A (1)

C. Qu, M. Yoshimura, J. Tsunoda, Y. Kaneda, M. Imade, T. Sasaki, and Y. Mori, “189-nm wavelength generation with borate crystals,” Conference Proceedings CLEO: Science and Innovations, Nonlinear Materials and Devices, CF3A (2012).

J. Appl. Phys. (1)

C. Chen, Y. Wang, Y. Xia, B. Wu, D. Tang, K. Wu, Z. Wenrong, L. Yu, and L. Mei, “New development of nonlinear optical crystals for the ultraviolet region with molecule engineering approach,” J. Appl. Phys.77, 2268–2272 (1994).
[CrossRef]

J. Cryst. Growth (1)

D. Tang, Y. Xia, B. Wu, and C. Chen, “Growth of a new UV nonlinear optical crystal: KBe2(BO3)F2,” J. Cryst. Growth222, 125–129 (2001).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Lett. (2)

Other (4)

D. Basting, Excimer Laser Technology (Springer, 2005).
[CrossRef]

W. Köchner, Solid-State Laser Engineerung (Springer, 2006).

X. Zhang, L. Wang, X. Wang, G. Wang, Y. Zhu, and C. Chen, “High-power sixth-harmonic generation of an Nd:YAG laser with KBe2BO3F2 prism-coupled devices,” accepted by Opt. Commun.
[PubMed]

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Photograph of the TA-SHG pro that provides the 700-mW pump beam for the DUV nonlinear conversion process. (b) Bow-tie cavity with the Brewster-cut KBBF prism-coupled device (PCD). In this top view, the two parallel lines at the PCD indicate the vertically tilted KBBF slab between the SiO2 prisms. For details see text.

Fig. 2
Fig. 2

(a) Dependance of the DUV power at 191 nm on the pump power. The solid line represents a simulation of the generated DUV power. (b) Long-term measurement of the TA, SHG, and DUV power over a interval of 8 hours. None of the signals shows a degradation over time.

Fig. 3
Fig. 3

Measurement results of the MHF tuning experiments. The graph depicts the output power levels of the TA, the 382-nm beam, and the DUV light during a frequency scan of the ECDL. The achieved MHF scan range of the DUV frequency was 40 GHz.

Metrics