Abstract

Waveguide-typed plasmonic mode converters (WPMCs) at a wavelength of 1.55 μm are presented. The WPMC is composed of an insulator-metal-insulator waveguide (IMI-W), a 1st reversely tapered insulator-metal-insulator-metal-insulator waveguide (RT-IMIMI-W), an insulator-metal-insulator-metal-insulator waveguide (IMIMI-W), a 2nd RT-IMIMI-W with lateral silver mirrors (LSMs), and a metal-insulator-metal waveguide (MIM-W) in series. The mode sizes for the IMI-W, IMIMI-W, and MIM-W via the IMIMI-W with LSMs were not only calculated using a finite element method but were also experimentally measured. The input mode size of 10.3 μm × 10.3 μm from a polarization-maintaining single-mode fiber was squeezed to the mode size of ~2.9 μm × 2.9 μm in measurement by converting an s0 mode to an Sa0 mode via an Ss0 mode. The WPMC may be potentially useful for bridging micro- to nano-plasmonic integrated circuits.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons (Springer-Verlag, 1988).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  3. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
    [CrossRef] [PubMed]
  4. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express19(22), 22029–22106 (2011).
    [CrossRef] [PubMed]
  5. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured Plasmonic Sensors,” Chem. Rev.108(2), 494–521 (2008).
    [CrossRef] [PubMed]
  6. S. A. Maier, “Plasmonics: Metal nanostructures for subwavelength photonic devices,” IEEE J. Sel. Top. Quantum Electron.12(6), 1214–1220 (2006).
    [CrossRef]
  7. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today9(7-8), 20–27 (2006).
    [CrossRef]
  8. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006).
    [CrossRef]
  9. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express13(17), 6645–6650 (2005).
    [CrossRef] [PubMed]
  10. P. Ginzburg and M. Orenstein, “Plasmonic transmission lines: from micro to nano scale with λ/4 impedance matching,” Opt. Express15(11), 6762–6767 (2007).
    [CrossRef] [PubMed]
  11. P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Lett.31(22), 3288–3290 (2006).
    [CrossRef] [PubMed]
  12. S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett.98(2), 021107 (2011).
    [CrossRef]
  13. R. Yang, M. A. G. Abushagur, and Z. Lu, “Efficiently squeezing near infrared light into a 21 nm-by-24 nm nanospot,” Opt. Express16(24), 20142–20148 (2008).
    [CrossRef] [PubMed]
  14. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A21(12), 2442–2446 (2004).
    [CrossRef] [PubMed]
  15. P. Berini, “Plasmon-polariton waves guided by thin lossy mrtal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B61(15), 10484–10503 (2000).
    [CrossRef]
  16. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon.1(3), 484–588 (2009).
    [CrossRef]
  17. W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, J.-M. Lee, M.- Kim, J. J. Ju, and M.-H. Lee, “Enhanced transmission in a fiber-coupled Au stripe waveguide system,” IEEE Photon. Technol. Lett.22(2), 100–102 (2010).
    [CrossRef]
  18. J. J. Ju, S. Park, M.- Kim, J. T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, “Polymer-based long-range surface plasmon polariton waveguides for 10-Gbps optical signal transmission applications,” J. Lightwave Technol.26(11), 1510–1518 (2008).
    [CrossRef]
  19. S. Park, J. J. Ju, J. T. Kim, M. S. Kim, S. K. Park, J.-M. Lee, W.-J. Lee, and M.-H. Lee, “Sub-dB/cm propagation loss in silver stripe waveguides,” Opt. Express17(2), 697–702 (2009).
    [CrossRef] [PubMed]
  20. S. Park, M.- Kim, J. T. Kim, S. K. Park, J. J. Ju, and M.-H. Lee, “Long range surface plasmon polariton waveguides at 1.31 and 1.55 μm wavelengths,” Opt. Commun.281(8), 2057–2061 (2008).
    [CrossRef]
  21. S. Park, M.- Kim, J. J. Ju, J. T. Kim, S. K. Park, J.-M. Lee, W.-J. Lee, and M.-H. Lee, “Temperature dependence of symmetric and asymmetric structured Au stripe waveguides,” Opt. Commun.283(17), 3267–3270 (2010).
    [CrossRef]
  22. P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-ranging surface-plasmon-polariton waveguides,” J. Appl. Phys.98(4), 043109 (2005).
    [CrossRef]
  23. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol.23(1), 413–422 (2005).
    [CrossRef]
  24. R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express13(3), 977–984 (2005).
    [CrossRef] [PubMed]
  25. H.-R. Park, M.- Kim, I.-S. Jeong, J.-M. Park, J. J. Ju, and M.-H. Lee, “Nanoimprinted Bragg gratings for long-range surface plasmon polaritons fabricated via spin coating of a transparent silver ink,” IEEE Trans. NanoTechnol.10(4), 844–848 (2011).
    [CrossRef]
  26. D. Woolf, M. Loncar, and F. Capasso, “The forces from coupled surface plasmon polaritons in planar waveguides,” Opt. Express17(22), 19996–20011 (2009).
    [CrossRef] [PubMed]
  27. H.-R. Park, J.-M. Park, M. S. Kim, J. J. Ju, J.-H. Son, and M.-H. Lee, “Effective plasmonic mode-size converter,” Opt. Express19(22), 21605–21613 (2011).
    [CrossRef] [PubMed]
  28. M.-H. Lee, “Long-range surface plasmon polariton waveguides containing very thin spin-coated silver films,” Thin Solid Films519(18), 6097–6101 (2011).
    [CrossRef]
  29. InkTec Co, Ltd., Available: http://www.inktec.com
  30. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, New York, 1985).
  31. ChemOptics, Inc., Available: http://www.chemoptics.co.kr
  32. W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.- Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys.103(7), 073713 (2008).
    [CrossRef]
  33. C. O. M. S. O. L. Multiphysics, Inc., Available: http://www.comsol.com .
  34. FDTD and MODE Solutions, Lumerical Solutions Inc., Available: http://www.lumerical.com
  35. H.-R. Park, “Investigation of hybrid plasmonic waveguides for nano-scale optical focusing and propagation,” Ph. D thesis, Sungkyunkwan University (2011).
  36. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys.114(2), 185–200 (1994).
    [CrossRef]

2011 (5)

M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express19(22), 22029–22106 (2011).
[CrossRef] [PubMed]

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett.98(2), 021107 (2011).
[CrossRef]

H.-R. Park, J.-M. Park, M. S. Kim, J. J. Ju, J.-H. Son, and M.-H. Lee, “Effective plasmonic mode-size converter,” Opt. Express19(22), 21605–21613 (2011).
[CrossRef] [PubMed]

M.-H. Lee, “Long-range surface plasmon polariton waveguides containing very thin spin-coated silver films,” Thin Solid Films519(18), 6097–6101 (2011).
[CrossRef]

H.-R. Park, M.- Kim, I.-S. Jeong, J.-M. Park, J. J. Ju, and M.-H. Lee, “Nanoimprinted Bragg gratings for long-range surface plasmon polaritons fabricated via spin coating of a transparent silver ink,” IEEE Trans. NanoTechnol.10(4), 844–848 (2011).
[CrossRef]

2010 (2)

S. Park, M.- Kim, J. J. Ju, J. T. Kim, S. K. Park, J.-M. Lee, W.-J. Lee, and M.-H. Lee, “Temperature dependence of symmetric and asymmetric structured Au stripe waveguides,” Opt. Commun.283(17), 3267–3270 (2010).
[CrossRef]

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, J.-M. Lee, M.- Kim, J. J. Ju, and M.-H. Lee, “Enhanced transmission in a fiber-coupled Au stripe waveguide system,” IEEE Photon. Technol. Lett.22(2), 100–102 (2010).
[CrossRef]

2009 (3)

2008 (5)

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.- Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys.103(7), 073713 (2008).
[CrossRef]

S. Park, M.- Kim, J. T. Kim, S. K. Park, J. J. Ju, and M.-H. Lee, “Long range surface plasmon polariton waveguides at 1.31 and 1.55 μm wavelengths,” Opt. Commun.281(8), 2057–2061 (2008).
[CrossRef]

J. J. Ju, S. Park, M.- Kim, J. T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, “Polymer-based long-range surface plasmon polariton waveguides for 10-Gbps optical signal transmission applications,” J. Lightwave Technol.26(11), 1510–1518 (2008).
[CrossRef]

R. Yang, M. A. G. Abushagur, and Z. Lu, “Efficiently squeezing near infrared light into a 21 nm-by-24 nm nanospot,” Opt. Express16(24), 20142–20148 (2008).
[CrossRef] [PubMed]

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured Plasmonic Sensors,” Chem. Rev.108(2), 494–521 (2008).
[CrossRef] [PubMed]

2007 (1)

2006 (4)

P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Lett.31(22), 3288–3290 (2006).
[CrossRef] [PubMed]

S. A. Maier, “Plasmonics: Metal nanostructures for subwavelength photonic devices,” IEEE J. Sel. Top. Quantum Electron.12(6), 1214–1220 (2006).
[CrossRef]

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today9(7-8), 20–27 (2006).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006).
[CrossRef]

2005 (5)

2004 (1)

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

2000 (1)

P. Berini, “Plasmon-polariton waves guided by thin lossy mrtal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B61(15), 10484–10503 (2000).
[CrossRef]

1994 (1)

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys.114(2), 185–200 (1994).
[CrossRef]

Abushagur, M. A. G.

Anderton, C. R.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured Plasmonic Sensors,” Chem. Rev.108(2), 494–521 (2008).
[CrossRef] [PubMed]

Arbel, D.

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Berenger, J. P.

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys.114(2), 185–200 (1994).
[CrossRef]

Berini, P.

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon.1(3), 484–588 (2009).
[CrossRef]

R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express13(3), 977–984 (2005).
[CrossRef] [PubMed]

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-ranging surface-plasmon-polariton waveguides,” J. Appl. Phys.98(4), 043109 (2005).
[CrossRef]

P. Berini, “Plasmon-polariton waves guided by thin lossy mrtal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B61(15), 10484–10503 (2000).
[CrossRef]

Boltasseva, A.

Bozhevolnyi, S. I.

Brongersma, M. L.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today9(7-8), 20–27 (2006).
[CrossRef]

R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A21(12), 2442–2446 (2004).
[CrossRef] [PubMed]

Capasso, F.

Catrysse, P. B.

Chandran, A.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today9(7-8), 20–27 (2006).
[CrossRef]

Charbonneau, R.

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-ranging surface-plasmon-polariton waveguides,” J. Appl. Phys.98(4), 043109 (2005).
[CrossRef]

R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express13(3), 977–984 (2005).
[CrossRef] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Ginzburg, P.

Gray, S. K.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured Plasmonic Sensors,” Chem. Rev.108(2), 494–521 (2008).
[CrossRef] [PubMed]

Han, Z.

He, S.

Jeong, I.-S.

H.-R. Park, M.- Kim, I.-S. Jeong, J.-M. Park, J. J. Ju, and M.-H. Lee, “Nanoimprinted Bragg gratings for long-range surface plasmon polaritons fabricated via spin coating of a transparent silver ink,” IEEE Trans. NanoTechnol.10(4), 844–848 (2011).
[CrossRef]

Ju, J. J.

H.-R. Park, M.- Kim, I.-S. Jeong, J.-M. Park, J. J. Ju, and M.-H. Lee, “Nanoimprinted Bragg gratings for long-range surface plasmon polaritons fabricated via spin coating of a transparent silver ink,” IEEE Trans. NanoTechnol.10(4), 844–848 (2011).
[CrossRef]

H.-R. Park, J.-M. Park, M. S. Kim, J. J. Ju, J.-H. Son, and M.-H. Lee, “Effective plasmonic mode-size converter,” Opt. Express19(22), 21605–21613 (2011).
[CrossRef] [PubMed]

S. Park, M.- Kim, J. J. Ju, J. T. Kim, S. K. Park, J.-M. Lee, W.-J. Lee, and M.-H. Lee, “Temperature dependence of symmetric and asymmetric structured Au stripe waveguides,” Opt. Commun.283(17), 3267–3270 (2010).
[CrossRef]

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, J.-M. Lee, M.- Kim, J. J. Ju, and M.-H. Lee, “Enhanced transmission in a fiber-coupled Au stripe waveguide system,” IEEE Photon. Technol. Lett.22(2), 100–102 (2010).
[CrossRef]

S. Park, J. J. Ju, J. T. Kim, M. S. Kim, S. K. Park, J.-M. Lee, W.-J. Lee, and M.-H. Lee, “Sub-dB/cm propagation loss in silver stripe waveguides,” Opt. Express17(2), 697–702 (2009).
[CrossRef] [PubMed]

J. J. Ju, S. Park, M.- Kim, J. T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, “Polymer-based long-range surface plasmon polariton waveguides for 10-Gbps optical signal transmission applications,” J. Lightwave Technol.26(11), 1510–1518 (2008).
[CrossRef]

S. Park, M.- Kim, J. T. Kim, S. K. Park, J. J. Ju, and M.-H. Lee, “Long range surface plasmon polariton waveguides at 1.31 and 1.55 μm wavelengths,” Opt. Commun.281(8), 2057–2061 (2008).
[CrossRef]

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.- Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys.103(7), 073713 (2008).
[CrossRef]

Kim, J. T.

S. Park, M.- Kim, J. J. Ju, J. T. Kim, S. K. Park, J.-M. Lee, W.-J. Lee, and M.-H. Lee, “Temperature dependence of symmetric and asymmetric structured Au stripe waveguides,” Opt. Commun.283(17), 3267–3270 (2010).
[CrossRef]

S. Park, J. J. Ju, J. T. Kim, M. S. Kim, S. K. Park, J.-M. Lee, W.-J. Lee, and M.-H. Lee, “Sub-dB/cm propagation loss in silver stripe waveguides,” Opt. Express17(2), 697–702 (2009).
[CrossRef] [PubMed]

J. J. Ju, S. Park, M.- Kim, J. T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, “Polymer-based long-range surface plasmon polariton waveguides for 10-Gbps optical signal transmission applications,” J. Lightwave Technol.26(11), 1510–1518 (2008).
[CrossRef]

S. Park, M.- Kim, J. T. Kim, S. K. Park, J. J. Ju, and M.-H. Lee, “Long range surface plasmon polariton waveguides at 1.31 and 1.55 μm wavelengths,” Opt. Commun.281(8), 2057–2061 (2008).
[CrossRef]

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.- Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys.103(7), 073713 (2008).
[CrossRef]

Kim, J.-E.

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, J.-M. Lee, M.- Kim, J. J. Ju, and M.-H. Lee, “Enhanced transmission in a fiber-coupled Au stripe waveguide system,” IEEE Photon. Technol. Lett.22(2), 100–102 (2010).
[CrossRef]

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.- Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys.103(7), 073713 (2008).
[CrossRef]

Kim, M.-

H.-R. Park, M.- Kim, I.-S. Jeong, J.-M. Park, J. J. Ju, and M.-H. Lee, “Nanoimprinted Bragg gratings for long-range surface plasmon polaritons fabricated via spin coating of a transparent silver ink,” IEEE Trans. NanoTechnol.10(4), 844–848 (2011).
[CrossRef]

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, J.-M. Lee, M.- Kim, J. J. Ju, and M.-H. Lee, “Enhanced transmission in a fiber-coupled Au stripe waveguide system,” IEEE Photon. Technol. Lett.22(2), 100–102 (2010).
[CrossRef]

S. Park, M.- Kim, J. J. Ju, J. T. Kim, S. K. Park, J.-M. Lee, W.-J. Lee, and M.-H. Lee, “Temperature dependence of symmetric and asymmetric structured Au stripe waveguides,” Opt. Commun.283(17), 3267–3270 (2010).
[CrossRef]

S. Park, M.- Kim, J. T. Kim, S. K. Park, J. J. Ju, and M.-H. Lee, “Long range surface plasmon polariton waveguides at 1.31 and 1.55 μm wavelengths,” Opt. Commun.281(8), 2057–2061 (2008).
[CrossRef]

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.- Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys.103(7), 073713 (2008).
[CrossRef]

J. J. Ju, S. Park, M.- Kim, J. T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, “Polymer-based long-range surface plasmon polariton waveguides for 10-Gbps optical signal transmission applications,” J. Lightwave Technol.26(11), 1510–1518 (2008).
[CrossRef]

Kim, M. S.

Kjaer, K.

Kwong, D. L.

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett.98(2), 021107 (2011).
[CrossRef]

Lahoud, N.

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-ranging surface-plasmon-polariton waveguides,” J. Appl. Phys.98(4), 043109 (2005).
[CrossRef]

R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express13(3), 977–984 (2005).
[CrossRef] [PubMed]

Larsen, M. S.

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Lee, J.-M.

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, J.-M. Lee, M.- Kim, J. J. Ju, and M.-H. Lee, “Enhanced transmission in a fiber-coupled Au stripe waveguide system,” IEEE Photon. Technol. Lett.22(2), 100–102 (2010).
[CrossRef]

S. Park, M.- Kim, J. J. Ju, J. T. Kim, S. K. Park, J.-M. Lee, W.-J. Lee, and M.-H. Lee, “Temperature dependence of symmetric and asymmetric structured Au stripe waveguides,” Opt. Commun.283(17), 3267–3270 (2010).
[CrossRef]

S. Park, J. J. Ju, J. T. Kim, M. S. Kim, S. K. Park, J.-M. Lee, W.-J. Lee, and M.-H. Lee, “Sub-dB/cm propagation loss in silver stripe waveguides,” Opt. Express17(2), 697–702 (2009).
[CrossRef] [PubMed]

Lee, M.-H.

H.-R. Park, J.-M. Park, M. S. Kim, J. J. Ju, J.-H. Son, and M.-H. Lee, “Effective plasmonic mode-size converter,” Opt. Express19(22), 21605–21613 (2011).
[CrossRef] [PubMed]

H.-R. Park, M.- Kim, I.-S. Jeong, J.-M. Park, J. J. Ju, and M.-H. Lee, “Nanoimprinted Bragg gratings for long-range surface plasmon polaritons fabricated via spin coating of a transparent silver ink,” IEEE Trans. NanoTechnol.10(4), 844–848 (2011).
[CrossRef]

M.-H. Lee, “Long-range surface plasmon polariton waveguides containing very thin spin-coated silver films,” Thin Solid Films519(18), 6097–6101 (2011).
[CrossRef]

S. Park, M.- Kim, J. J. Ju, J. T. Kim, S. K. Park, J.-M. Lee, W.-J. Lee, and M.-H. Lee, “Temperature dependence of symmetric and asymmetric structured Au stripe waveguides,” Opt. Commun.283(17), 3267–3270 (2010).
[CrossRef]

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, J.-M. Lee, M.- Kim, J. J. Ju, and M.-H. Lee, “Enhanced transmission in a fiber-coupled Au stripe waveguide system,” IEEE Photon. Technol. Lett.22(2), 100–102 (2010).
[CrossRef]

S. Park, J. J. Ju, J. T. Kim, M. S. Kim, S. K. Park, J.-M. Lee, W.-J. Lee, and M.-H. Lee, “Sub-dB/cm propagation loss in silver stripe waveguides,” Opt. Express17(2), 697–702 (2009).
[CrossRef] [PubMed]

J. J. Ju, S. Park, M.- Kim, J. T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, “Polymer-based long-range surface plasmon polariton waveguides for 10-Gbps optical signal transmission applications,” J. Lightwave Technol.26(11), 1510–1518 (2008).
[CrossRef]

S. Park, M.- Kim, J. T. Kim, S. K. Park, J. J. Ju, and M.-H. Lee, “Long range surface plasmon polariton waveguides at 1.31 and 1.55 μm wavelengths,” Opt. Commun.281(8), 2057–2061 (2008).
[CrossRef]

Lee, W.-J.

S. Park, M.- Kim, J. J. Ju, J. T. Kim, S. K. Park, J.-M. Lee, W.-J. Lee, and M.-H. Lee, “Temperature dependence of symmetric and asymmetric structured Au stripe waveguides,” Opt. Commun.283(17), 3267–3270 (2010).
[CrossRef]

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, J.-M. Lee, M.- Kim, J. J. Ju, and M.-H. Lee, “Enhanced transmission in a fiber-coupled Au stripe waveguide system,” IEEE Photon. Technol. Lett.22(2), 100–102 (2010).
[CrossRef]

S. Park, J. J. Ju, J. T. Kim, M. S. Kim, S. K. Park, J.-M. Lee, W.-J. Lee, and M.-H. Lee, “Sub-dB/cm propagation loss in silver stripe waveguides,” Opt. Express17(2), 697–702 (2009).
[CrossRef] [PubMed]

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.- Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys.103(7), 073713 (2008).
[CrossRef]

Leosson, K.

Liow, T. Y.

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett.98(2), 021107 (2011).
[CrossRef]

Liu, L.

Lo, G. Q.

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett.98(2), 021107 (2011).
[CrossRef]

Loncar, M.

Lu, Z.

Maier, S. A.

S. A. Maier, “Plasmonics: Metal nanostructures for subwavelength photonic devices,” IEEE J. Sel. Top. Quantum Electron.12(6), 1214–1220 (2006).
[CrossRef]

Maria, J.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured Plasmonic Sensors,” Chem. Rev.108(2), 494–521 (2008).
[CrossRef] [PubMed]

Mattiussi, G.

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-ranging surface-plasmon-polariton waveguides,” J. Appl. Phys.98(4), 043109 (2005).
[CrossRef]

R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express13(3), 977–984 (2005).
[CrossRef] [PubMed]

Nikolajsen, T.

Nuzzo, R. G.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured Plasmonic Sensors,” Chem. Rev.108(2), 494–521 (2008).
[CrossRef] [PubMed]

Orenstein, M.

Park, H. Y.

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, J.-M. Lee, M.- Kim, J. J. Ju, and M.-H. Lee, “Enhanced transmission in a fiber-coupled Au stripe waveguide system,” IEEE Photon. Technol. Lett.22(2), 100–102 (2010).
[CrossRef]

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.- Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys.103(7), 073713 (2008).
[CrossRef]

Park, H.-R.

H.-R. Park, M.- Kim, I.-S. Jeong, J.-M. Park, J. J. Ju, and M.-H. Lee, “Nanoimprinted Bragg gratings for long-range surface plasmon polaritons fabricated via spin coating of a transparent silver ink,” IEEE Trans. NanoTechnol.10(4), 844–848 (2011).
[CrossRef]

H.-R. Park, J.-M. Park, M. S. Kim, J. J. Ju, J.-H. Son, and M.-H. Lee, “Effective plasmonic mode-size converter,” Opt. Express19(22), 21605–21613 (2011).
[CrossRef] [PubMed]

Park, J.-M.

H.-R. Park, J.-M. Park, M. S. Kim, J. J. Ju, J.-H. Son, and M.-H. Lee, “Effective plasmonic mode-size converter,” Opt. Express19(22), 21605–21613 (2011).
[CrossRef] [PubMed]

H.-R. Park, M.- Kim, I.-S. Jeong, J.-M. Park, J. J. Ju, and M.-H. Lee, “Nanoimprinted Bragg gratings for long-range surface plasmon polaritons fabricated via spin coating of a transparent silver ink,” IEEE Trans. NanoTechnol.10(4), 844–848 (2011).
[CrossRef]

Park, S.

S. Park, M.- Kim, J. J. Ju, J. T. Kim, S. K. Park, J.-M. Lee, W.-J. Lee, and M.-H. Lee, “Temperature dependence of symmetric and asymmetric structured Au stripe waveguides,” Opt. Commun.283(17), 3267–3270 (2010).
[CrossRef]

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, J.-M. Lee, M.- Kim, J. J. Ju, and M.-H. Lee, “Enhanced transmission in a fiber-coupled Au stripe waveguide system,” IEEE Photon. Technol. Lett.22(2), 100–102 (2010).
[CrossRef]

S. Park, J. J. Ju, J. T. Kim, M. S. Kim, S. K. Park, J.-M. Lee, W.-J. Lee, and M.-H. Lee, “Sub-dB/cm propagation loss in silver stripe waveguides,” Opt. Express17(2), 697–702 (2009).
[CrossRef] [PubMed]

J. J. Ju, S. Park, M.- Kim, J. T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, “Polymer-based long-range surface plasmon polariton waveguides for 10-Gbps optical signal transmission applications,” J. Lightwave Technol.26(11), 1510–1518 (2008).
[CrossRef]

S. Park, M.- Kim, J. T. Kim, S. K. Park, J. J. Ju, and M.-H. Lee, “Long range surface plasmon polariton waveguides at 1.31 and 1.55 μm wavelengths,” Opt. Commun.281(8), 2057–2061 (2008).
[CrossRef]

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.- Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys.103(7), 073713 (2008).
[CrossRef]

Park, S. K.

S. Park, M.- Kim, J. J. Ju, J. T. Kim, S. K. Park, J.-M. Lee, W.-J. Lee, and M.-H. Lee, “Temperature dependence of symmetric and asymmetric structured Au stripe waveguides,” Opt. Commun.283(17), 3267–3270 (2010).
[CrossRef]

S. Park, J. J. Ju, J. T. Kim, M. S. Kim, S. K. Park, J.-M. Lee, W.-J. Lee, and M.-H. Lee, “Sub-dB/cm propagation loss in silver stripe waveguides,” Opt. Express17(2), 697–702 (2009).
[CrossRef] [PubMed]

J. J. Ju, S. Park, M.- Kim, J. T. Kim, S. K. Park, Y. J. Park, and M.-H. Lee, “Polymer-based long-range surface plasmon polariton waveguides for 10-Gbps optical signal transmission applications,” J. Lightwave Technol.26(11), 1510–1518 (2008).
[CrossRef]

S. Park, M.- Kim, J. T. Kim, S. K. Park, J. J. Ju, and M.-H. Lee, “Long range surface plasmon polariton waveguides at 1.31 and 1.55 μm wavelengths,” Opt. Commun.281(8), 2057–2061 (2008).
[CrossRef]

Park, Y. J.

Polman, A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006).
[CrossRef]

Rogers, J. A.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured Plasmonic Sensors,” Chem. Rev.108(2), 494–521 (2008).
[CrossRef] [PubMed]

Schuller, J. A.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today9(7-8), 20–27 (2006).
[CrossRef]

Selker, M. D.

Son, J.-H.

Stewart, M. E.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured Plasmonic Sensors,” Chem. Rev.108(2), 494–521 (2008).
[CrossRef] [PubMed]

Stockman, M. I.

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006).
[CrossRef]

Thompson, L. B.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured Plasmonic Sensors,” Chem. Rev.108(2), 494–521 (2008).
[CrossRef] [PubMed]

Woolf, D.

Yang, R.

Zhang, X.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Zhu, S.

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett.98(2), 021107 (2011).
[CrossRef]

Zia, R.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today9(7-8), 20–27 (2006).
[CrossRef]

R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A21(12), 2442–2446 (2004).
[CrossRef] [PubMed]

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (1)

S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits,” Appl. Phys. Lett.98(2), 021107 (2011).
[CrossRef]

Chem. Rev. (1)

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured Plasmonic Sensors,” Chem. Rev.108(2), 494–521 (2008).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

S. A. Maier, “Plasmonics: Metal nanostructures for subwavelength photonic devices,” IEEE J. Sel. Top. Quantum Electron.12(6), 1214–1220 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, J.-M. Lee, M.- Kim, J. J. Ju, and M.-H. Lee, “Enhanced transmission in a fiber-coupled Au stripe waveguide system,” IEEE Photon. Technol. Lett.22(2), 100–102 (2010).
[CrossRef]

IEEE Trans. NanoTechnol. (1)

H.-R. Park, M.- Kim, I.-S. Jeong, J.-M. Park, J. J. Ju, and M.-H. Lee, “Nanoimprinted Bragg gratings for long-range surface plasmon polaritons fabricated via spin coating of a transparent silver ink,” IEEE Trans. NanoTechnol.10(4), 844–848 (2011).
[CrossRef]

J. Appl. Phys. (2)

W.-J. Lee, J.-E. Kim, H. Y. Park, S. Park, M.- Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys.103(7), 073713 (2008).
[CrossRef]

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-ranging surface-plasmon-polariton waveguides,” J. Appl. Phys.98(4), 043109 (2005).
[CrossRef]

J. Comput. Phys. (1)

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys.114(2), 185–200 (1994).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. A (1)

Mater. Today (1)

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today9(7-8), 20–27 (2006).
[CrossRef]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Commun. (2)

S. Park, M.- Kim, J. T. Kim, S. K. Park, J. J. Ju, and M.-H. Lee, “Long range surface plasmon polariton waveguides at 1.31 and 1.55 μm wavelengths,” Opt. Commun.281(8), 2057–2061 (2008).
[CrossRef]

S. Park, M.- Kim, J. J. Ju, J. T. Kim, S. K. Park, J.-M. Lee, W.-J. Lee, and M.-H. Lee, “Temperature dependence of symmetric and asymmetric structured Au stripe waveguides,” Opt. Commun.283(17), 3267–3270 (2010).
[CrossRef]

Opt. Express (8)

Opt. Lett. (1)

Phys. Rev. B (2)

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B73(3), 035407 (2006).
[CrossRef]

P. Berini, “Plasmon-polariton waves guided by thin lossy mrtal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B61(15), 10484–10503 (2000).
[CrossRef]

Science (1)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Thin Solid Films (1)

M.-H. Lee, “Long-range surface plasmon polariton waveguides containing very thin spin-coated silver films,” Thin Solid Films519(18), 6097–6101 (2011).
[CrossRef]

Other (7)

InkTec Co, Ltd., Available: http://www.inktec.com

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, New York, 1985).

ChemOptics, Inc., Available: http://www.chemoptics.co.kr

C. O. M. S. O. L. Multiphysics, Inc., Available: http://www.comsol.com .

FDTD and MODE Solutions, Lumerical Solutions Inc., Available: http://www.lumerical.com

H.-R. Park, “Investigation of hybrid plasmonic waveguides for nano-scale optical focusing and propagation,” Ph. D thesis, Sungkyunkwan University (2011).

H. Raether, Surface Plasmons (Springer-Verlag, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic view of the proposed WPMC, which is composed of the input IMI-W, the 1st RT-IMIMI-W, the straight IMIMI-W, the 2nd RT-IMIMI-W with the LSMs, and the output MIM-W in series. The total length of the proposed WPMC is 53.65 μm including the 41.65μm-long R-PMSC and the 12 μm-long Sa0MC. The 1.65 μm-long 1st RT-IMIMI-W is exaggerated in this view.

Fig. 2
Fig. 2

(a) Schematic view of the proposed Sa0MC and (b) its detailed design parameters at the top and side views. The outer shells of the LSMs are made of a transparent silver ink and the inside of the LSMs is filled with a low-loss polymer.

Fig. 3
Fig. 3

(a) Effective indices and (b) the horizontal and vertical mode sizes for the s0 mode in the 20 nm-thick IMI-W, Ss0 mode and Sa0 mode in the 20 nm-thick and 500 nm-gap IMIMI-W as a function of the waveguide width.

Fig. 4
Fig. 4

(a)-(c): Charge distribution, Ez field and mode-intensity in the propagation direction for the Ss0 mode in the 1.7 μm-wide IMIMI-W, (d) - (f): those for the Ss0 mode at the beginning part (~1.7 μm-wide IMIMI-W) of the 2nd RT-IMIMI-W with the LSMs, and (g) - (i): those for the Sa0 at the end part (1.8 μm-wide IMIMI-W) of the 2nd RT-IMIMI-W with the LSMs. Red arrows represent the direction and the strength of the Ez field.

Fig. 5
Fig. 5

Optical microscope images of the mode-intensity profiles for the (a) PMSMF, (b) 5 μm-wide IMI-W, (c) 1.7 μm-wide IMIMI-W, and (d) 1.8 μm-wide MIM-W. An IR-Vidicon camera with a 50 × objective lens was used to take the images. The contour colors represent arbitrary values. The horizontal and vertical mode sizes were evaluated by fitting the captured mode images with Gaussian profiles.

Fig. 6
Fig. 6

(a) Far-field image calculated with FDTD, (b) the input near-field image used for the far-field image simulation, and (c) the far-field image measured with the IR-Vidicon camera.

Tables (1)

Tables Icon

Table 1 Detailed losses in the WPMC

Metrics